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This document is intended as a simple introduction to the subject for those
who have not met probability theory as part of their previous maths studies.
Probability theory is one of those mathematical topics which is best learnt
from seeing and performing a large number of examples. Each new topic
covered here is illustrated by a number of worked examples. If the material
is new to you, these should be followed carefully and then the corresponding
basic exercises attempted. Worked solutions for these exercises are included
in a later section (Appendix A).
Further worked solutions are provided in Appendix B (which can also be
used as exercises).
The final section of the document (Appendix C) is an examples sheet which
should be prepared for a supervision in the normal manner.
Those who have studied probability before may find it sufficient to move
straight to the examples sheet.

N.B. x!, nCr, nPr, mean and sample standard deviation appear as buttons on standard calculators.
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Probability of an Event

When tossing an unbiased coin, it is fairly obvious what we mean by ‘the probability of getting heads
is 50%’. This is a statement that, if we were to toss a coin a large number of times, then the propor-
tion of tosses which result in heads will approach one half. This intuitive notion of probability as the
relative frequency of something is a good starting point.

Example 1
Toss a coin three times, what is the probability of at least two heads ?

Answer
There are 8 possible outcomes which, if the coin is unbiased, should all be equally likely:-

H H H

T H H

H T H

T T H

H H T

T H T

H T T

T T T

Two or more heads result from the 4 outcomes which are ringed.

The probability of two or more heads is, therefore:

Probability =
4
8
=

1
2

We solved this problem by first enumerating the set of possible outcomes, known as the Sample
Space, and then by deciding which of these outcomes satisfied the criterion of containing ‘two or
more heads’. A particular subset of outcomes such as ’two or more heads’ is conventionally known
as an event and denoted A, with the probability of the event A denoted P(A). In this case P(A) = 0.5
or 50%.

Example 2
A bag containing lettered Scrabble pieces has the following letter distribution

A B C D E F G H I J K L M
9 2 2 4 12 2 3 2 9 1 1 4 2
N O P Q R S T U V W X Y Z
6 8 2 1 6 4 6 4 2 2 1 2 1

The first letter is chosen at random from the bag. Find the probability that it is: (i) an E; (ii) in
the first half of the alphabet; (iii) in the second half of the alphabet;
(iv) a vowel; (v) a consonant; (vi) the only one of its kind.

Answer
The total number of pieces in the bag is (by simple addition) 98.

(i) 12 are E’s, giving P(E) =
12
98
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(ii) By addition, the total number of pieces with A to M is 53, hence P(1st half) =
53
98

(iii) If there are 53 pieces corresponding to the first half of the alphabet, there must be

98 - 53 = 45 corresponding to the second half. Hence P(2nd half) =
45
98

(iv) Number of vowels = 9 + 12 + 9 + 8 + 4 = 42⇒ P(vowel) = 42
98

(v) Number of consonants = 98 - 42 = 56⇒ P(consonant) =
56
98

(v) Letter must be one of J, K, Q, X or Z⇒ P(only one of kind) =
5

98

In general, then, probability is relative frequency:

Possible outcomes = N Number of outcomes for which A happens = n(A)

Define P(A) =
n(A)

N

A number of intuitively reasonable properties follow immediately from this definition. The first is
that

0 ≤ P(A) ≤ 1

and as expected of a measure of how likely an event is to happen:

P(A) = 0 implies A never happens and
P(A) = 1 implies A always happens

In solving example 2, part (ii), we reduced the labour of counting by making use of the fact that a
letter was either in the first half of the alphabet or the second. This line of reasoning was used again
in part (iv) when deciding that a letter was either a vowel or a consonant. In formal terms this can be
stated as:-

If ’not A’ is denoted by Ā, the complement of A in the sample space, then
between them A and ’not A’ cover all cases

P(Ā)+P(A) = 1

Now try the following exercises. You should, in general, try to complete the exercises as they appear
in the text, before moving on to the next section. Written solutions for all exercises appear in Ap-
pendix A (page 15).

Exercise 1
One card is drawn from a standard pack of 52 playing cards. What is the probability of

(a) picking a red card (b) picking a king (c) picking a diamond ?
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Exercise 2
What is the probability of throwing a total score of 6 with two dice ?

Addition of Probabilities

A further glance at Example 2 indicates that, in deciding on the probability of a vowel, we reasoned
that

vowel = A or E or I or O or U

and thus
n(vowels) = n(A)+n(E)+n(I)+n(O)+n(U)
P(Vowel) = P(A)+P(E)+P(I)+P(O)+P(U)

so probabilities of different events simply add. Or do they ?

Example 3
What is the probability of drawing an ace or a spade from a well-shuffled pack of cards ?

Answer
There are 4 aces so P(ace) =

4
52

. There are 13 spades: P(spade) =
13
52

.

It follows that the probability of an ace or a spade =
4+13

52
=

17
52

.

This is, in fact, incorrect . The problem is that the ace of spades has been counted twice, once
as an ace and once as a spade.

The correct answer is
4+13−1

52
=

16
52
=

4
13

The FirĆ Great Pitfall

The temptation to add probabilities for different events without checking for double counting is a
common error. A number of pictorial ways of guarding against making this mistake are useful. ’Tree’
or ’branching’ diagrams are probably the foremost of these.

Example 4
Around 0.8% of men are blue-green colour-blind (the figure is slightly different for women)
and roughly 1 in 5 men is left-handed. Assuming these characteristics are inherited indepen-
dently, calculate the probability that a man chosen at random will:

(i) be both colour-blind and left-handed
(ii) be colour-blind and not left-handed
(iii) be colour-blind or left-handed
(iv) be neither colour-blind nor left-handed.
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Answer
The tree diagram indicates the way the male population is divided. First of all into left-handed
(L) and right-handed (R) groups which contain 20% and 80% respectively. The left-handed
group then divides into colour-blind (CB) and not (C̄B) comprising 0.8% and 99.2% of the
left-handed group. The right-handed group divides in a similar manner.

99.2%

0.8%

0.8%

99.2%

CB

CB

CB

CB

20%

80%

L

R

A

E

B

D

Whole
Population

C

(i) the percentage of those colour-blind and left-handed are those ending up at A. There are
0.008×0.2 = 0.0016 of the population in this category. i.e Required probability = 0.0016 .
(ii) This is group B. P(B) = 0.008×0.8 = 0.0064 .
(iii) This is group C plus group B. Required probability = 0.0064+0.2
(N.B. there are no individuals in both B & C - all branches of a tree should be exclusive)
(iv) This is group D. P(D) = 0.992×0.8 = 0.7936 .
Note that we could deduce the probability of group E now, as 1−P(A)−P(B)−P(D) .

Since events are sets of outcomes, Venn diagrams are also occasionally useful. This is particularly
the case in deriving general formulae:

BA

A B

If A and B represent two events (i.e. two sets of outcomes), when considering outcomes which
are either in A or in B (or both), that is A∪B, if we add the outcomes in A to those in B, we have
counted those in both (i.e. A∩B ) twice. The general rule for addition of probabilities is:-
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P(A∪B) = P(A)+P(B)−P(A∩B)

A B

A∪B = ∅ P(A∩B) = 0

Probabilities can safely be added for events
A and B that cannot both happen, i..e. are
mutually exclusive

Exclusive events P(A∪B) = P(A)+P(B)

Exercise 3
100 cars are entered for a road-worthiness test which is in two parts, mechanical and electrical.
A car passes only if it passes both parts. Half the cars fail the electrical test and 62 pass the
mechanical. 15 pass the electrical but fail the mechanical test. Find the probability that a car
chosen at random

(i) passes overall (ii) fails on one test only
(iii) given that it has failed, failed the mechanical test only .

Multiplication of Probabilities

In example 4 above, to calculate the proportion of the male population who were both left handed and
colour-blind (those in group A), we reasoned that 0.2 of the population were left-handed and of this
group of left-handers 0.008 were blue-green colour-blind. In terms of probabilities, this translates to:-
proportion left-handed and colour-blind = proportion left-handed × proportion colour-blind

⇒ P(L∩CB) = P(L)P(CB)

and, in an identical manner, for those right-handed and colour-blind (in group B)

P(R∩CB) = P(R)P(CB)

It seems clear then that to calculate the probability of two events both happening we simply multiply
the separate probabilities that each happens.

There was, however, a crucial further piece of information used in this reasoning. This was that
“these characteristics are inherited independently”. We were thus able to say that the proportion
of left-handers who are colour-blind is the same (0.008) as in the total male population (as it also
is for right-handers). If the two genetic traits, handedness and colour-blindness, are not inherited
independently, then this reasoning is flawed and we can progress no further without some knowledge
of the dependence.
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For independent events A and B though we are safe in saying

P(A∩B) = P(A)P(B)

Exercise 4
Explain the flaw in this argument and rewrite it as a valid statement. The probability of throw-
ing a 6 on a fair die = 1/6. Therefore the probability of throwing at least one six in six tosses
of the die is 1/6 + 1/6 + 1/6 + 1/6 + 1/6 + 1/6 = 1 so it is a certainty.

The Second Great Pitfall

Multiplying probabilities of events is such an intuitively natural, and often correct, thing to do that
it is easy to lose sight of the fact that not all events are independent. This is the second commonest
mistake in calculating probabilities.

Example 5
Suppose 0.01% of the population have a rare genetic disorder. A test is designed which can
detect the condition, if it is present, with 95% probability. The test gives the occasional false
positive reading amongst people without the disorder, with a probability of 0.05%.

Find the probability that a person has the disorder given that the result of the test is positive.

Answer
Let D = has the disorder (with D̄ representing does not have it) and let R = positive result (so
that R̄ is a negative result). The statistics for the percentage of the population with the disorder
imply P(D) = 0.0001 and P(D̄) = 0.9999. If we use a tree diagram, the population divides as
shown. We can then represent the results of the test applied to each group separately by the
second level of branches.

P(D)=
0.0001

0.9999 D

D

0.95

0.05

0.0005

0.9995

F

G

R

R

R

R

Whole
Population
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The proportion of those with the disorder (D) who test positive has been marked as 0.95,
meaning that 0.05 of this group, although having the disorder, do not test positive. Those
free of the disorder test positive and negative with probability 0.0005 and 1 - 0.0005 = 0.9995
respectively.
If a positive result is obtained, then on the diagram it is in branch F or G. Now, if the whole
population were tested, the proportion of tests ending in group F would be 0.0001 × 0.95 =
0.000095 and that in group G 0.9999 × 0.0005 = 0.00049995 .
The required probability, which is the proportion of all those testing positive who actually have
the disorder, is thus

n(F)
n(F)+n(G)

=
0.95×0.0001

0.95×0.0001+0.0005×0.9999
= 0.16

(Despite the relatively high accuracy and small rate of false positives, this test is useless since
5 out of every 6 who test positive are, in fact, clear of the disorder.)

Conditional Probability

Example 5 is relatively straightforward once we realise that we have to distinguish between the prob-
ability of testing positive amongst those who do and those who do not have the disease. The technical
term for doing this is conditional probability. This is defined as the “probability of event A given that
event B is known to have happened”, denoted P(A|B) and usually abbreviated to the ”probability of
A given B”.
In terms of conditional probabilities, the various pieces of information given in example 5 can be writ-
ten as follows: P(D) = 0.0001 ; P(R|D) = 0.95 & P(R|D̄) = 0.0005, and the purpose of the exercise is
to find P(D|R).
If we label the branching diagram with the various conditional probabilities, with, at each stage, a
branch being labelled with the probability of taking that branch, then we obtain

Population
Whole

R

R

P(R|D)

P(R|D)

P(R|D)

P(R|D)

P(D)

P(D)

R

F

D

D

R
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The probability of ending up in group F is precisely P(R∩D) and it is clear from the branching dia-
gram that conditional probabilities multiply

P(R∩D) = P(R|D)P(D) i.e. P(R|D) =
P(R∩D)

P(D)

A number of valid chains of reasoning also become apparent. For example, from the branching dia-
gram it is easy to see that

P(R) = P(R|D)P(D)+P(R|D̄)P(D̄)
P(R|D)+P(R̄|D) = 1 etc.

If you see enough examples these rules will begin to seem perfectly natural. For the moment, I would
not bother committing them (other than the ones boxed) to memory but would draw a quick sketch of
the branching diagram where necessary.

Exercise 5
Four suppliers provide 10%, 20%, 30% and 40% of the bolts sold by a hardware shop and
the rate of defects in their products are 1%, 1.5%, 2% and 3% respectively. Calculate the
probability of a given defective bolt coming from supplier 1.

Independence

We noted above that probabilities for independent events A and B could be multiplied to find the
probability of both happening. This is not, however, a working definition of independence. A more
natural definition of independence is in terms of conditional probabilities. Two events A and B are
independent if the probability that A happens is not influenced by whether or not B happens,

P(A|B) = P(A|B̄).

There is, moreover, no need to distinguish either of these conditional probabilities from P(A).

Remember, if A and B are independent then

P(A∩B) = P(A)P(B)

and not otherwise.

Example 6
A biased coin falls with heads showing with probability p. The coin is tossed three times. Find
the probability of obtaining:-

(i) three heads (ii) two heads and one tail.
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Answer
(i) It is reasonable to assume that the tosses are independent and the probability of getting a
head on any one is p. Obtaining a head on the three tosses are three independent events and
we multiply the three probabilities, giving p3.
(ii) This can occur as HHT HTH or THH . The probability of throwing tails is 1− p, and so the
probability of throwing each of these combinations is p2(1− p). These three sequences can not
occur together (i.e. they are exclusive) and hence required probability is

3p2(1− p)

Exercise 6
The two events A and B have P(A) = 1

2 , P(B) =
1
3

, P(A∪B) =
2
3

.
Are the events A and B (i) independent (ii) mutually exclusive ?

Permutations

The calculation of a probability often reduces to working out the number of ways it is possible to
produce a certain event. In earlier examples, e.g. Example 1, this was accomplished by simply listing
all the possible outcomes and counting. This is not feasible when the number of outcomes becomes
large and some other general methods are needed.

Example 7
If three cards are dealt, what is the probability that the first is the ace of spades, the second the
ace of hearts, and the third the ace of clubs?

Answer
Of all the possible deals, only one results in this hand. The required probability is thus

P(this hand) =
1

Number of deals

and it only remains for us to calculate the total number of possible deals.
To do this, we note that the number of different possibilities for the first card = 52. For each
choice of first card, the number of different possibilities for the second = 51 and then, for each
pair of choices for the first two cards, the number of different outcomes for the third = 50.
The total number of distinct deals = 52×51×50

and probability of the required deal =
1

52×51×50
= 7.54×10−6.
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It is quite important, I think, to come to grips with this type of reasoning and it is worth spending
some time thinking about this example, following through the reasoning making concrete the choice
of deal. Suppose the first card dealt is the 6♢, there are 51 cards left. Suppose the second is the 3♡,
there are now 50 cards left and hence 50 possible deals in which the first and second cards are 6♢ and
3♡. There is, however, nothing special about the 6♢ and the 3♡ and there will be 50 deals for any
particular choice of the first two.
There are in example 7 the seeds of a general rule.

Example 8
n runners enter a cross-country race. If prizes are awarded to the first r to finish, in how many
ways can the prizes be distributed ?

Answer
Number of possibilities for the first prize = n
For each winner, the number of choices for second = n−1 etc.
Finally, for each set of 1 to r−1’th prize winners there are n− r+1 choices for the r’th.
The total number of ways the prizes can be distributed is thus

n(n−1)(n−2) . . . (n− r+1)

This repeated product of integers one smaller than the last occurs regularly in this business and it is
much more convenient to work in factorial notation. With ”n factorial”, denoted n! , defined as

n! = n(n−1)(n−2) . . .3×2×1

the product above can be simplified to

n(n−1)(n−2) . . . (n− r+1) = n(n−1)(n−2) . . . (n− r+1)
(n− r)(n− r−1) . . .1
(n− r)(n− r−1) . . .1

=
n!

(n− r)!

i.e. The number of ways of distributing r prizes to n runners is
n!

(n− r)!

Exercise 7
Write in factorial notation

(i)
8×7×6
5×4×3

(ii)
15×16
4×3×2

(iii)
(n−1)n(n+1)

4×3×2

and show that

9×7×5×3×1 =
9!

244!
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Exercise 8
The letters of the word CHEMISTRY are re-arranged at random. Find the number of arrange-
ments which end with the letter T.

The Third Great Pitfall

Example 8 exemplifies how to choose the r prize winners from the n runners and is thus the number
of ways of choosing r objects from a group of n. Or is it ?
The answer to this question is sometimes. The prizes for a race are all different with the first prize
of greater value than the second which is greater than the third, etc. The order in which the r prize
winners are chosen from the n runners clearly matters, and an order of merit consisting of the same
set of r but in a different order would be regarded as a different way of distributing the prizes. This
is in contrast, for example, to the number of ways a shortlist of r job applicants can be chosen from
a field of n. All orderings of the shortlist would, in advance of interview, be regarded as the same. It
is extremely easy to forget whether or not the order matters when calculating “the number of ways of
choosing r objects from n”.
When the order matters, we usually refer to the “number of ways of permuting r objects from n”,
and each selection is referred to as a permutation of r objects from n.

The number of ways of permuting (i.e. choosing such that order matters) r objects from a total
of n is denoted nPr or nPr and

nPr =
n!

(n− r)!

When order doesn’t matter, we refer to the “number of ways of combining r objects from n”, and
each selection is referred to as a combination of r objects from n.

We will see, from looking at a number of examples, that combinations are used more often than
permutations and the term ”choosing” usually refers to “combining”.

Combinations

Example 9
What is the probability of being dealt a three card hand which consists of the aces of hearts,
spades and clubs ?

Answer
This is essentially the same as example 7, but this time the order in which the aces are dealt
does not matter.
The separate deals which result in the required hand are
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HSC HCS SHC SCH CHS CSH

i.e. There are 6 which result in this hand. The probability of getting this hand

6
52×51×50

= 4.52×10−5.

Rather than listing all the possible deals which lead to the required hand, a more instructive way of
calculating the number is to note that
Number of choices for the first ace (from among HSC) = 3
For each choice of first ace, number of choices for the second = 2
and then 1 for the third

Giving 3×2×1 = 3! = 6 ways of ordering the three aces.

(The number of ways of arranging 3 objects amongst themselves in which the order matters is, in fact,
3P3. This is consistent with the definition

3P3 =
3!

(3−3)!
=

3!
0!

provided we interpret 0! as 1 (N.B. not 0)

Example 10
Find the number of ways of combining r objects from n.

Answer
The easiest way of doing this is to generalise the argument used in example 9.
r objects can be arranged amongst themselves (i.e. ordered) in r! ways (there are r choices for
the first , r−1 for the second, etc)
Each separate combination of r objects thus corresponds to r! different permutations.
Hence the number of different ways of combining r articles from n, denoted nCr or nCr , is
given by

nCr =
nPr

r!
=

n!
(n− r)!r!

nCr is also denoted
(

n
r

)
.

Returning to example 9, we could have argued that:

Total number of different hands (ignoring the order in which the cards are dealt) =52 C3.

The probability of getting any particular one is thus
1

52C3
.
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Example 11
What is the probability of being dealt a three card hand consisting of three aces ?

Answer
Number of ways of selecting three aces (from the four in the pack) =4 C3

Thus probability = 4C3

52C3
.

A special, but very common, case of the order of objects not being important (so that it is combina-
tions we use rather than permutations) is when objects are identical and it is not possible to distinguish,
never mind order, them!

Example 12
There are 10 balls in a bag, 6 red and 4 green. If 3 are picked out at random, what is the
probability of 1 red and 2 greens ?

Answer
Total no of ways of picking 3 balls from 10 (regardless of colour) in which the order doesn’t
matter

= 10C3 =
10!
7!3!
= 120

Outcomes: 3 reds 2 reds, 1 green 1 red, 2 greens 3 greens
The outcome we seek, 1 red and 2 greens, contains any 1 of the 6 reds and any 2 of the 4 greens.
The number of ways it can come about is (since order doesn’t matter)

= 6C1+4 C2 =
6!

5!1!
4!

2!2!
= 36

Thus probability =
36

120
=

3
10

As an exercise, we can check this by calculating the number of ways that the other outcomes can
come about. (The total number, according to our answer, should be 120)

3 reds 6C3 =
6!

3!3!
= 20

2 reds, 1 green 6C2×4 C1 =
6!

4!2!
4!

3!1!
= 60

3 greens 4C3 =
4!

3!1!
= 4

Total = 36+20+60+4 = 120
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Exercise 9
A mother takes her three young sons on a ride on the Severn Valley Railway. They get into an
empty compartment with 3 forward-facing and 3 rearward-facing seats.

(i) In how many different ways can they be seated ?
(ii) In how many ways will two particular boys be seated
directly opposite each other ?

Exercise 10
Three dice are thrown. Find the probability of obtaining

(i) at least two sixes (ii) no sixes
(iii) different scores on all the dice.

Despite the small number of principles in the basic theory of probability, comparatively simple-
looking problems can involve considerable subtlety in their solution. There is no substitute for expe-
rience and practice.

Mean, Variance and Standard Deviation

Imagine a pack of cards with all the jokers and picture cards removed. We are only concerned with
the numerical value of the cards. We have four each of all the numbers from one to ten so the pack
contains 40 cards.

The average value, or arithmetic mean, of the numbers on the cards is given by adding them all up and
dividing by the total number of cards. Let xi be the number on the ith card and let N be the number
of cards.

Arithmetic mean: µ =
∑N

i=1 xi

N
=

220
40
= 5.5

The arithmetic mean is a parameter of the set of numbers on the cards and it is normally referred to
using the symbol µ. It is one measure of the central tendency or middle value of the numbers on the
cards.

Another thing we might want to know is the spread of the values on the cards. One way to measure
this is to calculate average of the squared differences between each value and the mean. This is called
the variance.

Variance: σ2 =

∑N
i=1(xi−µ)2

N
=

330
40
= 8.25

The standard deviation is another measure of spread. It is simply the square root of the variance. It is
useful because it has the same dimensions as the original variable (i.e. the numbers on the cards).

Standard Deviation: σ =

√∑N
i=1(xi−µ)2

N
=

√
330
40
= 2.8723
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Example 13
It can be shown that for any set of data, at least

(
1−1/k2

)
× 100% of the data lies within k

standard deviations of the mean.

For the population of numbers on the cards as described in the section above, check that this
rule holds for k = 1.2

Answer
For k = 1.2 we have

(
1−1/k2

)
= 0.3056 so we need to check that at least 30.56% of the data

lies within 1.2 standard deviations of the mean.

In the previous section we calculated that the mean µ = 5.5 and the standard deviation σ =
2.8723. The range within 1.2 standard deviations of the mean is therefore from 2.0533 to
8.9467, i.e. the numbers from 3 to 8 inclusive. This accounts for 24 cards, or 60% of the data.
So more than the required 30.56% of the cards lie within 1.2 standard deviations of the mean.

Exercise 11
For each of the cases below, either find a set of five numbers that satisfies the required condition
or explain why it cannot be achieved.

(i) Four of the five numbers are below the mean.
(ii) The mean is less than the standard deviation.

(iii) The mean is greater than the standard deviation.
(iv) The standard deviation is above the variance.

Sample

Until now we have assumed that we can see all the cards at once. Now we are going to change the
game. Imagine that someone else is holding the cards and allowing us to pick one at random, note
its value and then replace it. Using this pick-and-replace process we can view a sample of the cards.
This sample can be of any size as the cards are picked at random and replaced. Let us assume that the
sample size is n.

The challenge is to estimate the mean, variance and standard deviation of the original numbers on the
cards based only on what we see in the sample. Here are the formulae that enable us to do this.

Estimate of Mean (based on sample): m =
∑n

i=1 xi

n

Estimate of Variance (based on sample): s2 =

∑n
i=1(xi−m)2

n−1

Estimate of Standard Deviation (based on sample): s =

√∑n
i=1(xi−m)2

n−1

Notice that the formula for the mean is that same as that used in the previous section to calculate the
mean of complete data set, however the formula to estimate the standard deviation is different. There
is an n− 1 in the denominator rather than the N we had before. This is because we don’t have the
real mean, µ available so we have to use the estimate of the mean based on the sample, i.e. m. This is
likely to be slightly better centred in the sample than the true mean (µ) of all the card values, hence
the sum of the terms of the form (xi−m)2 will be slightly too small. The reduction in the denominator
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from n to n−1 compensates for this. (Formal derivation of this result is beyond the scope of the first
year course.)

There is a convenient formula for calculating the estimate of the standard deviation based on the
sample.

s =

√∑n
i=1(xi−m)2

n−1
=

√√(∑n
i=1 x2

i

)
− 1

n

(∑n
i=1 xi

)2

n−1
In the literature, s, the standard deviation of the underlying population estimated from a sample is
called the “sample standard deviation”.

Example 14
Ten cards are selected individually, noted and replaced in the pack (that has no picture cards,
as described above). This gives a sample size n = 10. The values of the cards are:

10 3 4 3 5
4 1 5 8 5

Estimate the mean and standard deviation of the values in the complete pack based on this
sample.

Answer

Estimate of Mean: m =
∑n

i=1 xi

n
=

48
10
= 4.8

Sample Standard Deviation: s =

√√(∑n
i=1 x2

i

)
− 1

n

(∑n
i=1 xi

)2

n−1
=

√
(290)− 1

10 (48)2

9
= 2.5734

Discrete Probability Distribution

Consider again the pack of cards with all the picture-cards removed. There are 40 cards each with an
integer value in the range from one to ten. If we consider picking a card, noting its value and then
replacing it in the pack we can compute the probability of picking each of the possible values. This

Probability 
of value on 
card

1 2 3 4 5 6 7 8 9 10

0.1

x

Value on the card

P(x)

is a probability distribution. In this case it is a discrete distribution because the cards can only carry
certain integer values. Notice that the sum of all the histogram bars is 10× 0.1 = 1. There are ten
possible outcomes and they each have a probability of 1/10. This is called a uniform distribution.
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We can rearrange the formulae for the mean, variance and standard deviation, from the earlier section,
to express these parameters in terms of the probability distribution, P(x).

Note that the probability distribution is a property of the population of the numbers on the cards.
Knowing the complete probability distribution enables us to calculate the mean µ and the standard
deviation σ exactly. Let x j represent each of the different values that are printed on the cards and M
equal the number of these different values. In our example M = 10.

Arithmetic mean: µ =
M∑
j=1

x jP(x j)

Variance: σ2 =

M∑
j=1

(x j−µ)2P(x j)

Standard Deviation: σ =

√√√ M∑
j=1

(x j−µ)2P(x j)

Example 15
Calculate the standard deviation of the numbers on the cards (as previously discussed), using
the formulae based on the probability distribution.

Answer
First we need to calculate the mean. We can see from the histogram that P(x j) = 0.1 for all the
values on the cards (i.e. for all j). In this particular case, the values x j are the same numerically
as the index j, so we can substitute x j = j. Hence

µ =

M∑
j=1

x jP(x j) =
10∑
j=1

j×0.1 = 5.5

Now we use this value of µ in the formula for standard deviation.

σ =

√√√ M∑
j=1

(x j−µ)2P(x j) =

√√√√ 10∑
j=1

( j−5.5)2×0.1 = 2.8723

Continuous Probability Distribution

We have seen how the diagram of the discrete probability distribution describes the probability of
picking each value of card. There were 10 possible values so there were ten bars on the histogram.

Suppose however we had an random variable with 46 possible outcomes in the range 1–10. In this
case we might get a discrete probability distribution such as that shown at the top of the next page on
the left.

This histogram could perhaps describe the probability of being able to buy a particular electronic
component at price of x pence, over a period of years when the cost of raw materials has varied. We
can see that the manufacturers only choose prices which are multiples of 0.2 pence. The total area in
all the histogram bars sums to 1. If we want to work out the probability that we might have got a price
between 6 and 7 pence, we just have to add up the area of the histogram bars between 6 and 7.
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Probability 
of value 

1 2 3 4 5 6 7 8 9 10

x

Value

P(x)

1 2 3 4 5 6 7 8 9 10

x

Value

Probability 
density function

f(x)

Suppose that the manufacturers of our electronic component did not choose to keep their prices as
multiples of 0.2 pence and were happy to price them at any value. This would result in histogram bars
that were so thin and close together that they would form a continuum. This leads to a continuous
probability distribution. See the diagram above on the right.

Here the total area under the curve must be 1 and the probability of x taking a value in the range from
(say) 6 to 7 is given by the integral (i.e. area) between 6 and 7. More generally:

The probability of (a < x < b) =
∫ b

a
f (x)dx

It is also possible to calculate the mean (µ) and standard deviation (σ) of a continuous distribution
from its probability density function.

µ =

∫ +∞

−∞
x f (x)dx σ =

√∫ +∞

−∞
(x−µ)2 f (x)dx

Example 16
Consider a machine that makes widgets which are
supposed to be a particular length. Unfortunately,
the machine often makes widgets that are slightly too
long; it never makes widgets that are too short. The
graph on the right shows the probability density func-
tion for the number of millimetres that a widget is too
long. 1 2 3 4 5 6 7 8 9 10

x

Value

Probability 
density function

f(x)

0

0.2

0.0

Calculate the mean and standard deviation of the excess length. What is the probability that a
widget is produced with an excess length within one standard deviation from the mean.

Answer
For 0 ≤ x ≤ 10 we can see that f (x) = 0.2−0.02x, hence:

µ =

∫ 10

0
x(0.2−0.02x)dx = 3.3333 σ =

√∫ 10

0
(x−10/3)2(0.2−0.02x)dx = 2.3570

So we wish to calculate the probability of an excess length in the range 3.33− 2.36 to 3.33+
2.36, which is given by:

P(x within one σ of µ) =
∫ 5.6904

0.9763
0.2−0.02xdx = 0.6285
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Continuous Normal Probability Distribution

−4 −3 −2 −1 0 1 2 3 4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Value: z

Gaussian or Normal Probability Distribution
with zero mean and unit standard deviation

The Normal distribution is a sym-
metric distribution with two pa-
rameters, its mean µ and standard
deviation σ. An example is illus-
trated here. It is a continuous dis-
tribution and the total area under
the curve is 1. The formula for
this curve is

P(z) =
1

√
2πσ2

exp
(
− (z−µ)2

2σ2

)
although you do not have to use
this directly very often in the first
year.

It is difficult to evaluate integrals of the sort we did in Example 16 using the probability density
function of the Normal distribution. Tables are therefore available and functions are built into Matlab
and Octave to perform these calculations.

In general, if you add together a sufficient number (say 30), of independent random variables that are
identically distributed, the sum will conform to the Normal distribution. This is called the “central
limit theorem”.

Important application: experimental data analysis

Consider a laboratory experiment that results in a single real output x, each time that we perform it. In
theory, it should produce the same output each time but in practice x varies slightly because of noise
in the measurement system.

If we repeat the experiment n times and average the result (x = m =
∑n

i=1 xi/n) then this average, x, is
itself a single sample from a random distribution. (If we ran the experiment a further n times then the
average of these results would give us a second sample of x which would not, in general, be the same
as the first.) We can say the following things about the distribution of x:

• Provided n > 30 it is reasonable to assume that x is Normally distributed.

• The standard deviation of x will be a factor of
√

n less than the standard deviation of the original
experimental data. Hence:

Estimate of standard deviation of experimental data =

√√(∑n
i=1 x2

i

)
− 1

n

(∑n
i=1 xi

)2

n−1

Estimate of standard deviation of x: s(x) =

√√(∑n
i=1 x2

i

)
− 1

n

(∑n
i=1 xi

)2

n(n−1)
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If it is fair to assume that the error in the original experimental data is unbiased, then the standard
deviation of x gives us useful information about the error it is likely to contain. Let s(x) be our estimate
of the standard deviation of x.

50% of the time, x will lie within 0.67s(x) of the true value.
68% of the time, x will lie within s(x) of the true value.
95% of the time, x will lie within 2s(x) of the true value.
99.73% of the time, x will lie within 3s(x) of the true value.

We can thus use the value of s(x) to calculate a range within which the true experimental result will
lie with a particular probability, for example P(true result in range x±2s(x)) = 0.95.

Example 17
An experiment is performed and a sequence of 30 readings are recorded.

2.8479 2.8613 3.2563 2.8381 2.7526 3.0429 3.4022 3.0051 3.0617 2.8124
3.3348 3.0250 3.1060 2.8096 3.1708 3.0778 2.7688 3.0079 2.9099 3.0218
2.9499 2.9620 2.7934 2.9353 3.1533 3.3489 2.7679 3.4755 3.3052 3.0337

The experimental error is believed to be unbiased. Calculate your best estimate of the true
outcome of the experiment. Estimate the range within which there is a 95% chance that the
true experimental result will lie.

Answer
Our estimate of the experimental outcome is the mean of these values x = 3.0279.

Our estimate of the standard deviation of the experimental data is 0.2036, hence our estimate
of the standard deviation of x is given by 0.2036/

√
30 = 0.0372.

We would expect the true experimental result to have a 95% chance of lying within two stan-
dard deviations from the mean, i.e. in the range 2.9536 to 3.1023.

Exercise 12
For the data in Example 17, estimate the range within which there is a 50% chance that the
true experimental result will lie.

The remaining sections of this document are:-

Appendix A Solutions to the exercises in the text
Appendix B Further Worked Examples
Appendix C Questions to be done for supervision (there are no solutions to these

in this document).
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Appendix A Solutions to exercises in the text

N.B. x!, nCr and nPr appear as buttons on standard calculators.

1. (a) 26 of the 52 cards are red⇒ P(red) =
26
52
=

1
2

(b) 4 of the 52 cards are kings⇒ P(king) =
4

52
=

1
13

(c) 13 of the 52 cards are diamonds⇒ P(diamond) =
13
52
=

1
4

2. Outcomes are best listed as a table:-

1 1 1 2 1 3 1 4 1 5 1 6
2 1 2 2 2 3 2 4 2 5 2 6
3 1 3 2 3 3 3 4 3 5 3 6
4 1 4 2 4 3 4 4 4 5 4 6
5 1 5 2 5 3 5 4 5 5 5 6
6 1 6 2 6 3 6 4 6 5 6 6

There are 36 outcomes and 5 ( 5 1, 4 2, 3 3, 2 4, 1 5 ) result in a total of 6. P(total = 6) =
5

36
.

3. Let E = set which pass the electrical and M = pass mechanical

M

M

M

M

a

15

b

c

50

50
E

E

100

The data given is displayed on the branching
diagram. Since there are 50 cars in group E,
35 must take branch a. Since 62 pass the me-
chanical test, then the number taking branch
b = 62−35 = 27. Finally the number taking
branch c = 50−27 = 23.

(i) This is a. Prob =
35

100

(ii) Prob =
27

100
(branch b)+

15
100

(M∩ Ē) =
42

100
.

(iii) Number failed = 50 (all of Ē) + 15 (M∩ Ē) = 65 . If a car has failed, it is one of these 65. 15 of

these fail the mechanical test only. Therefore, required probability =
15
65
=

3
13

.
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4. The events - obtain a six on die n - are not exclusive and instances of 6’s occuring on more than
one dice are counted (at least) twice by simply adding the probabilities.
Consider the probability of throwing a 6 with the first two dice. Since

P(A∪B) = P(A)+P(B)−P(A∩B)

P(at least one 6) = P(6 on 1st ∪ 6 on 2nd) = P(6 on 1st) + P(6 on 2nd) - P(6 on 1st ∩ 6 on 2nd)

=
1
6
+

1
6
− 1

6
1
6

, etc.

The correct argument is:

P( at least one 6 ) = 1 - P(no sixes)

and throwing no six on each of the dice are independent events (probabilities multiply).

So P(no six on 1) =
5
6
⇒ P(no sixes) on 6 =

(
5
6

)6

= 0.335. P(at least one) = 0.665.

5.

0.1

0.2

0.3

0.4

1

2

3

4

0.015

0.01

0.02

0.03

Supply

D

D

D

D

D

D

D

D

The total proportion of the supply of bolts which is
defective is
0.1×0.01+0.2×0.015+0.3×0.02
+0.3×0.04 = 0.022
The proportion of total supply which came from supplier 1 and
is defective 0.1×0.01 = 0.001

P(Supplier 1 | defective ) =
0.001
0.022

= 0.045

6. (i) P(A∪B) = P(A)+P(B)−P(A∩B)⇒ P(A∩B) =
1
2
+

1
3
− 2

3
=

1
6

P(A)P(B) =
1
2
× 1

3
=

1
6

i.e. independent (since P(A∩B) = P(A)P(B))

(ii) P(A∩B) , 0⇒ not exclusive

7. (i)
8×7×6
5×4×3

=
8×7×6×5× . . .×1

5× . . .×1
2×1

5× . . .×1
=

8!2!
5!5!

(ii)
15×16
4×3×2

=
16!

14!4!

(iii)
(n+1)n(n−1)

4×3×2
=

(n+1)!
(n−2)!4!

9×7×5×3×1 =
9×8×7×6× . . .×1

8×6×4×2
=

9!
244!
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8. The letters of CHEMISTRY form 9 distinct letters. If T is the last one, then the first 8 are rear-
rangements of CHEMISRY⇒ Number = 8! (8 choices for first, 7 for second, ...)

9. (i) 4 people to be arranged on 6 seats. The order matters, therefore, number =6 P4 = 360 .
(ii) 1 brother has 6 choices of seat. The position of the other one is then fixed.
The remaining two members of the family select 2 from 4 (in which the order matters). The number
of ways to do this is 4P2 = 12.
The total number of ways of seating the family in this manner = 6×12 = 72.

10. (i) P(at least 2 sixes) = P(2 sixes) + P(3 sixes).

P(3 sixes) =
(
1
6

)3

= 0.0046

P(2 sixes) = no of ways of choosing the dice which isn’t the six
× probability it isn’t a six × probability other 2 are sixes

= 3× 5
6
×

(
1
6

)2

= 0.0694

So P(at least two sixes) = 0.074
Aliter:
Number of ways of throwing three sixes = 1
Number of ways of throwing 2 sixes =

Number of ways of choosing the die which is not 6
× Number of choices for a number which isn’t six
= 3 × 5

Total Number of Throws = 63. Required Probability =
1+3×5

63 .

(ii) P(no sixes) =
(
5
6

)3

= 0.58

(iii) 6 choices for first, 5 for second, 4 for third = 120 ( =6 P3 ),

Probability =
120
63 = 0.56.

11(i) In this case we need four small numbers and a single large number to give a high overall mean.
For example: 1, 1, 1, 1, 46 which have a mean of 10.

(ii) The mean can take on any value, large or small, because the numbers can be negative. The
population: −3,−1,0,1,3 has a mean of zero and a standard deviation of 2.

(iii) We can produce a population with a mean greater than the standard deviation by using the
answer to the previous part and adding 3 to each number. This will result in a mean of 0+3 = 3
and the same standard deviation as before. The answer is therefore: 0, 2, 3, 4, 6 which has µ = 3
and σ = 2.

(iv) The standard deviation is the square root of the variance and both are always non-negative.
To get σ > σ2 we require σ < 1. A suitable population is therefore: −1,−1,0,1,1 which has
variance σ2 = 0.8 and standard deviation σ = 0.8944.

12. For the data in Example 17 the standard deviation of the distribution of x is given by s(x) =

0.0372. For 50% of the time, the true value will be within 0.67s(x) of the mean x = 3.0279. Hence we
want the range x−0.67s(x) to x+0.67s(x) which works out to be 3.0030 to 3.0528.
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Appendix B FurtherWorked Examples

The questions in this section can be used as worked examples, in which case you should read through
them carefully. They can also be used as a set of further exercises, in which case attempt each
question, or at least think about how you would go about solving it, before working through the
solution.

N.B. x!, nCr and nPr appear as buttons on standard calculators.

1. A well shuffled pack of 52 playing cards is dealt out to four players, each receiving thirteen
cards. Show that the probability that a particular player receives the four aces is 0.0026. How many
deals are necessary in order that the probability of a particular player receiving all four aces at least
once exceeds 0.5 ?
Answer

+ 48 others4 aces=52 cards

Player with 4 aces has 9 cards from amongst the other 48.

⇒ P(4 aces) = 48C9

52C13
= 0.00264

The probability of not getting the 4 aces in one deal is 1−0.00264 = 0.99736
Probability of not getting 4 aces in N deals (considered independent) = 0.99736N

Probability of getting 4 aces at least once in N deals = 1−0.99736N

To ensure that this is greater than 0.5, we need

1−0.99736N > 0.5
⇒ N log(0.99736) < log(0.5)⇒ N > 262.2 i.e. N = 263

2. Find how many teams of two pairs (1st and 2nd), each pair consisting of a man and a woman,
can be chosen to represent a club at a badminton match, if these pairs are chosen from five men and
three women.

Answer
The team is M1 W1 : M2 W2 .
To select the men, we need to select two from the five available and the order matters. This can be
done in 5P2 ways. The women can similarly be selected in 3P2. If the selection of men and women is
independent, then the total number of ways of selecting the team is

5P2×3 P2 = 20×6 = 120
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3. My parents are celebrating their golden wedding anniversary and we are going to have a big
family dinner for them at home. The dining-table will seat only 12, but there are 17 members of the
family (including us) who live near enough to be invited. Ignoring any restrictions on choice, in how
many ways can I invite 12 members of the family?
Of course, I must invite my parents, and my brother and I must be there; in how many ways can I now
invite 12 ?
Two of the 17 are the dreaded Aunty Joyce and her husband Reg. If I invite her, I must invite him
also. Taking this into account, in how many ways can I now invite everyone ?
Having finally chosen the 12 who will be present at the dinner, they now have to be seated at the large
round dinner table. I have to be seated nearest to the kitchen. In how many ways can we all sit down
to dinner?
After much debate we have decided to invite Reg and Joyce. They are such a nuisance that it would
be best to sit them down together (but Reg must not be next to me!). In how many ways can the party
now be seated ?

Answer
Order doesn’t matter. Therefore 12 can be invited in 17C12 = 6188.

Four individuals are determined and 8 from the other 13 can come. Number of ways =13 C8 = 1287.

If invite AJ & UR, remaining places filled in 11C6 = 462.
If don’t invite AJ & UR, remaining places filled in 11C8 = 165. Thus total = 462+165 = 627

Table is round. I sit nearest to the kitchen. The other 11 can be seated in 11! ways (order mat-
ters).
Some people would say 11!

2 (if mirror image seating plans are counted as the same).

My seat determined, 9 choices for UR, 2 choices for AJ, then 9! ways for the rest. i.e. 18×9!
(or 9×9! if mirror images not counted as different).

4. In a game of bridge the pack of 52 cards is shared equally between four players. What is the
probability that a particular player has no picture cards (Jacks, Queens, Kings )?

Answer
The total number of hands that the player can hold = the number of ways of choosing 13 cards from
52 (in which the order does not matter) =52 C13.

Now

52 cards = 40 non-picture cards + 12 Jacks Queens & Kings

If the player has no picture cards then the cards dealt must all be chosen from the group of 40. This
can be done in 40C13 ways. The probability that a particular player has no picture cards is thus

Number of deals with no pictures
Number of deals

=
40C13

52C13
=

1.20×1010

6.35×1011 = 0.019
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5. I have a box of chocolates with 10 different chocolates in it. Of these, there are 6 which I
particularly like. However, I intend to offer my three friends one chocolate each before I eat the rest.
How many different selections of chocolates can I be left with after my friends have chosen ?
Show that 36 of these selections leave me with exactly 5 chocolates which I particularly like.
How many selections leave me with (i) all 6; (ii) exactly 4; and (iii) exactly 3 of the chocolates which
I particularly like?
Assuming that my friends choose at random, what is the most likely outcome and what is the proba-
bility of that outcome?

Answer
After friends have chosen, there are 7 out of the original 10 left. Order doesn’t matter. Therefore the
number of selections =10 C7 = 120.

7 = 3 I like + 4 or 4 I like + 3 or 5 I like + 2 or 6 I like + 1

Number of ways of choosing these are

6C3 4C4 or 6C4 4C3 or 6C5 4C2 or 6C6 4C1
20 60 36 4

(i) all six left - 4 ways (ii) four left - 60 ways (iii) three left - 20

Most likely outcome = 4 left and P(4) =
60

120
=

1
2

.

6 A multiple-choice exam has 10 questions. Each question has 3 possible ’answers’ of which only
1 is correct. A candidate attempts the exam using pure guesswork. Find the probabilities that the
candidate obtains
(i) exactly 2 correct answers, (ii) not more than 2 correct answers.
What is the most likely number of correct answers and the probability that the candidate just achieves
this number ?

Answer
(i) The 2 correct questions can be chosen from the 10 in 10C2 ways.

The probability that these two questions will be answered correctly =
(
1
3

)2

The probability that the other eight will be incorrect =
(
2
3

)8

.

The probability of getting these 2 right and the other 8 wrong, therefore, =
(
1
3

)2 (
2
3

)8

assuming the

guesses for the answers are made independently (hence multiply the probabilities). This probability
is appropriate for each possible selection of two questions (and each selection is an exclusive event,
therefore add the probabilities). The required probability is, therefore,

10C2

(
1
3

)2 (
2
3

)8

= 45× 1
9
× 256

6561
= 0.195

(ii) If not more than 2 are answered correctly, number correct can be 0, 1 or 2. Required probability
is, by exactly similar reasoning,

10C0

(
2
3

)10

+10 C1

(
1
3

)1 (
2
3

)9

+10 C2

(
1
3

)2 (
2
3

)8

= 0.017+0.087+0.195 = 0.299
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(iii) Probability of getting r correct = P(r) =10 Cr

(
1
3

)r (2
3

)10−r

This increases with r all the time that P(r+1) > P(r).

Now
P(r+1)

P(r)
=

10Cr+1
(

1
3

)r+1 (
2
3

)10−r−1

10Cr
(

1
3

)r (2
3

)10−r =
10!

(10− r−1)!(r+1)!
r!(10− r)!

10!
1
3

(
2
3

)−1

=
10− r
r+1

1
2
.

Thus P(r+1) > P(r) until
10− r
r+1

1
2
< 1 i.e. 10− r < 2r+2⇒ r > 2.67.

Thus P(2+1) > P(2), but P(3+1) < P(3). r = 3 is thus most likely.

Check P(3) =10 C3

(
1
3

)3 (
2
3

)7

= 0.26 P(4) =10 C4

(
1
3

)4 (
2
3

)6

= 0.23
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Appendix C

Engineering FIRST YEAR

Part 1A Paper 4: Mathematics

Examples Paper 9 - Probability

(Elementary exercises are marked †, problems of Tripos standard ∗ )
N.B. x!, nCr and nPr appear as buttons on standard calculators.

1† Find the number of integers between 1000 and 4000 which can be formed using the digits
1,2,3,4

(i) if each digit may be used only once,
(ii) if each digit may be used more than once.

2† How many odd numbers can be formed from the digits 2,3,4,5,6 and 7 using each digit once
and once only ?

3† The probability that a January night will be icy in Cambridge is 0.25. On an icy night the
probability of an accident on Castle Hill is 0.04, and 0.01 on non-icy nights. What is the
probability that

(i) 13th January will be icy and there will be an accident on Castle Hill
(ii) there will be an accident on 13th January.

4 Show that the probability that a point, selected at random along a line of unit length, is closer

to the centre of the line than to either of the ends is
1
2

.

Show that the probability that a point, selected at random inside a circle, is closer to the centre

of the circle than to the circumference is
1
4

.

Points are selected at random inside the circle until a point is closer to the centre than to the
circumference. What is the probability that

(a) exactly three points are selected
(b) no more than three points are selected ?

How many points need to be selected so that there is a probability of at least 0.85 that at least
one point is closer to the centre than to the circumference ?

5 In Camelot it never rains on Friday, Saturday, Sunday or Monday. The probability that it rains

on a given Tuesday is
1
5

. For each of the remaining two days, Wednesday and Thursday,
the conditional probability that it rains, given that it rained the previous day, is α, and the
conditional probability that it rains, given that it did not rain the previous day, is β .

(a) Show that the (unconditional) probability of rain on a given Wednesday is
1
5
[
α+4β

]
, and

find the probability of rain on a given Thursday.
(b) If X is the event that, in a randomly chosen week, it rains on Thursday, Y is the event that it
rains on Tuesday, and Ȳ is the event that it does not rain on Tuesday, show that

P(X|Y)−P(X|Ȳ) = (α−β)2.
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(c) Explain the implications of the case α = β .

6 For the game of bridge each of 4 players gets 13 cards from a pack of 52. Taking account of the
different ways in which the hands can be distributed amongst the 4 players, how many different
deals are there ?

7 Show that the probability of drawing 13 cards at random from a pack of 52 and having no
spades in that hand is 0.0128. Explain why the probability of having at least one suit missing is
approximately 4 times this.

8† Two students have five coins and three coins respectively. They while away their time waiting
for a lecture by tossing them all once. What is the probability that they will both toss the same
number of tails ?

9† In a well-known game you have to decide which your opponent is going to choose: ’Paper’,
’Stone’ or ’Scissors’. If you guess entirely at random, what is the probability that you are right
exactly 5 times out of 15 ?

10 A coin is tossed ten times.
(i) What is the probability of it coming down heads 5 times and tails 5
times ?
(ii) Which is the more likely: exactly 7 heads or more than 7 heads ?

Verify your answers by tossing a coin ten times and counting the number of heads. Repeat the
experiment 100000 times and record the frequencies of the various numbers of heads. If you do
not have time for 100000 repetitions, you could alternatively write a Matlab/Octave program to
simulate the experiments.1

11 A certain strain of rabbit produces offspring in equal ratio male to female. One third of the male
offspring and one half of the female offspring are black. In a litter of 5 offspring, what is the
probability that

(i) exactly 2 offspring will be male;
(ii) less than 4 offspring will be female;

In a litter of 4 offspring, what is the probability that there will be exactly 2 male offspring which
are not black ?

12∗ A bag P contains 3 red balls. A second bag Q contains 2 red balls and 3 black balls.

(a) A bag is chosen at random and one ball is withdrawn. Find the
probability that this ball is red.

This ball remains outside the bag.
(b) A bag is again chosen at random (it is not known whether this is the
same bag as before or not) and one ball is withdrawn. Find the joint
probability that both this ball and the one previously withdrawn are red.

1Hint: code for doing this can be downloaded from http://sigproc.eng.cam.ac.uk/Main/1AMathematics_
2013. The code comes in a file called q10.m. Save this in a folder somewhere, start Matlab/Octave from the same folder
(or use the “cd” command to navigate to that folder), then type “q10” to run the code. Use a text editor to change the
number of experiments near the top of the file q10.m, then run the code again.
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(c) If they are both red, what is the probability that bag P was used on
both occasions ?

13 Consider a special pack of ten cards contains the following values: one ace, two twos, three
threes and four fours.

(i) What is the mean value of this population of ten values?
(ii) What is the standard deviation of this population of ten values?
(iii) Twelve times I pick a card randomly from this pack, note its value
and replace it. I get the following values: 3,4,4,2,3,1,3,3,4,4,3,4.
Use this sample to estimate the mean and standard deviation of the
population of values on the cards.

14 An experiment is performed 100 times and separate values xi are recorded for i equals 1 to 100.
The researcher reports that

∑100
i=1 xi = 25,545.1678 and

∑100
i=1 x2

i = 6,530,839.6114 Estimate a
range in which you are 99.73% sure that the true experimental result lies.

Answers

1 (i) 18 (ii) 192

2 360

3 (i) 0.01 (ii) 0.0175

4 (a)
9
64

(b)
37
64

7 points

5 (a) β+
(α−β)(α+4β)

5

6 5.4×1028

8
7

32

9 0.214

10 (i) 0.246 (ii) 7 heads

11 (i) 0.31 (ii) 0.81 0.30

12 (a)
7
10

(b)
19
40

(c)
10
19

13 (i) 3, (ii) 1, (iii) 3.1667, 0.9374

14 253.26 to 257.64.
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