
Engineering Tripos Part IIA THIRD YEAR

3F1: Signals and Systems

INFORMATION THEORY

Examples Paper Solutions

1. Let the joint probability mass function of two binary random variables X
and Y be given in the following table:

x, y PXY (x, y)

0,0 0.2
0,1 0.3
1,0 0.1
1,1 0.4

Express the following quantities in terms of the binary entropy function

h(x) = −x log x− (1− x) log(1− x).

(a) H(X)

We marginalise PX(0) = PXY (0, 0) + PXY (0, 1) = 1/2 and hence

H(X) = h(1/2) = 1 [bits].

(b) H(Y)

Similarly, PY (0) = PXY (0, 0) + PXY (1, 0) = .3 and hence

H(Y ) = h(.3).

(c) H(X|Y)

We compute

PX|Y (0|0) =
PXY (0, 0)

PY (0)
=
.2

.3
=

2

3

and

PX|Y (0|1) =
PXY (0, 1)

PY (1)
=
.3

.7
=

3

7

and hence

H(X|Y ) = PY (0)H(X|Y = 0) + PY (1)H(X|Y = 1) = .3h(2/3) + .7h(3/7).
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(d) H(Y|X)

We compute

PY |X(0|0) =
PXY (0, 0)

PX(0)
=
.2

.5
=

2

5

and

PY |X(0|1) =
PXY (1, 0)

PX(1)
=
.1

.5
=

1

5

and hence

H(Y |X) = PX(0)H(Y |X = 0) + PX(1)H(Y |X = 1) = .5h(2/5) + .5h(1/5).

(e) H(XY)

Using the chain rule, we can compute either

H(XY ) = H(X) +H(Y |X) = 1 + .5h(2/5) + .5h(1/5) = 1.8464 [bits]

or

H(XY ) = H(Y ) +H(X|Y ) = h(.3) + .3h(2/3) + .7h(3/7) = 1..8464 [bits]

which, as can be observed, yields the same result.

(f) I(X; Y)

We can write either

I(X;Y ) = H(X)−H(X|Y ) = 1− .3h(2/3)− .7h(3/7) = 0.0349 [bits]

or

I(X;Y ) = H(Y )−H(Y |X) = h(.3)− .5h(2/5)− .5h(1/5) = 0.0349 [bits]

which, as can again be observed, yields the same result.

2. Let an N-ary random variable X be distributed as follows:{
PX(1) = 1− p
PX(k) = p

N−1 for k = 2, 3, . . . , N.

Express the entropy of X in terms of the binary entropy function h(.).

H(X) = −(1− p) log(1− p)− (N − 1)
p

N − 1
log

p

N − 1

= −(1− p) log(1− p)− p log
p

N − 1

= −(1− p) log(1− p)− p log p+ p log(N − 1)

= h(p) + p log(N − 1).
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3. A discrete memoryless source has an alphabet of eight letters, xi, i =
1, 2, · · · , 8 with probabilities 0.25, 0.20, 0.15, 0.12, 0.10, 0.08, 0.05 and
0.05.

(a) Use the Huffman encoding to determine a binary code for the source
output.

The diagram below shows a the working to produce the Huffman code. The
order in which the probabilities are merged is shown in brackets above the
probabilities.

(6) (7)

0.25 ------------------------------------------- 0.58 --- 1.0

(5) / /

0.20 ----------------- 0.42 ------------------)-------/

/ (4) /

0.15 ---------------)--------------- 0.33 --/

(3) / /

0.12 ----- 0.22 --/ /

/ /

0.10 --/ /

(2) /

0.08 ---------------- 0.18 --/

(1) /

0.05 ----- 0.10 --/

/

0.05 --/

Labelling the upper branch 0 and the lower branch 1 gives the code:

Symbol Code

x1 00
x2 10
x3 010
x4 110
x5 111
x6 0110
x7 01110
x8 01111

Note that other labellings are possible and also there is a choice at the second
merge since there are two probabilities of 0.1 at that time.

(b) Determine the average codeword length L

Average codeword length:

L = 2 . 0.25 + 2 . 0.2 + 3 . 0.15 + 3 . 0.12 + 3 . 0.1 + 4 . 0.08 + 5 . 0.05 + 5 . 0.05
= 2.83 bits.
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(c) Determine the entropy of the source and hence its efficiency

H(S) = − 1
ln(2)

(0.25 . ln(0.25) + 0.2 . ln(0.2) + 0.15 . ln(0.15) + 0.12 . ln(0.12)

+ 0.1 . ln(0.1) + 0.05 . ln(0.05) + 0.05 . ln(0.05)) = 2.798 bits.

The average codeword length is greater than the entropy (as expected).

Efficiency = 2.798 / 2.83 = 98.9%.

4. Show that for statistically independent events

H(X1, X2, · · · , Xn) =
n∑
i=1

H(Xi)

First expand out H(X1, X2, · · · , Xn)

H(X1, X2, · · · , Xn)

=

N1∑
i1=1

N2∑
i2=1

· · ·
Nn∑
in=1

P (xi1 , xi2 , · · ·xin) log2(P (xi1 , xi2 , · · ·xin))

The probabilities are independent so this is

=

N1∑
i1=1

N2∑
i2=1

· · ·
Nn∑
in=1

(
n∏
j=1

P (xij)

)
log2

(
n∏
j=1

P (xij)

)

The last summation only indexes in so we can move all the other terms in the first
product to the left of it. We can also replace the log of a product with the sum of
the logs.

=

N1∑
i1=1

N2∑
i2=1

· · ·
Nn−1∑
in−1=1

(
n−1∏
j=1

P (xij)

)
Nn∑
in=1

P (xin)

(
n∑
j=1

log2(P (xij))

)

All terms in the right hand sum (except the last one) do not depend on in and since∑Nn

in=1 P (xin) = 1 we can transform

Nn∑
in=1

P (xin)

(
n∑
j=1

log2(P (xij))

)
=

n−1∑
j=1

log2(P (xij)) +
Nn∑
in=1

P (xin) log2(Pxin)

Now the right hand term is independent of i1 · · · in−1 and

N1∑
i1=1

N2∑
i2=1

· · ·
Nn−1∑
in−1=1

(
n−1∏
j=1

P (xij)

)
= 1

4



so we have

H(X1, X2, · · · , Xn)

=
Nn∑
in=1

P (xin) log2(Pxin) +

N1∑
i1=1

N2∑
i2=1

· · ·
Nn−1∑
in−1=1

(
n−1∏
j=1

P (xij)

)
n−1∑
j=1

log2(P (xij))

= H(Xn) +H(X1, X2, · · · , Xn−1)

by induction this gives

=
n∑
i=1

H(Xi)

5. A five-level non-uniform quantizer for a zero-mean signal results in the
5 levels −b,−a, 0, a, b with corresponding probabilities of occurrence p−b =
pb = 0.05, p−a = pa = 0.1 and p0 = 0.7.

(a) Design a Huffman code that encodes one signal sample at a time and
determine the average bit rate per sample.

0 0.7 ------------------------\

\

-a 0.1 --\ )-- 1.0

)- 0.2 --\ /

a 0.1 --/ \ /

)- 0.3 --/

-b 0.05 --\ /

)- 0.1 --/

b 0.05 --/

giving code:

Symbol Code

0 0
−a 100
a 101
−b 110
b 111

Average bit rate = 1 . 0.7 + 3 . (0.1 + 0.1 + 0.05 + 0.05) = 1.6 bits.

Another version of the code would give 2 bits to −a (or to a) and 4 bits each
to −b and b. It has the same mean length.

(b) Design a Huffman code that encodes two output samples at a time
and determine the average bit rate per sample.

We combine the 5 states into 25 pairs of states, in descending order of probability
and form a Huffman code tree as follows.
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Note that there are many different possible versions of this tree as many of the
nodes have equal probabilities and so can be taken in arbitrary order. However
the mean length (and hence performance) of the code should be the same in all
cases.

The code lengths are shown on the left, but should be filled in last, according
to the number of branch-points in the tree that are passed, going from the root
to each code state.

len samp prob

1 0 0 0.49 ---------------------------------------------------------\

4 -a 0 0.07 --\ \

4 a 0 0.07 ----------- .14 -----\ \

4 0-a 0.07 --\ )----- .28 -----------------\ \

4 0 a 0.07 ----------- .14 -----/ \ \

5 -b 0 0.035 --- .07 -\ \ \ Root

5 b 0 0.035 -/ )--- .14 -----------------------\ \ ) 1.0

5 0-b 0.035 --- .07 -/ \ \ /

5 0 b 0.035 -/ \ ) .51 /

6 -a-a 0.01 ---------\ \ /

7 a-a 0.01 --- .02 ---- .03 -----\ ) .23 /

7 -a a 0.01 -/ )--- .05 -\ /

6 a a 0.01 ------------ .02 -----/ \ /

7 -a-b 0.005 --- .01 -/ \ /

7 a-b 0.005 -/ ) .09 /

7 -a b 0.005 --- .01 ---------\ /

7 a b 0.005 -/ ) .02 \ /

7 -b-a 0.005 --- .01 ---------/ \ /

7 b-a 0.005 -/ ) .04 /

7 -b a 0.005 --- .01 ---------\ /

7 b a 0.005 -/ ) .02 /

8 -b-b 0.0025 -- .005 \ /

8 b-b 0.0025 / ) .01 /

8 -b b 0.0025 -- .005 /

8 b b 0.0025 /

Summing probabilities for codewords of the same length:

Av. codeword length = 1 . 0.49 + 4 . 0.28 + 5 . 0.14 + 6 . 0.02 + 7 . 0.06 + 8 . 0.01
= 2.93 bits per pair of samples.

Hence code rate = 2.93/2 = 1.465 bit / sample

(c) What are the efficiencies of these two codes?

Entropy of the message source = 0.7 log2(0.7)+2 . 0.1 log2(0.1)+2 . 0.05 log2(0.05)
= 1.4568 bit / sample

Hence:

Efficiency of code 1 =
1.4568

1.6
= 91.05%

Efficiency of code 2 =
1.4568

1.465
= 99.44%

Code 2 represents a significant improvement, because it eliminates the ‘zero’
state of code 1 which has a probability well above 0.5 .

6. While we cover in 3F1 and 4F5 the application of Shannon’s theory to
data compression and transmission, Shannon also applied the concepts
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of entropy and mutual information to the study of secrecy systems. The
figure below shows a cryptographic scenario where Alice wants to transmit
a secret plaintext message X to Bob and they share a secret key Z, while
the enemy Eve has access to the public message Y .

Message
Source

- Alice
(Encrypter)

-

6

Eve
(Enemy

Cryptanalyst)

Bob
(Decrypter)

- Message
Destination

X X

Y

Key
Source

6Z 6Z

(a) Write out two conditions using conditional entropies involving X,Y
and Z to enforce the deterministic encryptability and decryptability
of the messages.

Hint: the entropy of a function given its argument is zero, e.g., for
any random variable X, H(f(X)|X) = 0.

The conditions are
H(Y |XZ) = 0

because the ciphertext is a function of the secret plaintext message and the
secret key, and

H(X|Y Z) = 0

because the secret plaintext message can be inferred from the ciphertext and
the key.

(b) Shannon made the notion of an “unbreakable cryptosystem” precise
by saying that a cryptosystem provides perfect secrecy if the enemy’s
observation is statistically independent of the plaintext, i.e., I(X;Y ) =
0. Show that this implies Shannon’s much cited bound on key size

H(Z) ≥ H(X),

i.e., perfect secrecy can only be attained if the entropy of the key
(and hence its compressed length) is at least as large as the entropy
of the secret plaintext.
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Since I(X;Y ) = 0, we have

H(X) = H(X|Y ) = H(X,Z|Y )−H(Z|X, Y )

≤ H(X,Z|Y )

= H(Z|Y ) +H(X|Z, Y )

= H(Z|Y )

≤ H(Z)

(c) Vernam’s cipher assumes a binary secret plaintext message X with
any probability distribution PX(0) = p = 1− PX(1) and a binary secret
key Z that’s uniform PZ(0) = PZ(1) = 1/2 and independent of X. The
encrypter simply adds the secret key to the plaintext modulo 2, and
the decrypter by adding the same key to the ciphertext can recover
the plaintext. Show that Vernam’s cipher achieves perfect secrecy,
i.e., I(X; Y) = 0.

We have

PY (0) =
∑
x

∑
z

PXY Z(x, 0, z)

=
∑
x

∑
z

PY |XZ(0|x, z)PX(x)PZ(z)

and note that PY |XZ(0|x, z) = 1 if x + z mod 2 = 0, and PY |XZ(0|x, z) = 0
otherwise, and so the expression above becomes

PY (0) = p
1

2
+ (1− p)1

2
=

1

2

and hence
H(Y ) = 1 [bits].

Furthermore,

PY |X(0|0) =
PXY (0, 0)

PX(0)

=
PXY Z(0, 0, 0) + PXY Z(0, 0, 1)

PX(0)

=
PX(0)PZ(0)PY |XZ(0|0, 0) + PX(0)PZ(1)PY |XZ(0|0, 1)

PX(0)

=
p1
2

+ 0

p
=

1

2
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and similarly

PY |X(0|1) =
PXY (1, 0)

PX(1)

=
PXY Z(1, 0, 0) + PXY Z(1, 0, 1)

PX1

=
PX(1)PZ(0)PY |XZ(0|1, 0) + PX(1)PZ(1)PY |XZ(0|1, 1)

PX(1)

=
0 + (1− p)1

2

1− p
=

1

2

and hence,

H(Y |X) = PX(0)H(Y |X = 0)+PX(1)H(Y |X = 1) = ph(1/2)+(1−p)h(1/2) = 1 [bits]

and so, finally,

I(X;Y ) = H(Y )−H(Y |X) = 1− 1 = 0 [bits].

7. What is the entropy of the following continuous probability density func-
tions?

(a) P (x) =


0 x < −2

0.25 −2 < x < 2

0 x > 2

H(X) = −
∫ 2

−2
0.25 log2(0.25) dx

= − log2(0.25)

= log2(4) = 2

(b) P (x) = λ
2
e−λ|x|

H(X) = − 1

ln(2)

∫ ∞
−∞

λ

2
e−λ|x| ln

(
λ

2
e−λ|x|

)
dx

= − 2

ln(2)

∫ ∞
0

λ

2
e−λx ln

(
λ

2
e−λx

)
dx

= − 2

ln(2)

∫ ∞
0

λ

2
e−λx

(
ln

(
λ

2

)
− λx

)
dx

= −λ ln(λ/2)

ln(2)

∫ ∞
0

e−λxdx+
λ2

ln(2)

∫ ∞
0

xe−λxdx

= − ln(λ/2)

ln(2)
+

λ

ln(2)

∫ ∞
0

λxe−λxdx
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integrating by parts with u = x and v′ = λe−λx (so v = −e−λx):

= − ln(λ/2)

ln(2)
+

λ

ln(2)

([
−xe−λx

]∞
0
−
∫ ∞
0

−e−λxdx
)

= − ln(λ/2)

ln(2)
+

λ

ln(2)

(
0 +

1

λ

)
= − ln(λ/2)

ln(2)
+

1

ln(2)

=
1− ln(λ/2)

ln(2)

(c) P (x) = 1
σ
√
2π
e−x

2/2σ2

H(X) = − 1

ln(2)

∫ ∞
−∞

1

σ
√

2π
e−x

2/2σ2

ln

(
1

σ
√

2π
e−x

2/2σ2

)
dx

= − 1

ln(2)

∫ ∞
−∞

1

σ
√

2π
e−x

2/2σ2

(
ln

(
1

σ
√

2π

)
− x2

2σ2

)
=

ln(σ
√

2π)

ln(2)

∫ ∞
−∞

1

σ
√

2π
e−x

2/2σ2

dx+
1

2σ
√

2π ln(2)

∫ ∞
−∞

x2

σ2
e−x

2/2σ2

dx

=
ln(σ
√

2π)

ln(2)
+

1

2σ
√

2π ln(2)

∫ ∞
−∞

x
x

σ2
e−x

2/2σ2

dx

integrating by parts with u = x and v′ = x
σ2 e
−x2/2σ2

giving v = −e−x2/2σ2
:

=
ln(σ
√

2π)

ln(2)
+

1

2σ
√

2π ln(2)

([
−xe−x2/2σ2

]∞
−∞
−
∫ ∞
−∞
−e−x2/2σ2

dx

)
=

ln(σ
√

2π)

ln(2)
+

1

2σ
√

2π ln(2)

(
0 + σ

√
2π
)

=
ln(σ
√

2π)

ln(2)
+

1

2 ln(2)

= log2(σ
√

2π) +
log2(e)

2
= log2(σ

√
2πe)

8. ∗ Continuous variables X and Y are normally distributed with standard
deviation σ = 1.

P (x) =
1√
2π
e−x

2/2 P (y) =
1√
2π
e−y

2/2

A variable Z is defined by z = x+ y. What is the mutual information of X
and Z?
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I(Z;X) = H(Z)−H(Z|X)

Z is a normally distributed variable with standard deviation σ =
√

2 (since it is the
sum of two independent variables with standard deviation σ). Hence

H(Z) = log2(
√

2 .
√

2π) +
log2(e)

2

by 6(c) above.

If X is known then Z is still normally distributed, but now the mean = x and the
standard deviation is 1 since z = x+ y and Y has zero mean and standard deviation
σ = 1. So:

H(Z|X) = log2(
√

2π) +
log2(e)

2

So

I(Z;X) = log2(
√

2 .
√

2π)− log2(
√

2π)

= log2(

√
2 .
√

2π√
2π

)

= log2(
√

2)

= 0.5 bit

9. A symmetric binary communications channel operates with signalling lev-
els of ±2 volts at the detector in the receiver, and the rms noise level at
the detector is 0.5 volts. The binary symbol rate is 100 kbit/s.

(a) Determine the probability of error on this channel and hence, based
on mutual information, calculate the theoretical capacity of this chan-
nel for error-free communication.

Using notation and results from sections 2.2 and 2.4 of the 3F1 Random Pro-
cesses course and section 3.5 of the 3F1 Information Theory course:

Probability of bit error, pe = Q
(v0
σ

)
= Q

(
2

0.5

)
= Q(4) = 3.17 . 10−5

The mutual information between the channel input X and the channel output
Y is then:

I(Y ;X) = H(Y )−H(Y |X) = H(Y )−H([pe (1− pe)])

Now, assuming equiprobable random bits at input and output of the channel:

H(Y ) = −[0.5 log2(0.5) + 0.5 log2(0.5)] = 1 bit / sym
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and, from the above pe:

H([pe (1− pe)]) = −[3.17 . 10−5 log2(3.17 . 10−5)

+ (1− 3.17 . 10−5) log2(1− 3.17 . 10−5)]

= 4.739 . 10−4 + 4.57 . 10−5

= 5.196 . 10−4 bit / sym

So
I(Y ;X) = 1− 5.196 . 10−4 = 0.99948 bit / sym

Hence the error-free capacity of the binary channel is

(Symbol rate)× I(Y ;X) = 100k . 0.99948 = 99.948 kbit/s.

(b) If the binary signalling were replaced by symbols drawn from a con-
tinuous process with a Gaussian (normal) pdf with zero mean and the
same mean power at the detector, determine the theoretical capacity
of this new channel, assuming the symbol rate remains at 100 ksym/s
and the noise level is unchanged.

For symbols with a Gaussian pdf, section 4.4 of the course shows that the mutual
information of the channel is now given by:

I(Y ;X) = h(Y )− h(N) = log2

σY
σN

= 1
2

log2

(
1 +

σ2
X

σ2
N

)
since the noise is uncorrelated with the signal, so σ2

Y = σ2
X + σ2

N .

For the given channel, σX/σN = 2/0.5 = 4. Hence

I(Y ;X) = 1
2

log2(1 + 42) = 2.0437 bit / sym

and so the theoretical capacity of the Gaussian channel is

CG = 100k . 2.0437 = 204.37 kbit/s (over twice that of the binary channel)

(c) The three capacities are plotted on the next page. There is no loss at low SNR
for using binary signalling as long as the output remains continuous. As the
SNR increases, all binary signalling methods hit a 1 bit/use ceiling whereas the
capacity for continuous signalling continues to grow unbounded.
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