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Course Organisation

4 lectures

Course material: lecture notes (4 Sections) and slides
1 examples paper

Exam material: notes and example paper, past exams
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Course contents

Introduction to Information Theory
Good Variable Length Codes
Higher Order Sources
Communication Channels
Continuous Random Variables
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This lecture
» A bit of history. ..
» Hartley’s measure of information
» Shannon’s uncertainty / entropy
» Properties of Shannon’s entropy
gg:;f::;;:gzﬁ;ﬂs;ﬁgE 3F1 Information Theory @©Jossy Sayir
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Claude Elwood Shannon (1916-2001)
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Shannon’s paper, 1948

Reprinted with corrections froffihe Bell System Technical Journal,
Vol. 27, pp. 379-423, 623-656, July, October, 1948.

A Mathematical Theory of Communication

By C. E. SHANNON

INTRODUCTION

HE recent development of various methods of modulation such as PCM and PPM which exchange
bandwidth for signal-to-noise ratio has intensified the interest in a general theory of communication. A
basis for such a theory is contained in the important papers of Nycarist Hartley on this subject. In the
present paper we will extend the theory to include a number of new factors, in particular the effect of noise
in the channel, and the savings possible due to the statistical structure of the original message and due to the
nature of the final destination of the information.

The fundamental problem of communication is that of reproducing at one point either exactly or ap-
proximately a message selected at another point. Frequently the messagesaigy that is they refer
to or are correlated according to some system with certain physical or conceptual entities. These semantic
aspects of communication are irrelevant to the engineering problem. The significant aspect is that the actual
message is ongelected from a sedf possible messages. The system must be designed to operate for each
possible selection, not just the one which will actually be chosen since this is unknown at the time of design.

If the number of messages in the set is finite then this number or any monotonic function of this number
can be regarded as a measure of the information produced when one message is chosen from the set, all
choices being equally likely. As was pointed out by Hartley the most natural choice is the logarithmic
function. Although this definition must be generalized considerably when we consider the influence of the

Univers TStBLISticS 0f the message and when we have a continuous range of messages, we will in all cases use an
"p Departmer@&ﬂﬁ@ﬂ%ﬂﬁr{@garithmic measure. 3F1 Information Theory © Jossy Sayir
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Shannon’s paper, 1948
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Fig. 1—Schematic diagram of a general communication system.

a decimal digit is about—§ bits. A digit wheel on a desk computing machine has ten stable positions and
therefore has a storage capacity of one decimal digit. In analytical work where integration and differentiation
are involved the baseis sometimes useful. The resulting units of information will be called natural units.
Change from the baseto baseb merely requires multiplication by lg@.

By a communication system we will mean a system of the type indicated schematically in Fig. 1. It
consists of essentially five parts:

1. Aninformation sourcavhich produces a message or sequence of messages to be communicated to the
receiving terminal. The message may be of various types: (a) A sequence of letters as in a telegraph
of teleatgpe system; (b) A single function of timf€t) as in radio or telephony; (c) A function of

'y ggg\;fﬁeﬁg;ﬁgﬁﬁg‘%gd other variables as in black and whiteitelevisiarreofyere the message may be thought ofassay Sayir
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R.V.L. Hartley (1888-1970)
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Uncertainty (Entropy)

Shannon Entropy

For a discrete random variable X,

def Z Px(x)log, Px(x) = E[— log, Px(X)]

xesupp Px

» b =2, entropy in bits
» b= e, entropy in nats
» b =10, entropy in Hartleys
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Properties of the Entropy
Extremes
If X is defined over an alphabet of size N,

0 < H(X) <log, N

with equality on the left if and only if | supp Px| = 1 and on the right if
and only if Px(x) = 1/N for all x.

Proof:
H(X) —log, N = ZPX )log,, Px(x ZPX x)log, N

1 1 ' '
< 109, b ZX: Px(x) (NPX(X) — 1) (IT inequality)

1 1
:Iogeb<x N_EX:PX(X)> =0

3F1 Information Theory @©Jossy Sayir
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IT-Inequality

051 q

log.(x) < x—1

with equality if and only if x = 1.
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Binary Entropy Function h(p)
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Good to remember:

h(.11) ~

N =
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Block and Conditional Entropy

» Entropy naturally extends to “vectors” or “blocks”:
Z Px(x)log Px(x)

H(XY) = Z Pxy(x,y)log Pxy(x,y)
Xy

» Entropy conditioned on an event:

HX]Y =y) = ZPX\Y x|y)log Px v (x|y)

Equivocation or conditional entropy

H(X|Y) =) Py(y)H(X]Y = y) = E[~log Pxy(X|Y)]
y
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Chain rule of entropies
Two random variables
H(XY) = H(X) + H(Y|X) = H(Y) + H(X|Y)

Follows directly from our definition of H(Y|X)

Any number of random variables

H(X1X2 .. XN) S H(X1) aF H(X2|X1) 4 oo 4R H(XN|X1 XN)

Follows from recursive application of the two variable chain rule

UNIVERSITY OF CAMBRIDGE
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Does conditioning reduce uncertainty?

e oo o o » X color of randomly picked ball
» Y row of picked ball (1-10)

o o oo o
» H(X)=h(1/4)=2-2log,3 =
0.811 bits
[ ) [ [ ] [ N )
e o o ) » H(X|Y =1)=1bit > H(X)
» H(X|Y =2)=0bits < H(X)
e oo oo

> H(X|Y) = 81520 _ 1 H(X)

Conditioning Theorem

0 < H(X]Y) < H(X)

Conditioning on a random variable only ever reduces uncertainty /
entropy (but conditioning on an event can increaase it).
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Proof of conditioning theorem

H(X|Y) — H(X) = H(XY) — H(X) — H(Y) (chain rule)

_ Z P(x)P(y)
- P(Xay) Iog P(X y)

Z POOPY) |1 e
< P(x,y) { P(x.7) 1} (IT-inequality)

:ZPX (y) fZPx,y):O
X,y X,y
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Mutual Information

I(X; Y) = H(X) — H(X|Y)

Mutual information is mutual:

I(X; Y) = H(X) + H(Y) — H(XY) = H(Y) — H(Y|X)
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Positivity of Mutual Information

I(X;Y)>0
with equality if and only if X and Y are independent

Equivalent to H(X|Y) < H(X).
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