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Encoding the output of a source

Binary
Memoryless

Source

-X1,X2,X3, . . .

I X1,X2, . . . independent and identically distributed
I PXi (1) = 1− PXi (0) = 0.01
I What’s the optimal binary variable length code for Xi?
I E [W ] = 1, but H(X ) = 0.081 bits.
I Redundancy ρ1 = E [W ]− H(X ) = 0.9190
I Can we do better?
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Parsing a source into blocks of 2

x1x2 PX1X2(x1, x2)

00 0.9801
01 0.0099
10 0.0099
11 0.0001 tt

tt
1
0 q 1

0 q 1

0 q
Codeword
0
10
110
111

I E [W ] = 1.0299, H(X1X2) = 0.1616 bits, where

H(X1X2) = −
∑
x1x2

PX1X2(x1, x2) log PX1X2(x1, x2)

I Redundancy per symbol:

ρ2 =
E [W ]− H(X1X2)

2
= 0.4342

I Can we do better?
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Encoding a block of length N
I If encoding a block of length N using Huffman or Shannon-Fano

coding,
H(X1 . . .XN) ≤ E [W ] < H(X1 . . .XN) + 1

where

H(X1 . . .X2) = −
∑

x1...x2

P(x1, . . . , x2) log P(x1, . . . , x2)

I Thus,

ρN =
E [W ]− H(X1 . . .XN)

N
≤ H(X1 . . .XN) + 1− H(X1 . . .XN)

N
=

1
N

and
lim

N→∞
ρN = 0,

i.e., the redundancy tends to zero
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The problem with block compression

I The alphabet size grows exponentially in the block length N
I Huffman’s and Fano’s algorithms become infeasible for large N,

as does storing the codebook
I In Shannon’s version of Shannon-Fano coding, the probability

and cumulative probability can be computed recursively:

P(x1, . . . , xN) = P(x1, . . . , xN−1)P(xN)

F (x1, . . . , xN) = F (x1, . . . , xN−1) + F (xN)P(x1, . . . , xN−1)

I Compute the cumulative probability for a specific block without
computing all others!

I If only there wasn’t the need for the alphabet to be ordered. . .
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Reminder: Shannon’s version of S-F Coding

x PX (x) P(X<x) P(X < x)|b d− log PX (x)e Codeword
F .30 0.0 0.00000000 2 00
D .20 0.3 0.01001101 3 010
E .20 0.5 0.10000000 3 100
C .15 0.7 0.10110011 3 101
B .10 0.85 0.11011010 4 1101
A .05 0.95 0.11110011 5 11110
I Order the symbols in order of non-increasing probability
I Compute the cumulative probabilities
I Express the cumulative probabilities in D-ary
I The codeword is the fractional part of the cumulative probabilities

truncated to length d− log PX (x)e
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Source intervals / code intervals

x P(X<x) P(X < x)|b
F 0.0 0.00
D 0.3 0.010
E 0.5 0.100
C 0.7 0.101
B 0.85 0.1101
A 0.95 0.11110

F

D

E

C

B

A

F

D

E

C

B

A
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What if we don’t order the source probabilities?

x P(X<x) P(X < x)|b
A 0.0 0.00000
B 0.05 0.000
C 0.15 0.001
D 0.3 0.010
E 0.5 0.100
F 0.7 0.11

A
B

C

D

E

F

A
B

C

D

E

F
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New approach

x [a,b]
A [0.0,0.05]
B [0.05,0.15]
C [0.15,0.3]
D [0.3,0.5]
E [0.5,0.7]
F [0.7,1.0]

a = P(X < x)
b = P(X < x) + P(X = x)

A
B

C

D

E

F

I Draw source intervals in
no particular order

I Pick the largest interval
[k2−wi , (k + 1)2−wi ] that
fits in each source interval

I How large is wi?
I wi ≤ d− log pie+1
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Arithmetic Coding

I Recursive computation of the source interval:

0

1
��
�
��

0

1

J
J
J
J
J
J
JJ

0

1
��

�
��

0

1
��

�
��

I At the end of the source block, generate the shortest possible
codeword whose interval fits in the computed source interval

I E [W ] < H(X1 . . .XN) + 2

UNIVERSITY OF CAMBRIDGE
Department of Engineering 3F1 Information Theory c©Jossy Sayir



Memoryless Sources Arithmetic Coding Sources with Memory Markov Example 11 / 21

Arithmetic Coding = Recursive Shannon-Fano Coding

Claude E. Shannon Robert L. Fano Peter Elias Richard C. Pasco Jorma Rissanen

I H(X1 . . .XN) ≤ E [W ] < H(X1 . . .XN) + 2
I ρN = 2/N
I No need to wait until all the source block has been received to

start generating code symbols
I Arithmetic Coding is an infinite state machine whose states need

ever growing precision
I Finite precision implementation requires a few tricks (and loses

some performance)
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English Text
Letter Frequency Letter Frequency Letter Frequency

a 0.08167 j 0.00153 s 0.06327
b 0.01492 k 0.00772 t 0.09056
c 0.02782 l 0.04025 u 0.02758
d 0.04253 m 0.02406 v 0.00978
e 0.12702 n 0.06749 w 0.02360
f 0.02228 o 0.07507 x 0.00150
g 0.02015 p 0.01929 y 0.01974
h 0.06094 q 0.00095 z 0.00074
i 0.06966 r 0.05987

I H(X ) = 4.17576 bits
I P(”and”) = 0.08167× 0.06749× 0.04253 = 0.0002344216
I P(”eee”) = 0.127023 = 0.00204935
I P(”eee”) >> P(”and”). Is this right? No!
I Can we do better than H(X ) for sources with memory?
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Discrete Stationary Source (DSS) properties

I HN(X )
def
= 1

N H(X1 . . .XN)

Entropy Rate

I H(XN |X1 . . .XN−1) ≤ HN(X )

I H(XN |X1 . . .XN−1) and HN(X ) are non-increasing functions of N

I limN→∞ H(XN |X1 . . .XN−1) = limN→∞ HN(X )
def
= H∞(X )

I H∞(X ) is the entropy rate of a DSS

Shannon’s converse source coding theorem for a DSS

E [W ]

N
≥ H∞(X )

log D
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Coding for discrete stationary sources
I Arithmetic coding can use conditional probabilities
I The intervals will be different at every step depending on the

source context
I “Prediction by Partial Matching” (PPM) and “Context Tree

Weighing” (CTW) are techniques to build the context tree based
source model on the fly, achieving compression rates of approx
2.2 binary symbols per ASCII character

I What is H∞(X ) for English text? (assuming language is a
stationary source, which is a disputed proposition)

Source -

6

Predictor

Source
Encoder

?

- Source
Decoder

- Destination

6

Predictor

?
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Markov Chain

Andrey Andreyevivich Markov

I Stationary state random process
S1,S2, . . .

I P(sN |s1 . . . sN−1) = P(sN |sN−1)

I Markov information source: states Si
are mapped into source symbols Xi

I Unifilar information source: from any
state, all neighbouring states map to
distinct symbols
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Unifilar Markov Source

0 1
0.9

0.2
0.1 0.8

I PX2|X1(1|0) = 1− PX2|X1(0|0) = 0.9
I PX2|X1(1|1) = 1− PX2|X1(0|1) = 0.8
I Can we compute PX1(1) = 1− PX1(0)?
I Stationarity implies PX1(1) = PX2(1) and thus

PX1(1) = PX2(1) = PX1X2(01) + PX1X2(11)
= PX2|X1(1|0)PX1(0) + PX2|X1(1|1)PX1(1)
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Unifilar Markov Source

0 1
0.9

0.2
0.1 0.8

I Define the matrix

T =

[
PX2|X1(0|0) PX2|X1(0|1)
PX2|X1(1|0) PX2|X1(1|1)

]
and the vector P = [PX1(0),PX1(1)]

T , then we are looking for the
solution P to the equation

P = TP,

i.e., the eigenvector of T for the eigenvalue 1. Note that since T
is a stochastic matrix (its columns sum to 1), it will always have 1
as an eigenvalue.
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Unifilar Markov Source
0 1

0.9

0.2
0.1 0.8

I P =

[
0.1 0.2
0.9 0.8

]
P implies[

−0.9 0.2
0.9 −0.2

]
P = 0

which, together with the constraint [11]P = 1 (probabilities sum
to 1) yields [

−0.9 0.2
1 1

]
P =

[
0
1

]
and finally

P =

[
PX1(0)
PX1(1)

]
=

[
0.1818
0.8182

]
I Entropy rate of the source:

H∞(X ) = lim
N→∞

H(XN |X1 . . .XN−1) = H(XN |XN−1) = H(X2|X1)

= H(X2|X1 = 0)PX1(0) + H(X2|X1 = 1)PX1(1)
= 0.1818h(0.1) + 0.8182h(0.2) = 0.6759 bits
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Encoding a unifilar Markov Source

0 1
0.9

0.2
0.1 0.8

I Encode source output sequence: 0,1,1,1,1,1,1,1

0.0

1.0

0.1818
“0”

“1”
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Encoding a unifilar Markov Source

0 1
0.9

0.2
0.1 0.8

I Encode source output sequence: 0,1,1,1,1,1,1,1

0.0

1.0

0.1818
“0”

“1”

�
�
�
�
�
�
�
�
�
��

0.0

0.1818

0.0182 = 0.1 × 0.1818
“0”

“1”

UNIVERSITY OF CAMBRIDGE
Department of Engineering 3F1 Information Theory c©Jossy Sayir



Memoryless Sources Arithmetic Coding Sources with Memory Markov Example 17 / 21

Encoding a unifilar Markov Source

0 1
0.9

0.2
0.1 0.8

I Encode source output sequence: 0,1,1,1,1,1,1,1

0.0

1.0

0.1818
“0”

“1”

�
�
�
�
�
�
�
�
�
��

0.0

0.1818

0.0182
“0”

“1”

HHH 0.0182

0.1818

0.0509 = 0.2 × (0.1818 − 0.0182) + 0.0182

“0”

“1”
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Encoding a unifilar Markov Source

0 1
0.9

0.2
0.1 0.8

I Encode source output sequence: 0,1,1,1,1,1,1,1

0.0

1.0

0.1818
“0”

“1”

�
�
�
�
�
�
�
�
�
��

0.0

0.1818

0.0182
“0”

“1”

HHH 0.0182

0.1818

0.0509

“0”

“1”

@
@@

0.0509

0.1818

0.0771

“0”

“1”
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Encoding a unifilar Markov Source

0 1
0.9

0.2
0.1 0.8

I Encode source output sequence: 0,1,1,1,1,1,1,1

0.0

1.0

0.1818
“0”

“1”

�
�
�
�
�
�
�
�
�
��

0.0

0.1818

0.0182
“0”

“1”

HHH 0.0182

0.1818

0.0509

“0”

“1”

@
@@

0.509

0.1818

0.0771

“0”

“1”

@
@@

0.0771

0.1818

0.0980

“0”

“1”
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Encoding a unifilar Markov Source

0 1
0.9

0.2
0.1 0.8

I Encode source output sequence: 0,1,1,1,1,1,1,1

. . .

0.0

0.1818

0.0182
“0”

“1”

HHH 0.0182

0.1818

0.0509

“0”

“1”

@
@@

0.0509

0.1818

0.0771

“0”

“1”

@
@@

0.0771

0.1818

0.0980

“0”

“1”

@
@@

0.0980

0.1818

0.1148

“0”

“1”
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Encoding a unifilar Markov Source

0 1
0.9

0.2
0.1 0.8

I Encode source output sequence: 0,1,1,1,1,1,1,1

. . .

0.0182

0.1818

0.509

“0”

“1”

@
@@

0.0509

0.1818

0.0771

“0”

“1”

@
@@

0.0771

0.1818

0.0980

“0”

“1”

@
@@

0.0980

0.1818

0.1148

“0”

“1”

@
@@

0.1148

0.1818

0.1282

“0”

“1”

UNIVERSITY OF CAMBRIDGE
Department of Engineering 3F1 Information Theory c©Jossy Sayir



Memoryless Sources Arithmetic Coding Sources with Memory Markov Example 17 / 21

Encoding a unifilar Markov Source

0 1
0.9

0.2
0.1 0.8

I Encode source output sequence: 0,1,1,1,1,1,1,1

. . .

0.0509

0.1818

0.0771

“0”

“1”

@
@@

0.0771

0.1818

0.0980

“0”

“1”

@
@@

0.0980

0.1818

0.1148

“0”

“1”

@
@@

0.1148

0.1818

0.1282

“0”

“1”

@
@@

0.1282

0.1818

0.1389

“0”

“1”
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Encoding a unifilar Markov Source

0 1
0.9

0.2
0.1 0.8

I Encode source output sequence: 0,1,1,1,1,1,1,1

. . .

0.0771

0.1818

0.0980

“0”

“1”

@
@@

0.0980

0.1818

0.1148

“0”

“1”

@
@@

0.1148

0.1818

0.1282

“0”

“1”

@
@@

0.1282

0.1389

0.0949

“0”

“1”

@
@@

0.1389

0.1818
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Encoding a unifilar Markov Source

0 1
0.9

0.2
0.1 0.8

I Encode source output sequence: 0,1,1,1,1,1,1,1

. . .

0.0771

0.1818

0.0980

“0”

“1”

@
@@

0.0980

0.1818

0.1148

“0”

“1”

@
@@

0.1148

0.1818

0.1282

“0”

“1”

@
@@

0.1282

0.1389

0.0949

“0”

“1”

@
@@

0.1389

0.1818
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Determining the codeword
I Source interval [0.1389,0.1818] in binary:

[0.00100011,0.00101110]b
I The probability of the source sequence is

PX1...X8(0,1,1,1,1,1,1,1) = 0.1818− 0.1389 = 0.042896
I − log2 PX1...X8(0,1,1,1,1,1,1,1) = 4.543, therefore we can

either truncate after 5 or 6 digits, depending if the resulting code
sequence is contained in the source interval

I No 5 digit code sequence corresponds to a code interval
contained in our source interval:

Source interval: 0.1389 0.1818

Length 5 codeword intervals: 0.125 0.15625 0.1875
I The 6 digit code sequence 001010 corresponds to the code

interval

[0.001010,0.001011]b = [0.15625,0.171875]

which is fully contained in the source interval and therefore
satisfies the prefix condition
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Decoding a unifilar Markov Source
I Decode code sequence: 0,0,1,0,1,0

corresponding to interval
[0.15625,0.171875]

0 1
0.9

0.2
0.1 0.8

I Decoding rule: always pick sub-interval that contains the
codeword interval

, result: 0,1,1,1,1,1,1,1

0.0

1.0

0.1818
“0”

“1”
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Decoding a unifilar Markov Source
I Decode code sequence: 0,0,1,0,1,0

corresponding to interval
[0.15625,0.171875]

0 1
0.9

0.2
0.1 0.8

I Decoding rule: always pick sub-interval that contains the
codeword interval, result: 0

,1,1,1,1,1,1,1

0.0

1.0

0.1818
“0”

“1”

�
�
�
�
�
�
�
�
�
��

0.0

0.1818

0.0182
“0”

“1”
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Decoding a unifilar Markov Source
I Decode code sequence: 0,0,1,0,1,0

corresponding to interval
[0.15625,0.171875]

0 1
0.9

0.2
0.1 0.8

I Decoding rule: always pick sub-interval that contains the
codeword interval, result: 0,1

,1,1,1,1,1,1

0.0

1.0

0.1818
“0”

“1”

�
�
�
�
�
�
�
�
�
��

0.0

0.1818

0.0182
“0”

“1”

HHH 0.0182

0.1818

0.0509

“0”

“1”
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Decoding a unifilar Markov Source
I Decode code sequence: 0,0,1,0,1,0

corresponding to interval
[0.15625,0.171875]

0 1
0.9

0.2
0.1 0.8

I Decoding rule: always pick sub-interval that contains the
codeword interval, result: 0,1,1

,1,1,1,1,1

0.0

1.0

0.1818
“0”

“1”

�
�
�
�
�
�
�
�
�
��

0.0

0.1818

0.0182
“0”

“1”

HHH 0.0182

0.1818

0.0509

“0”

“1”

@
@@

0.0509

0.1818

0.0771

“0”

“1”
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Decoding a unifilar Markov Source
I Decode code sequence: 0,0,1,0,1,0

corresponding to interval
[0.15625,0.171875]

0 1
0.9

0.2
0.1 0.8

I Decoding rule: always pick sub-interval that contains the
codeword interval, result: 0,1,1,1

,1,1,1,1

0.0

1.0

0.1818
“0”

“1”

�
�
�
�
�
�
�
�
�
��

0.0

0.1818

0.0182
“0”

“1”

HHH 0.0182

0.1818

0.0509

“0”

“1”

@
@@

0.509

0.1818

0.0771

“0”

“1”

@
@@

0.0771

0.1818

0.0980

“0”

“1”
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Decoding a unifilar Markov Source
I Decode code sequence: 0,0,1,0,1,0

corresponding to interval
[0.15625,0.171875]

0 1
0.9

0.2
0.1 0.8

I Decoding rule: always pick sub-interval that contains the
codeword interval, result: 0,1,1,1,1

,1,1,1

. . .

0.0

0.1818

0.0182
“0”

“1”

HHH 0.0182

0.1818

0.0509

“0”

“1”

@
@@

0.0509

0.1818

0.0771

“0”

“1”

@
@@

0.0771

0.1818

0.0980

“0”

“1”

@
@@

0.0980

0.1818

0.1148

“0”

“1”
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Decoding a unifilar Markov Source
I Decode code sequence: 0,0,1,0,1,0

corresponding to interval
[0.15625,0.171875]

0 1
0.9

0.2
0.1 0.8

I Decoding rule: always pick sub-interval that contains the
codeword interval, result: 0,1,1,1,1,1

,1,1

. . .

0.0182

0.1818

0.509

“0”

“1”

@
@@

0.0509

0.1818

0.0771

“0”

“1”

@
@@

0.0771

0.1818

0.0980

“0”

“1”

@
@@

0.0980

0.1818

0.1148

“0”

“1”

@
@@

0.1148

0.1818

0.1282

“0”

“1”
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Decoding a unifilar Markov Source
I Decode code sequence: 0,0,1,0,1,0

corresponding to interval
[0.15625,0.171875]

0 1
0.9

0.2
0.1 0.8

I Decoding rule: always pick sub-interval that contains the
codeword interval, result: 0,1,1,1,1,1,1

,1

. . .

0.0509

0.1818

0.0771

“0”

“1”

@
@@

0.0771

0.1818

0.0980

“0”

“1”

@
@@

0.0980

0.1818

0.1148

“0”

“1”

@
@@

0.1148

0.1818

0.1282

“0”

“1”

@
@@

0.1282

0.1818

0.1389

“0”

“1”
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Decoding a unifilar Markov Source
I Decode code sequence: 0,0,1,0,1,0

corresponding to interval
[0.15625,0.171875]

0 1
0.9

0.2
0.1 0.8

I Decoding rule: always pick sub-interval that contains the
codeword interval, result: 0,1,1,1,1,1,1,1

. . .

0.0771

0.1818

0.0980

“0”

“1”

@
@@

0.0980

0.1818

0.1148

“0”

“1”

@
@@

0.1148

0.1818

0.1282

“0”

“1”

@
@@

0.1282

0.1389
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“0”

“1”

@
@@

0.1389

0.1818
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Decoding a unifilar Markov Source
I Decode code sequence: 0,0,1,0,1,0

corresponding to interval
[0.15625,0.171875]

0 1
0.9

0.2
0.1 0.8

I Decoding rule: always pick sub-interval that contains the
codeword interval, result: 0,1,1,1,1,1,1,1

. . .

0.0771

0.1818

0.0980

“0”

“1”

@
@@

0.0980

0.1818

0.1148

“0”

“1”

@
@@

0.1148

0.1818

0.1282

“0”

“1”

@
@@

0.1282

0.1389
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“0”

“1”

@
@@
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0.1818
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Shannon’s Twin Experiment

Source Sink? ?
- - -

Encoder Decoder
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Shannon’s twin experiment
I Shannon 1 and Shannon 2 are hypothetical fully identical twins

(who look alike, talk alike, and think exactly alike)
I An operator in the transmitter asks Shannon 1 to guess the next

source symbol of the source based on the context
I The operator counts the number of guesses until Shannon 1 gets

it right, and transmits this number
I An operator in the receiver asks Shannon 2 to guess the next

source symbol based on the context. Shannon 2 will get the
same answer as Shannon 1 after the same number of guesses.

I An upper bound on the entropy rate of English is the entropy of
the number of guesses

I A better bound would take dependencies between numbers of
guesses into account (if Shannon 1 needed many guesses for a
symbol then chances are that he will need many for the next as
well, whereas if he guessed right the first time, chances are that
he’s in the middle of a word and will guess the next symbol
correctly as well)
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