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I Discrete Memoryless Channel (DMC):
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Two common DMCs

Binary Symmetric Channel
(BSC)
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Binary Erasure Channel
(BEC)
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Block coding and coding rate

Block
Encoder

- -U1 . . .UK X1 . . .XN

I Block coding rate: RB
def
= K/N

I Channel information rate (independently of the coding method
used):

R def
=

H(X1 . . .XN)

N

I If the block code is applied to a uniformly distributed source and
all codewords are distinct, the two rates coincide
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Channel Capacity

Definition

C = max
PX

I(X ; Y )

This is simply a definition and only gains operational meaning through
the theorems on the next slides. We will state the main theorems
without proof but anyone interested can attend “4F5: Advanced
Communications and Coding” in the fourth year where these
theorems are proved.
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Simple Weak Converse
Theorem

H(X1 . . .XN |Y1 . . .YN) ≥ N(R − C)

In other words, if R > C, there is necessarily a residual uncertainty
about the input block after observing the output of the channel.

Proof:

H(X1 . . .XN |Y1 . . .YN) = H(X1 . . .XNY1 . . .YN)− H(Y1 . . .YN)

= H(X1 . . .XN) + H(Y1 . . .YN |X1 . . .XN)

−H(Y1 . . .YN)

= NR +
∑

i

H(Yi |Xi )− H(Y1 . . .YN)±
∑

i

H(Yi )

= NR −
∑

i

I(Xi ; Yi ) +

(∑
i

H(Yi )− H(Y1 . . .YN)

)
≥ N(R − C)
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Shannon’s Coding Theorem
Converse
If information bits from a binary symmetric source are sent to their
destination at rate R (in bits per use) via the DMC of capacity C (in
bits per use) without feedback, then bit error probability Pb at the
destination satisfies

Pb ≥ h−1(1− C/R) , if R > C.

Direct part

Consider transmitting information bits from a binary symmetric source
to their destination at rate R = K/N using block coding with
blocklength N via a DMC of capacity C (in bits per use) used without
feedback. Then, given any ε > 0, provided that R < C, one can
always, by choosing N sufficiently large and designing appropriate
encoders and decoders, achieve a block error probability

PB < ε.
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Capacity of two common channels
I Binary erasure channel:

I(X ; Y ) = H(X )− H(X |Y )

= H(X )− δH(X |Y = ε)− (1− δ)H(X |Y 6= ε)

= H(X )− δ
which is maximised when PX (0) = PX (1) = 1/2 for, so

CBEC = h(1/2)− δ = 1− δ bits per use

I Binary symmetric channel:

I(X ; Y ) = H(Y )− H(Y |X )

= H(Y )− H(Y |X = 0)PX (0)− H(Y |X = 1)PX (1)

= H(Y )− h(ε(PX (0) + PX (1))

which again is maximises when PX (0) = PX (1) = 1/2 for which
PY (0) = PY (1) = 1/2 and thus

CBSC = 1− h(ε) bits per use
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An interesting continuous channel?

����+- -
?

X Y

Z ∼ N (0, σ2)

I X and Y continuous random variables
I Z is a continuous normal distributed random variable with mean

0 and variance σ2

I Question: how much information can be transmitted over this
channel?

I Answer: as much as desired! To transmit N bits, pick a density
for X such that E [X ] = 0 and E [X 2] >> σ2 so that Y ≈ X to
within N bits of accuracy with sufficiently high probability

I Conclusion: this is not an interesting communication problem
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Additive White Gaussian Noise (AWGN) channel

����+- -
?

X

E [(X − E [X ])2] ≤ γ

Y

Z ∼ N (0, σ2)

I Power constraint now makes it an interesting problem, unlike the
problem on the previous page

I Power constraint often stated as E [X 2] ≤ γ,E [X ] = 0, which is
essentially equivalent

I To understand this channel, we need an information theory of
continuous variables
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Information theory of continuous variables

I How much is our uncertainty/entropy about a continuous random
variable?

I Infer from the discrete case: how many binary digits do we need
on average to represent the outcome of a continuous random
variable

I Example: the variable takes on the value π = 3.141592 . . . How
many binary (or decimal) digits do we need to represent π?

I Answer: infinitely many
I Conclusion: the (discrete) entropy of a continuous random

variable in general is∞
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Differential (or relative) Entropy

Nonetheless, in analogy to discrete entropy, Shannon defined:

Definition
The differential entropy of a continuous random variable X with
probability density function (pdf) fX (.) is

h(X )
def
= −

∫
supp fX

fX (x) log fX (x)dx .

I retains most properties of discrete entropy (see next page)
I however: differential entropy can be negative and is not invariant

under coordinate transformations. It is relative to a coordinate
system (hence the appelation relative entropy.)
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Properties of differential entropy and mutual
information

I The differential entropy of joint distributions, conditional
differential entropy or equivocation, and mutual information are
defined in the same manner as for their discrete counterparts,
and satisfy the same properties:

h(XY ) ≤ h(X ) + h(Y )

h(X |Y ) ≤ h(X )

I(X ; Y )
def
= h(X )− h(X |Y )

= h(Y )− h(Y |X ) ≥ 0

I For a given support of fX (.), h(X ) is maximised by the uniform
density on supp fX and equal to log V , where V is the volume of
supp fX (or length of the support interval for scalar X ).
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Differential entropy and quantisation
Let us quantise supp fX into regular bins of size ∆. By the mean value
theorem, there exists a value xi in each bin such that

fX (xi )∆ =

∫ (i+1)∆

i∆
fX (x)dx .

Let us define a discrete random variable Y that takes on the values xi
with probabilities PY (xi ) = fX (xi )∆. Then

H(Y ) = −
∑

i

fX (xi )∆ log(fX (xi )∆)

= −
∑

i

∆fX (xi ) log fX (xi )− log ∆.

By the definition of the Riemann integral,

lim
∆→0

[
−
∑

i

fX (xi ) log fX (xi )∆

]
= −

∫
fX (xi ) log fX (xi )dx = h(X ).

Thus, for small ∆, H(Y ) ≈ h(X )− log ∆.
UNIVERSITY OF CAMBRIDGE
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Differential entropy and quantisation

If Y is an n bit quantisation of X , then ∆ = 2−n and H(Y ) ≈ h(X ) + n.
Thus,

Source coding of continuous variables

h(X ) + n provides a lower bound for the average codeword length of
a prefix-free code to reproduce X with n bit precision, which can be
approached using Huffman or Shannon-Fano coding.

Examples:
I fX uniform over [0,1], h(X ) = −

∫ 1
0 1 log 1 = 0. A block code of

length n can reproduce X with n bit accuracy.

I fX uniform over [0,1/2], h(X ) = −
∫ 1/2

0 2 log 2 = −1. A block
code of length n − 1 can reproduce X with n bit accuracy, since
the first digit of X is necessarily 0 and does not need to be
encoded.
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Normal Distribution
Differential entropy

For X Gaussian/Normal distributed, fX (x) = 1
σ
√

2π
e

−x2

2σ2 ,

h(X ) = −
∫

fX (x) log fX (x)dx

=

∫
fX (x) log

√
2πσ2 +

1
2σ2

∫
fX (x)x2dx

=
1
2

log(2πσ2) +
σ2

2σ2

=
1
2

log(2πeσ2)

where we used natural logarithms in the derivation, but the final result
can revert to any desired base.

I If σ = 1, h(X ) = 2.0471 bits, thus 2.0471 + n binary digits suffice
on average to reproduce an N (0,1) r.v. with n bit accuracy.
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Normal Distribution
Let X be normal distributed with mean 0 and variance σ2 and Y have
any distribution with the same mean and variance. Note that

−
∫

fY (z) log fX (z)dz = −
∫

fX (z) log fX (z)dz (1)

as can be verified by repeating the derivation on the previous page
replacing the fX by fY and remembering that

∫
y2fY (y)dy = σ2.

h(Y )− h(X ) = −
∫

fY (z) log fY (z)dz +

∫
fX (z) log fX (z)dz

=

∫
fY (z) log

fX (z)

fY (z)
dz (using (1))

≤
∫

fY (z)

(
fX (z)

fY (z)
− 1
)

dz = 0 (IT-inequality)

Maximum Entropy

The normal distribution maximises the differential entropy among all
distributions with a given variance σ2.
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Continuous Capacity

Definition
The capacity is

C def
= max

fX∈P
I(X ; Y ) = max

fX∈P
(h(Y )− h(Y |X ))

where P is the set of permissible input distributions, e.g., for the
AWGN channel the set of input distributions satisfying the power
constraint E [X 2] ≤ γ.

A coding theorem can be proved for continuous channels analogous
to the one we stated for discrete channels and the capacity remains
the supremum of rates achievable with arbitrary reliability.
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Capacity of the AWGN Channel
For the AWGN channel, h(Y |X ) = h(Z ) = 1

2 log(2πeσ2) is
independent of the choice of fX . Therefore, maximising I(X ; Y ) is
equivalent to maximising h(Y ). Since X and Z are independent and
zero mean, Y has zero mean and variance E [Y 2] = E [X 2] + σ2. h(Y )
is maximised when Y has a normal distirbution, which is the case
when X is normal. Let us denote σ2

X
def
= E [X 2], then

Capacity of the AWGN channel

CAWGN =
1
2

log(2πe(σ2
x + σ2))− 1

2
log(2πeσ2)

=
1
2

log
(

1 +
σ2

X
σ2

)
[bits/channel use]

where σ2
X/σ

2 is called the signal-to-noise ratio.

Communication engineers prefer to express capacity in bits/second,
obtained by multiplying the above by the symbol rate.
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