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Course Overview 

• 11 Lectures 

• Topics: 

 

– Digital Signal Processing 

– DFT, FFT 

 

– Digital Filters 

– Filter Design 

– Filter Implementation 

 

– Random signals 

– Optimal Filtering 

– Signal Modelling 

 

• Books: 

– J.G. Proakis and D.G. Manolakis, Digital Signal Processing 3rd edition, Prentice-Hall. 

– Statistical digital signal processing and modeling -Monson H. Hayes –Wiley 

• Some material adapted from courses by Dr. Malcolm Macleod, Prof. Peter Rayner and Dr. 
Arnaud Doucet 

 

 

 



Digital Signal Processing - Introduction 

•  Digital signal processing (DSP) is the generic term for techniques such as 

filtering or spectrum analysis applied to digitally sampled signals.  

•  Recall from 1B Signal and Data Analysis that the procedure is as shown 

below: 

•          is the sampling period 

•          is the sampling frequency 

•  Recall also that low-pass anti-aliasing filters must be applied before A/D 

and D/A conversion in order to remove distortion from frequency 

components higher than              Hz (see later for revision of this). 



 
• Digital signals are signals which are sampled in time (“discrete time”) and 

quantised. 

  

• Mathematical analysis of inherently digital signals (e.g. sunspot data, tide 

data) was developed by Gauss (1800), Schuster (1896) and many others 

since. 

   

• Electronic digital signal processing (DSP) was first extensively applied in 

geophysics (for oil-exploration) then military applications, and is now 

fundamental to communications, mobile devices, broadcasting, and most 

applications of signal and image processing. 

 



There are many advantages in carrying out digital rather than analogue 

processing; among these are flexibility and repeatability.  

The flexibility stems from the fact that system parameters are simply numbers 

stored in the processor. Thus for example, it is a trivial matter to change the cut-

off frequency of a digital filter whereas a lumped element analogue filter would 

require a different set of passive components. Indeed the ease with which 

system parameters can be changed has led to many adaptive techniques 
whereby the system parameters are modified in real time according to some 

algorithm. Examples of this are adaptive equalisation of transmission systems, 

adaptive antenna arrays which automatically steer the nulls in the polar diagram 

onto interfering signals. Digital signal processing enables very Digital signal 

processing enables very complex linear and non-linear processes to be 
implemented which would not be feasible with analogue processing. For 

example it is difficult to envisage an analogue system which could be used to 

perform spatial filtering of an image to improve the signal to noise ratio. 

DSP has been an active research area since the late 1960s but applications 

tended to be only in large and expensive systems or in non real-time where a 

general purpose computer could be used. However, the advent of d.s.p chips 

enable real-time processing to be performed at very low cost and already this 
technology is commonplace in domestic products. 



Sampling Theorem (revision from 1B) 



Sampled Signal Spectra: 

Continuous signal g(t) 

Sampled signal 

(various values of         ) 

No Aliasing 

Aliasing 





Sampling Theorem: Summary 

• Theorem shows us that we may represent a signal perfectly in the 

digital domain, provided the sampling rate is at least twice the 

maximum frequency component (`bandwidth’) of the signal 

 

• Denote the sampled values of a signal/function using the shorthand: 

 

 

 

 

 

 

 

 

 



The DFT and the FFT 

• The Discrete Fourier Transform is the standard way to transform a 

block of sampled data into the frequency domain (see IB) 

• The Fast Fourier Transform (FFT) is a fast algorithm for 

implementation of the DFT 

• The FFT revolutionised Digital Signal Processing. It is an elegant and 

highly effective algorithm that is still the building block used in many 

state-of-the-art algorithms in speech processing, communications, 

frequency estimation, … 



The Discrete Time Fourier Transform (DTFT) 





The Discrete Fourier Transform (DFT) 







[You should check that you can show these results from first principles] 



Can think of this as a vector operation: 

• Take a vector of samples as input: 

 

• Get a vector of frequency values as output: 

Can write this as: 

 

 

where           is the  

appropriate (NxN) 

matrix 



The Fast Fourier Transform (FFT) 



Derivation 

• The FFT derivation relies on redundancy in the calculation of the basic 

DFT 

• A recursive algorithm is derived that repeatedly rearranges the problem 

into two simpler problems of half the size 

• Hence the basic algorithm operates on signals of length a power of 2, 

i.e. 

 

     (for some integer M) 

 

 

• At the bottom of the tree, we have the classic FFT `butterfly’ structure 

(details later): 



First, take the basic DFT equation: 

Now, split the summation into two parts: one for even n and one for odd n: 







 

Two complex 
data in 

Two complex 
data out 

Multiplication by Wp 

A 

B 

A + BW
p
 

A – BW
p
 

Or, in more compact form: (‘Butterfly’) 



Computational load: 





A flow diagram for a N=8 DFT is shown below: 

Input: Output: 









Computational Load of full FFT algorithm: 

Direct DFT 

FFT 

The type of FFT we have considered, where N = 2M, is called a radix-2 FFT.  It has 

M = log2 N stages, each using N / 2 butterflies 

 
Since a complex multiplication requires 4 real multiplications and 2 real additions, and 

a complex addition/subtraction requires 2 real additions, a butterfly requires 10 real 

operations.  Hence the radix-2 N-point FFT requires 10( N / 2 )log2 N real operations 

compared to about 8N2 real operations for the DFT. 

 
This is a huge speed-up in typical applications, where N is 128 – 4096: 

 

  

 



Input Output 



The Inverse FFT (IFFT) 

 
Apart from the scale factor 1 / N, the Inverse DFT has the same form as the DFT, except that the 

conjugate W* replaces W.  Hence the computation algorithm is the same, with a final scaling by 1 / N. 

  

 

 

  

 

Other types of FFT 

 
There are many FFT variants.  The form of FFT we have described is called “decimation in time”; there is 

a form called “decimation in frequency” (but it has no advantages). 

  

The "radix 2" FFT must have length N a power of 2.  Slightly more efficient is the "radix 4" FFT, in which 2-

input 2-output butterflies are replaced by 4-input 4-output units.  The transform length must then be a power 

of 4 (more restrictive). 

  

A completely different type of algorithm, the Winograd Fourier Transform Algorithm (WFTA), can be used 

for FFT lengths equal to the product of a number of mutually prime factors (e.g. 9*7*5 = 315 or 5*16 = 80).  

The WFTA uses fewer multipliers, but more adders, than a similar-length FFT. 

  

Efficient algorithms exist for FFTing real (not complex) data at about 60% the effort of the same-sized 

complex-data FFT. 

  

The Discrete Cosine and Sine Transforms (DCT and DST) are similar real-signal algorithms used in 

image coding. 

  

 



 Applications of the FFT 
  

There FFT is surely the most widely used signal processing algorithm of all 

 

It is the basic building block for a large percentage of algorithms in current usage 

 

Specific examples include: 

 

• Spectrum analysis – used for analysing and detecting signals  

• Coding – audio and speech signals are often coded in the frequency domain using FFT 

variants (MP3, …) 

• Another recent application is in a modulation scheme called OFDM, which is used for 

digital TV broadcasting (DVB) and digital radio (audio) broadcasting (DAB). 

• Background noise reduction for mobile telephony, speech and audio signals is often 

implemented in the frequency domain using FFTs 

….  

 



Case Study: Spectral analysis of a Musical Signal 

Extract a short segment: 

Note: looks almost  

Periodic over short time 

interval  

Sample rate is  

10.025 kHz 

(T=1/10,025 s) 

Load this into Matlab as a vector x 

Take an FFT, N=512: 

 

X=fft(x(1:512)); 



Note Conjugate symmetry 

as data are real:  

 

Symmetric 

Symmetric Anti-Symmetric 





The Effect of data length, N 

N=32 

N=128 

N=1024 

FFT 

FFT 

FFT 

Low  

resolution 

High 

resolution 
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The DFT approximation to the DTFT 

DTFT at frequency        :  DFT: 

 

 

 

• Ideally the DFT should be a `good’ approximation to the DTFT  

• Intuitively the approximation gets better as the number of data points 
N increases 

• This is illustrated in the previous slide – resolution gets better as N 
increases (more, narrower, peaks in spectrum). 

•  How to evaluate this analytically? 

– View the truncation in the summation as a multiplication by a rectangle 
window function 

– Then, in frequency domain, multiplication becomes convolution 



Analysis: 









N=32 

Central `Lobe’ 

Sidelobes 

N=4 

N=8 

N=16 

N=32 

Lobe width  

inversely 

proportional 

to N 



Now, imagine what happens when the sum of two frequency components is DFT-ed: 

The DTFT is given by a train of delta functions: 

Hence the windowed spectrum is just the convolution of the window spectrum with 

the delta functions:   



Both components  

separately 

Both components  

Together 

wT 

Now consider the DFT for the data: 



Summary 

• The rectangular window introduces broadening of any frequency components 

(`smearing’)  and sidelobes that may overlap with other frequency components 

(`leakage’).  

• The effect improves as N increases 

• However, the rectangle window has poor properties and better choices of wn 

can lead to better spectral properties (less leakage, in particular) – i.e. instead 

of just truncating the summation, we can pre-multiply by a suitable window 

function wn that has better frequency domain properties.  

• More on window design in the filter design section of the course – see later 


