
3F3 - Random Processes, Optimal

Filtering and Model-based Signal

Processing

3F3 - Random Processes

February 3, 2015

3F3 - Random Processes, Optimal Filtering and Model-based Signal Processing3F3 - Random Processes

Overview of course

This course extends the theory of 3F1 Random processes to Discrete-

time random processes. It will make use of the discrete-time theory

from 3F1. The main components of the course are:

• Section 1 (2 lectures) Discrete-time random processes

• Section 2 (3 lectures): Optimal filtering

• Section 3 (1 lectures): Signal Modelling and parameter

estimation

Discrete-time random processes form the basis of most modern

communications systems, digital signal processing systems and

many other application areas, including speech and audio modelling

for coding/noise-reduction/recognition, radar and sonar, stochastic

control systems, ... As such, the topics we will study form a very

vital core of knowledge for proceeding into any of these areas.

1

Discrete-time Random Processes 3F3 - Random Processes

Section 1: Discrete-time Random Processes

• We define a discrete-time random process in a similar way to a

continuous time random process, i.e. an ensemble of functions

{Xn(ω)}, n = −∞...,−1, 0, 1, ...,∞

• ω is a random variable having a probability density function

f(ω).

• Think of a generative model for the waveforms you might

observe (or measure) in practice:

1. First draw a random value ω̃ from the density f().

2. The observed waveform for this value ω = ω̃ is given by

Xn(ω̃), n = −∞...,−1, 0, 1, ...,∞

3. The ‘ensemble’ is built up by considering all possible values

ω̃ (the ‘sample space’) and their corresponding time

waveforms Xn(ω̃).

4. f(ω) determines the relative frequency (or probability) with

which each waveform Xn(ω) can occur.

5. Where no ambiguity can occur, ω is left out for notational

simplicity, i.e. we refer to ‘random process {Xn}’

2

Discrete-time Random Processes 3F3 - Random Processes

Figure 1: Ensemble representation of a discrete-time random process

Most of the results for continuous time random processes follow

through almost directly to the discrete-time domain. A discrete-time

random process (or ‘time series’) {Xn} can often conveniently be

thought of as a continuous-time random process {X(t)} evaluated

at times t = nT , where T is the sampling interval.

3

Discrete-time Random Processes 3F3 - Random Processes

Example: the harmonic process

• The harmonic process is important in a number of applications,

including radar, sonar, speech and audio modelling. An example

of a real-valued harmonic process is the random phase sinusoid.

• Here the signals we wish to describe are in the form of

sine-waves with known amplitude A and frequency Ω0. The

phase, however, is unknown and random, which could

correspond to an unknown delay in a system, for example.

• We can express this as a random process in the following form:

xn = A sin(nΩ0 + φ)

Here A and Ω0 are fixed constants and φ is a random variable

having a uniform probability distribution over the range −π to

+π:

f(φ) =

{
1/(2π) −π < φ ≤ +π

0, otherwise

A selection of members of the ensemble is shown in the figure.

4

Discrete-time Random Processes 3F3 - Random Processes

Figure 2: A few members of the random phase sine ensemble.

A = 1, Ω0 = 0.025.

5

Discrete-time Random Processes 3F3 - Random Processes

Correlation functions

• The mean of a random process {Xn} is defined as E[Xn] and

the autocorrelation function as

rXX[n,m] = E[XnXm]

Autocorrelation function of random process

• The cross-correlation function between two processes {Xn}
and {Yn} is:

rXY [n,m] = E[XnYm]

Cross-correlation function

6

Discrete-time Random Processes 3F3 - Random Processes

Stationarity

A stationary process has the same statistical characteristics

irrespective of shifts along the time axis. To put it another

way, an observer looking at the process from sampling time n1

would not be able to tell the difference in the statistical

characteristics of the process if he moved to a different time n2.

This idea is formalised by considering the N th order density for

the process:

fXn1, Xn2, ... ,XnN
(xn1

, xn2
, . . . , xnN)

Nth order density function for a discrete-time random process

which is the joint probability density function for N arbitrarily

chosen time indices {n1, n2, . . . nN}. Since the probability

distribution of a random vector contains all the statistical

information about that random vector, we should expect the

probability distribution to be unchanged if we shifted the time

axis any amount to the left or the right, for a stationary signal.

This is the idea behind strict-sense stationarity for a discrete

random process.

7

Discrete-time Random Processes 3F3 - Random Processes

A random process is strict-sense stationary if, for any finite c,

N and {n1, n2, . . . nN}:

fXn1, Xn2, ..., XnN
(α1, α2, . . . , αN)

= fXn1+c,Xn2+c, ..., XnN+c(α1, α2, . . . , αN)

Strict-sense stationarity for a random process

Strict-sense stationarity is hard to prove for most systems. In

this course we will typically use a less stringent condition which

is nevertheless very useful for practical analysis. This is known

as wide-sense stationarity , which only requires first and second

order moments (i.e. mean and autocorrelation function) to be

invariant to time shifts.

8

Discrete-time Random Processes 3F3 - Random Processes

A random process is wide-sense stationary (WSS) if:

1. µn = E[Xn] = µ, (mean is constant)

2. rXX[n,m] = rXX[m− n], (autocorrelation function

depends only upon the difference between n and m).

3. The variance of the process is finite:

E[(Xn − µ)
2
] <∞

Wide-sense stationarity for a random process

Note that strict-sense stationarity plus finite variance

(condition 3) implies wide-sense stationarity, but not vice

versa.

9

Discrete-time Random Processes 3F3 - Random Processes

Example: random phase sine-wave

Continuing with the same example, we can calculate the mean

and autocorrelation functions and hence check for stationarity.

The process was defined as:

xn = A sin(nΩ0 + φ)

A and Ω0 are fixed constants and φ is a random variable

having a uniform probability distribution over the range −π to

+π:

f(φ) =

{
1/(2π) −π < φ ≤ +π

0, otherwise

10

Discrete-time Random Processes 3F3 - Random Processes

1. Mean:

E[Xn] = E[A sin(nΩ0 + φ)]

= AE[sin(nΩ0 + φ)]

= A {E[sin(nΩ0) cos(φ) + cos(nΩ0) sin(φ)]}

= A {sin(nΩ0)E[cos(φ)] + cos(nΩ0)E[sin(φ)]}

= 0

since E[cos(φ)] = E[sin(φ)] = 0 under the assumed

uniform distribution f(φ).

11

Discrete-time Random Processes 3F3 - Random Processes

2. Autocorrelation:

rXX[n,m]

= E[Xn, Xm]

= E[A sin(nΩ0 + φ).A sin(mΩ0 + φ)]

= 0.5A
2 {E [cos[(n−m)Ω0]− cos[(n+m)Ω0 + 2φ]]}

= 0.5A
2{cos[(n−m)Ω0]− E [cos[(n+m)Ω0 + 2φ]]}

= 0.5A
2
cos[(n−m)Ω0]

Hence the process satisfies the three criteria for wide sense

stationarity.

12

Discrete-time Random Processes 3F3 - Random Processes

13

Discrete-time Random Processes 3F3 - Random Processes

Power spectra

For a wide-sense stationary random process {Xn}, the power

spectrum is defined as the discrete-time Fourier transform

(DTFT) of the discrete autocorrelation function:

SX(e
jΩ

) =

∞∑
m=−∞

rXX[m] e
−jmΩ

(1)

Power spectrum for a random process

where Ω = ωT is used for convenience.

The autocorrelation function can thus be found from the power

spectrum by inverting the transform using the inverse DTFT:

rXX[m] =
1

2π

∫ π

−π
SX(e

jΩ
) e

jmΩ
dΩ (2)

Autocorrelation function from power spectrum

14

Discrete-time Random Processes 3F3 - Random Processes

◦ The power spectrum is a real, positive, even and periodic

function of frequency.

◦ The power spectrum can be interpreted as a density spectrum in

the sense that the mean-squared signal value at the output of an

ideal band-pass filter with lower and upper cut-off frequencies of

ωl and ωu is given by

1

π

∫ ωuT

ωlT

SX(e
jΩ

) dΩ

Here we have assumed that the signal and the filter are real and

hence we add together the powers at negative and positive

frequencies.

15

Discrete-time Random Processes 3F3 - Random Processes

Example: power spectrum

The autocorrelation function for the random phase sine-wave

was previously obtained as:

rXX[m] = 0.5A
2
cos[mΩ0]

Hence the power spectrum is obtained as:

SX(e
jΩ

) =

∞∑
m=−∞

rXX[m] e
−jmΩ

=

∞∑
m=−∞

0.5A
2
cos[mΩ0] e

−jmΩ

= 0.25A
2

×
∞∑

m=−∞
(exp(jmΩ0) + exp(−jmΩ0)) e

−jmΩ

= 0.5πA
2

×
∞∑

m=−∞
δ(Ω− Ω0 − 2mπ)

+ δ(Ω + Ω0 − 2mπ)

where Ω = ωT is once again used for shorthand.

16

Discrete-time Random Processes 3F3 - Random Processes

Figure 3: Power spectrum of harmonic process

17

Discrete-time Random Processes 3F3 - Random Processes

White noise

White noise is defined in terms of its auto-covariance function.

A wide sense stationary process is termed white noise if:

cXX[m] = E[(Xn − µ)(Xn+m − µ)] = σ
2
Xδ[m]

where δ[m] is the discrete impulse function:

δ[m] =

{
1, m = 0

0, otherwise

σ2
X = E[(Xn − µ)2] is the variance of the process. If µ = 0

then σ2
X is the mean-squared value of the process, which we

will sometimes refer to as the ‘power’.

The power spectrum of zero mean white noise is:

SX(e
jωT

) =
∞∑

m=−∞
rXX[m] e

−jmΩ

= σ
2
X

i.e. flat across all frequencies.

18

Discrete-time Random Processes 3F3 - Random Processes

Example: white Gaussian noise (WGN)

There are many ways to generate white noise processes, all

having the property

cXX[m] = E[(Xn − µ)(Xn+m − µ)] = σ
2
Xδ[m]

The ensemble illustrated earlier in Fig. was the zero-mean

Gaussian white noise process. In this process, the values Xn

are drawn independently from a Gaussian distribution with

mean 0 and variance σ2
X .

The N th order pdf for the Gaussian white noise process is:

fXn1, Xn2, ... ,XnN
(α1, α2, . . . , αN)

=
N∏
i=1

N (αi|0, σ2
X)

where

N (α|µ, σ2
) =

1
√

2πσ2
exp

(
−

1

2σ2
(x− µ)

2

)
is the univariate normal pdf.

19

Discrete-time Random Processes 3F3 - Random Processes

We can immediately see that the Gaussian white noise process

is Strict sense stationary , since:

fXn1, Xn2, ... ,XnN
(α1, α2, . . . , αN)

=
N∏
i=1

N (αi|0, σ2
X)

= fXn1+c,Xn2+c, ... ,XnN+c (α1, α2, . . . , αN)

20

Discrete-time Random Processes 3F3 - Random Processes

21

Discrete-time Random Processes 3F3 - Random Processes

Linear systems and random processes

Figure 4: Linear system

When a wide-sense stationary discrete random process {Xn} is

passed through a stable, linear time invariant (LTI) system with

22

Discrete-time Random Processes 3F3 - Random Processes

digital impulse response {hn}, the output process {Yn}, i.e.

yn =
+∞∑

k=−∞

hk xn−k = xn ∗ hn

is also wide-sense stationary.

23

Discrete-time Random Processes 3F3 - Random Processes

We can express the output correlation functions and power

spectra in terms of the input statistics and the LTI system:

rXY [k] =E[Xn Yn+k] =

∞∑
l=−∞

hl rXX[k − l] = hk ∗ rXX[k] (3)

Cross-correlation function at the output of a LTI system

rY Y [l] = E[Yn Yn+l]

∞∑
k=−∞

∞∑
i=−∞

hk hi rXX[l + i− k] = hl ∗ h−l ∗ rXX[l]

(4)

Autocorrelation function at the output of a LTI system

24

Discrete-time Random Processes 3F3 - Random Processes

Note: these are convolutions, as in the continuous-time case.

This is easily remembered through the following figure:

25

Discrete-time Random Processes 3F3 - Random Processes

Figure 5: Linear system - correlation functions

Taking DTFT of both sides of (4):

SY (e
jωT

) = |H(e
jωT

)|2SX(e
jωT

) (5)

26

Discrete-time Random Processes 3F3 - Random Processes

Power spectrum at the output of a LTI system

27

Discrete-time Random Processes 3F3 - Random Processes

Example: Filtering white noise

Suppose we filter a zero mean white noise process {Xn} with a first

order finite impulse response (FIR) filter:

yn =
1∑

m=0

bm xn−m, or Y (z) = (b0 + b1z
−1

)X(z)

with b0 = 1, b1 = 0.9. This an example of a moving average

(MA) process.

The impulse response of this causal filter is:

{hn} = {b0, b1, 0, 0, ...}

The autocorrelation function of {Yn} is obtained as:

rY Y [l] = E[Yn Yn+l] = hl ∗ h−l ∗ rXX[l] (6)

This convolution can be performed directly. However, it is more

straightforward in the frequency domain.

The frequency response of the filter is:

H(e
jΩ

) = b0 + b1e
−jΩ

28

Discrete-time Random Processes 3F3 - Random Processes

The power spectrum of {Xn} (white noise) is:

SX(e
jΩ

) = σ
2
X

Hence the power spectrum of {Yn} is:

SY (e
jΩ

) = |H(e
jΩ

)|2SX(e
jΩ

)

= |b0 + b1e
−jΩ|2σ2

X

= (b0b1e
+jΩ

+ (b
2
0 + b

2
1) + b0b1e

−jΩ
)σ

2
X

as shown in the figure overleaf. Comparing this expression with the

DTFT of rY Y [m]:

SY (e
jΩ

) =

∞∑
m=−∞

rY Y [m] e
−jmΩ

we can identify non-zero terms in the summation only when m =

−1, 0,+1, as follows:

rY Y [−1] = σ
2
Xb0b1, rY Y [0] = σ

2
X(b

2
0 + b

2
1)

rY Y [1] = σ
2
Xb0b1

29

Discrete-time Random Processes 3F3 - Random Processes

Figure 6: Power spectrum of filtered white noise

30

Discrete-time Random Processes 3F3 - Random Processes

Ergodic Random processes

• For an Ergodic random process we can estimate expectations

by performing time-averaging on a single sample function, e.g.

µ = E[Xn] = lim
N→∞

1

N

N−1∑
n=0

xn (Mean ergodic)

rXX[k] = lim
N→∞

1

N

N−1∑
n=0

xnxn+k (Correlation ergodic) (7)

• As in the continuous-time case, these formulae allow us to make

the following estimates, for ‘sufficiently’ large N :

µ = E[Xn] ≈
1

N

N−1∑
n=0

xn (Mean ergodic)

rXX[k] ≈
1

N

N−1∑
n=0

xnxn+k (Correlation ergodic) (8)

Note, however, that this is implemented with a simple computer

code loop in discrete-time, unlike the continuous-time case

which requires an approximate integrator circuit.

Under what conditions is a random process ergodic?

31

Discrete-time Random Processes 3F3 - Random Processes

• It is hard in general to determine whether a given process is

ergodic.

• A necessary and sufficient condition for mean ergodicity is given

by:

lim
N→∞

1

N

N−1∑
k=0

cXX[k] = 0

where cXX is the autocovariance function:

cXX[k] = E[(Xn − µ)(Xn+k − µ)]

and µ = E[Xn].

• A simpler sufficient condition for mean ergodiciy is that

cXX[0] <∞ and

lim
N→∞

cXX[N] = 0

• Correlation ergodicity can be studied by extensions of the above

theorems. We will not require the details here.

• Unless otherwise stated, we will always assume that the signals

we encounter are both wide-sense stationary and ergodic.

Although neither of these will always be true, it will usually be

acceptable to assume so in practice.

32

Discrete-time Random Processes 3F3 - Random Processes

Example

Consider the very simple ‘d.c. level’ random process

Xn = A

where A is a random variable having the standard (i.e. mean zero,

variance=1) Gaussian distribution

f(A) = N (A|0, 1)

The mean of the random process is:

E[Xn] =

∫ ∞
−∞

xn(a)f(a)da =

∫ ∞
−∞

af(a)da = 0

Now, consider a random sample function measured from the random

process, say

xt = a0

The mean value of this particular sample function is E[a0] = a0.

Since in general a0 6= 0, the process is clearly not mean ergodic.

33

Check this using the mean ergodic theorem. The autocovariance

function is:

cXX[k] = E[(Xn − µ)(Xn+k − µ)]

= E[XnXn+k] = E[A
2
] = 1

Now

lim
N→∞

1

N

N−1∑
k=0

cXX[k] = (1×N)/N = 1 6= 0

Hence the theorem confirms our finding that the process is not

ergodic in the mean.

While this example highlights a possible pitfall in assuming

ergodicity, most of the processes we deal with will, however, be

ergodic, see examples paper for the random phase sine-wave and

the white noise processes.

Comment: Complex-valued processes.

The above theory is easily extended to complex valued processes

{Xn = XRe
n +jXIm

n }, in which case the autocorrelation function

is defined as:

rXX[k] = E[X
∗
nXn+k]

Revision: Continuous time random processes

Figure 7: Ensemble representation of a random process

• A random process is an ensemble of functions {X(t), ω}, representing
the set of all possible waveforms that we might observe for that process.

[N.B. ω is identical to the random variable α in the 3F1 notes].

ω is a random variable with its own probability distribution Pω which
determines randomly which waveform X(t, ω) is observed. ω may be
continuous- or discrete-valued.

As before, we will often omit ω and refer simply to random process
{X(t)}.

• The mean of a random process is defined as µ(t) = E[X(t)] and the
autocorrelation function as rXX [t1, t2] = E[X(t1)X(t2)]. The
properties of expectation allow us to calculate these in (at least) two
ways:

µ(t) = E[X(t1)]

=

∫
x
x fX(t)(x) dx

=

∫
ω
X(t, ω) fω(ω)dω

rXX(t1, t2) = E[X(t1)X(t2)]

=

∫
x1

∫
x2

x1x2 fX(t1),X(t2)(x1, x2) dx1dx2

=

∫
ω
X(t1, ω)X(t2, ω)fω(ω)dω

i.e. directly in terms of the density functions for X(t) or indirectly in
terms of the density function for ω.

• A wide-sense stationary (WSS) process {X(t)} is defined such that its
mean is a constant, and rXX(t1, t2) depends only upon the difference
τ = t2 − t1, i.e.

E[X(t)] = µ, rXX(τ) = E[X(t)X(t+ τ)] (9)

[Wide-sense stationarity is also referred to as ‘weak stationarity’]

• The Power Spectrum or Spectral Density of a WSS random process is
defined as the Fourier Transform of rXX(τ),

SX(ω) =

∫ ∞
−∞

rXX(τ) e
−jωτ

dτ (10)

• For an Ergodic random process we can estimate expectations by
performing time-averaging on a single sample function, e.g.

µ = E[X(t)] = lim
D→∞

1

2D

∫ +D

−D
x(t)dt

rXX(τ) = lim
D→∞

1

2D

∫ +D

−D
x(t)x(t+ τ)dt

Therefore, for ergodic random processes we can make estimates for
these quantities by integrating over some suitably large (but finite) time
interval 2D, e.g.:

E[X(t)] ≈
1

2D

∫ +D

−D
x(t)dt

rXX(τ) ≈
1

2D

∫ +D

−D
x(t)x(t+ τ)dt

where x(t) is a waveform measured at random from the process.

Section 2: Optimal Filtering

Parts of this section and Section 3. are adapted from material kindly

supplied by Prof. Peter Rayner.

• Optimal filtering is an area in which we design filters that are

optimally adapted to the statistical characteristics of a random

process. As such the area can be seen as a combination of

standard filter design for deterministic signals with the random

process theory of the previous section.

• This remarkable area was pioneered in the 1940’s by Norbert

Wiener, who designed methods for optimal estimation of a

signal measured in noise. Specifically, consider the system in the

figure below.

Figure 8: The general Wiener filtering problem

• A desired signal dn is observed in noise vn:

xn = dn + vn

• Wiener showed how to design a linear filter which would

optimally estimate dn given just the noisy observations xn and

some assumptions about the statistics of the random signal and

noise processes. This class of filters, the Wiener filter, forms

the basis of many fundamental signal processing applications.

• Typical applications include:

◦ Noise reduction e.g. for speech and music signals

◦ Prediction of future values of a signal, e.g. in finance

◦ Noise cancellation, e.g. for aircraft cockpit noise

◦ Deconvolution, e.g. removal of room acoustics

(dereverberation) or echo cancellation in telephony.

• The Wiener filter is a very powerful tool. However, it is only the

optimal linear estimator for stationary signals. The Kalman

filter offers an extension for non-stationary signals via state

space models. In cases where a linear filter is still not good

enough, non-linear filtering techniques can be adopted. See 4th

year Signal Processing and Control modules for more advanced

topics in these areas.

The Discrete-time Wiener Filter

In a minor abuse of notation, and following standard conventions,

we will refer to both random variables and their possible values in

lower-case symbols, as this should cause no ambiguity for this section

of work.

Figure 9: Wiener Filter

• In the most general case, we can filter the observed signal xn
with an Infinite impulse response (IIR) filter, having a

non-causal impulse response hp:

{hp; p = −∞, ...,−1, 0, 1, 2, ...,∞} (11)

• We filter the observed noisy signal using the filter {hp} to

obtain an estimate d̂n of the desired signal:

d̂n =
∞∑

p=−∞
hp xn−p (12)

• Since both dn and xn are drawn from random processes {dn}
and {xn}, we can only measure performance of the filter in

terms of expectations. The criterion adopted for Wiener

filtering is the mean-squared error (MSE) criterion. First,

form the error signal εn:

εn = dn − d̂n = dn −
∞∑

p=−∞
hp xn−p

The mean-squared error (MSE) is then defined as:

J = E[ε
2
n] (13)

• The Wiener filter minimises J with respect to the filter

coefficients {hp}.

Derivation of Wiener filter

The Wiener filter assumes that {xn} and {dn} are jointly wide-

sense stationary . This means that the means of both processes

are constant, and all autocorrelation functions/cross-correlation

functions (e.g. rxd[n,m]) depend only on the time differencem−n
between data points.

The expected error (13) may be minimised with respect to the

impulse response values hq. A sufficient condition for a minimum

is:

∂J

∂hq
=
∂E[ε2

n]

∂hq
= E

[
∂ε2

n

∂hq

]
= E

[
2εn

∂εn

∂hq

]
= 0

for each q ∈ {−∞, ...,−1, 0, 1, 2, ...∞}.

The term ∂εn
∂hq

is then calculated as:

∂εn

∂hq
=

∂

∂hq

dn −
∞∑

p=−∞
hp xn−p

 = −xn−q

and hence the coefficients must satisfy

E [εn xn−q] = 0; −∞ < q < +∞ (14)

This is known as the orthogonality principle, since two random

variables X and Y are termed orthogonal if

E[XY] = 0

Now, substituting for εn in (14) gives:

E [εn xn−q] = E

dn − ∞∑
p=−∞

hp xn−p

 xn−q

= E [dn xn−q]−

∞∑
p=−∞

hp E [xn−q xn−p]

= rxd[q]−
∞∑

p=−∞
hp rxx[q − p]

= 0

Hence, rearranging, the solution must satisfy

∞∑
p=−∞

hp rxx[q − p] = rxd[q], −∞ < q < +∞ (15)

This is known as the Wiener-Hopf equations.

The Wiener-Hopf equations involve an infinite number of unknowns

hq. The simplest way to solve this is in the frequency domain. First

note that the Wiener-Hopf equations can be rewritten as a discrete-

time convolution:

hq ∗ rxx[q] = rxd[q], −∞ < q < +∞ (16)

Taking discrete-time Fourier transforms (DTFT) of both sides:

H(e
jΩ

)Sx(ejΩ) = Sxd(ejΩ)

where Sxd(ejΩ), the DTFT of rxd[q], is defined as the cross-power

spectrum of d and x.

Hence, rearranging:

H(e
jΩ

) =
Sxd(ejΩ)

Sx(ejΩ)
(17)

Frequency domain Wiener filter

Mean-squared error for the optimal filter

The previous equations show how to calculate the optimal filter for

a given problem. They don’t, however, tell us how well that optimal

filter performs. This can be assessed from the mean-squared error

value of the optimal filter:

J = E[ε
2
n] = E[εn(dn −

∞∑
p=−∞

hp xn−p)]

= E[εn dn]−
∞∑

p=−∞
hpE[εn xn−p]

The expectation on the right is zero, however, for the optimal filter,

by the orthogonality condition (14), so the minimum error is:

Jmin = E[εn dn]

= E[(dn −
∞∑

p=−∞
hp xn−p) dn]

= rdd[0]−
∞∑

p=−∞
hp rxd[p]

Important Special Case: Uncorrelated Signal and Noise Processes

An important sub-class of the Wiener filter, which also gives

considerable insight into filter behaviour, can be gained by

considering the case where the desired signal process {dn} is

uncorrelated with the noise process {vn}, i.e.

rdv[k] = E[dnvn+k] = 0, −∞ < k < +∞

Consider the implications of this fact on the correlation functions

required in the Wiener-Hopf equations:

∞∑
p=−∞

hp rxx[q − p] = rxd[q], −∞ < q < +∞

1. rxd.

rxd[q] = E[xndn+q] = E[(dn + vn)dn+q] (18)

= E[dndn+q] + E[vndn+q] = rdd[q] (19)

since {dn} and {vn} are uncorrelated.

Hence, taking DTFT of both sides:

Sxd(ejΩ) = Sd(ejΩ)

2. rxx.

rxx[q] = E[xnxn+q] = E[(dn + vn)(dn+q + vn+q)]

= E[dndn+q] + E[vnvn+q] + E[dnvn+q] + E[vndn+q]

= E[dndn+q] + E[vnvn+q] = rdd[q] + rvv[q]

Hence

Sx(ejΩ) = Sd(ejΩ) + Sv(ejΩ)

Thus the Wiener filter becomes

H(e
jΩ

) =
Sd(ejΩ)

Sd(ejΩ) + Sv(ejΩ)

From this it can be seen that the behaviour of the filter is intuitively

reasonable in that at those frequencies where the noise power

spectrum Sv(ejΩ) is small, the gain of the filter tends to unity

whereas the gain tends to a small value at those frequencies where the

noise spectrum is significantly larger than the desired signal power

spectrum Sd(ejΩ).

Example: AR Process

An autoregressive process {Dn} of order 1 (see section 3.) has power

spectrum:

SD(e
jΩ

) =
σ2
e

(1− a1e−jΩ)(1− a1ejΩ)

Suppose the process is observed in zero mean white noise with

variance σ2
v, which is uncorrelated with {Dn}:

xn = dn + vn

Design the Wiener filter for estimation of dn.

Since the noise and desired signal are uncorrelated, we can use the

form of Wiener filter from the previous page. Substituting in the

various terms and rearranging, its frequency response is:

H(e
jΩ

) =
σ2
e

σ2
e + σ2

v(1− a1e−jΩ)(1− a1ejΩ)

The impulse response of the filter can be found by inverse Fourier

transforming the frequency response. This is studied in the examples

paper.

The FIR Wiener filter

Note that, in general, the Wiener filter given by equation (17) is

non-causal, and hence physically unrealisable, in that the impulse

response hp is defined for values of p less than 0. Here we consider a

practical alternative in which a causal FIR Wiener filter is developed.

In the FIR case the signal estimate is formed as

d̂n =

P−1∑
p=0

hp xn−p (20)

and we minimise, as before, the objective function

J = E[(dn − d̂n)2
]

The filter derivation proceeds as before, leading to an orthogonality

principle:

E [εn xn−q] = 0; q = 0, ..., P − 1 (21)

and Wiener-Hopf equations as follows:

P−1∑
p=0

hp rxx[q − p] = rxd[q], q = 0, 1, ..., P − 1

(22)

The above equations may be written in matrix form as:

Rxh = rxd

where:

h =

h0

h1
...

hP−1

 rxd =

rxd[0]

rxd[1]
...

rxd[P − 1]

and

Rx =

rxx[0] rxx[1] · · · rxx[P − 1]

rxx[1] rxx[0] . . . rxx[P − 2]
...

rxx[P − 1] rxx[P − 2] · · · rxx[0]

Rx is known as the correlation matrix.

Note that rxx[k] = rxx[−k] so that the correlation matrix Rx

is symmetric and has constant diagonals (a symmetric Toeplitz

matrix).

The coefficient vector can be found by matrix inversion:

h = Rx
−1

rxd (23)

This is the FIR Wiener filter and as for the general Wiener filter, it

requires a-priori knowledge of the autocorrelation matrix Rx of the

input process {xn} and the cross-correlation rxd between the input

{xn} and the desired signal process {dn}.

As before, the minimum mean-squared error is given by:

Jmin = E[εn dn]

= E[(dn −
P−1∑
p=0

hp xn−p) dn]

= rdd[0]−
P−1∑
p=0

hp rxd[p]

= rdd[0]− r
T
xdh = rdd[0]− r

T
xdRx

−1
rxd

Case Study: Audio Noise Reduction

• Consider a section of acoustic waveform (music, voice, ...) dn
that is corrupted by additive noise vn

xn = dn + vn

• We could try and noise reduce the signal using the FIR Wiener

filter.

• Assume that the section of data is wide-sense stationary and

ergodic (approx. true for a short segment around 1/40 s).

Assume also that the noise is white and uncorrelated with the

audio signal - with variance σ2
v, i.e.

rvv[k] = σ
2
vδ[k]

• The Wiener filter in this case needs (see eq. (23)):

rxx[k], Autocorrelation of noisy signal

rxd[k] = rdd[k] Autocorrelation of desired signal

[since noise uncorrelated with signal, as in eq. (19)]

• Since signal is assumed ergodic, we can estimate these

quantities:

rxx[k] ≈
1

N

N−1∑
n=0

xnxn+k

rdd[k] = rxx[k]− rvv[k] =

{
rxx[k], k 6= 0

rxx[0]− σ2
v, k = 0

[Note have to be careful that rdd[k] is still a valid

autocorrelation sequence since rxx is just an estimate.]

• Choose the filter length P , form the autocorrelation matrix and

cross-correlation vector and solve in e.g. Matlab:

h = Rx
−1

rxd

• The output looks like this, with P = 350:

• The theoretical mean-squared error is calculated as:

Jmin = rdd[0]− r
T
xdh

• We can compute this for various filter lengths, and in this

artificial scenario we can compare the theoretical error

performance with the actual mean-squared error, since we have

access to the true dn itself:

Jtrue =
1

N

N−1∑
n=0

(dn − d̂n)2

Not necessarily equal to the theoretical value since we estimated

the autocorrelation functions from finite pieces of data and

assumed stationarity of the processes.

Example: AR process

Now take as a numerical example, the exact same setup, but we

specify...

Example: Noise cancellation

Matched Filtering

• The Wiener filter shows how to extract a random signal from a

random noise environment.

• How about the (apparently) simpler task of detecting a known

deterministic signal sn, n = 0, ..., N − 1, buried in random

noise vn:

xn = sn + vn

• The technical method for doing this is known as the matched

filter

• It finds extensive application in detection of pulses in

communications data, radar and sonar data.

• To formulate the problem, first ‘vectorise’ the equation

x = s + v

s = [s0, s1, ..., sN−1]
T
, x = [x0, x1, ..., xN−1]

T

• Once again, we will design an optimal FIR filter for performing

the detection task. Suppose the filter has coefficients hm, for

m = 0, 1, ..., N − 1, then the output of the filter at time

N − 1 is:

yN−1 =

N−1∑
m=0

hmxN−1−m = h
T
x̃ = h

T
(s̃ + ṽ) = h

T
s̃+h

T
ṽ

where x̃ = [xN−1, xN−2, ..., x0]
T , etc. (‘time-reversed’

vector).

• This time, instead of minimising the mean-squared error as in

the Wiener Filter, we attempt to maximise the signal-to-noise

ratio (SNR) at the output of the filter, hence giving best

possible chance of detecting the signal sn.

• Define output SNR as:

E[|hT s̃|2]
E[|hT ṽ|2]

=
|hT s̃|2

E[|hT ṽ|2]

[since numerator is not a random quantity].

Signal output energy

• The signal component at the output is hT s̃, with energy

|hT s̃|2 = h
T
s̃s̃
T
h

• To analyse this, consider the matrix M = s̃s̃T . What are its

eigenvectors/eigenvalues ?

• Recall the definition of eigenvectors (e) and eigenvalues (λ):

Me = λe

• Try e = s̃:

Ms̃ = s̃s̃
T
s̃ = (s̃

T
s̃)s̃

Hence the unit length vector e0 = s̃/|̃s| is an eigenvector and

λ = (s̃T s̃) is the corresponding eigenvalue.

• Now, consider any vector e′ which is orthogonal to e0 (i.e.

s̃Te′ = 0):

Me
′
= s̃s̃

T
e
′
= 0

Hence e′ is also an eigenvector, but with eigenvalue λ′ = 0.

Since we can construct a set of N − 1 orthonormal (unit length

and orthogonal to each other) vectors which are orthogonal to

s̃, call these e1, e2, ..., eN−1, we have now discovered all N

eigenvectors/eigenvalues of M.

• Since the N eigenvectors form an orthonormal basis, we may

represent any filter coefficient vector h as a linear combination

of these:

h = αe0 + βe1 + γe2 + ... + ...eN−1

• Now, consider the signal output energy again:

h
T
s̃s̃
T
h = h

T
s̃s̃
T
(αe0 + βe1 + γe2 + ... + ...eN−1)

= h
T
(αs̃

T
s̃)e0, because Me0 = (s̃

T
s̃)e0

= (αe0 + βe1 + γe2 + ... + ...eN−1)
T
(αs̃

T
s̃)e0

= α
2
s̃
T
s̃

since eTi ej = δ[i− j].

Noise output energy

• Now, consider the expected noise output energy, which may be

simplified as follows:

E[|hT ṽ|2] = E[h
T
ṽṽ

T
h] = h

T
E[ṽṽ

T
]h

• We will here consider the case where the noise is white with

variance σ2
v. Then, for any time indexes i = 0, ..., N − 1 and

j = 0, ..., N − 1:

E[vivj] =

{
σ2
v, i = j

0, i 6= j

and hence

E[ṽṽ
T
] = σ

2
vI

where I is the N ×N identity matrix

[diagonal elements correspond to i = j terms and off-diagonal

to i 6= j terms].

• So, we have finally the expression for the noise output energy:

E[|hT ṽ|2] = h
T
σ

2
vIh = σ

2
vh

T
h

and once again we can expand h in terms of the eigenvectors of

M:

σ
2
vh

T
h = σ

2
v(α

2
+ β

2
+ γ

2
+ ...)

again, since eTi ej = δ[i− j]

SNR maximisation

• The SNR may now be expressed as:

|hT s̃|2

E[|hT ṽ|2]
=

α2s̃T s̃

σ2
v(α

2 + β2 + γ2 + ...)

• Clearly, scaling h by some factor ρ will not change the SNR

since numerator and denominator will both then scale by ρ2.

So, we can arbitrarily fix |h| = 1 (any other value except zero

would do, but 1 is a convenient choice) and then maximise.

• With |h| = 1 we have (α2 + β2 + γ2 + ...) = 1 and the

SNR becomes just equal to α2s̃T s̃/(σ2
v × 1).

• The largest possible value of α given that |h| = 1 corresponds

to α = 1, which implies then that β = γ = ... = 0, and

finally we have the solution as:

h
opt

= 1× e0 =
s̃

|̃s|
, since e0 =

s̃

|̃s|

i.e. the optimal filter coefficients are just the (normalised)

time-reversed signal!

• The SNR at the optimal filter setting is given by

SNR
opt

=
s̃T s̃

σ2
v

and clearly the performance depends (as expected) very much

on the energy of the signal s and the noise v.

Practical Implementation of the matched filter

• We chose a batch of data of same length as the signal s and

optimised a filter h of the same length.

• In practice we would now run this filter over a much longer

length of data x which contains s at some unknown position

and find the time at which maximum energy occurs. This is the

point at which s can be detected, and optimal thresholds can be

devised to make the decision on whether a detection of s should

be declared at that time.

• Example (like a simple square pulse radar detection problem):

sn = Rectangle pulse =

{
1, n = 0, 1, ..., T − 1

0, otherwise

• Optimal filter is the (normalised) time reversed version of sn:

h
opt
n =

{
1/
√
T , n = 0, 1, ..., T − 1

0, otherwise

• SNR achievable at detection point:

SNR
opt

=
s̃T s̃

σ2
v

=
T

σ2
v

Compare with best SNR attainable before matched filtering:

SNR =
Max signal value2

Average noise energy
=

1

σ2
v

i.e. a factor of T improvemment, which could be substantial for

long pulses T >> 1.

• See below for example inputs and outputs:

• See below for a different case where the signal is a saw-tooth

pulse:

sn = Sawtooth pulse =

{
n+ 1, n = 0, 1, ..., T − 1

0, otherwise

Section 3: Model-based signal processing

In this section some commonly used signal models for random

processes are described, and methods for their parameter estimation

are presented.

• If the physical process which generated a set of data is known or

can be well approximated, then a parametric model can be

constructed

• Careful estimation of the parameters in the model can lead to

very accurate estimates of quantities such as power spectrum.

• We will consider the autoregressive moving-average (ARMA)

class of models in which a LTI system (digital filter) is driven by

a white noise input sequence.

• If a random process {Xn} can be modelled as white noise

exciting a filter with frequency response H(ejΩ) then the

spectral density of the process is:

SX(e
jΩ

) = σ
2
w |H(e

jΩ
)|2

where σ2
w is the variance of the white noise process. In its

general form, this is known as the innovations representation of

a random process. It can be shown that any regular (i.e. not

predictable with zero error) stationary random process can be

expressed in this form.

• We will study models in which the frequency response H(ejΩ)

is that of an IIR digital filter, in particular the all-pole case

(known as an AR model).

• Parametric models need to be chosen carefully - an

inappropriate model for the data can give misleading results

• We will also study parameter estimation techniques for signal

models.

ARMA Models

A quite general representation of a stationary random process is the

autoregressive moving-average (ARMA) model:

• The ARMA(P,Q) model difference equation representation is:

xn = −
P∑
p=1

ap xn−p +

Q∑
q=0

bq wn−q (24)

where:

ap are the AR parameters,

bq are the MA parameters

and {Wn} is a zero-mean stationary white noise process with

variance, σ2
w. Typically b0 = 1 as otherwise the model is

redundantly parameterised (any arbitrary value of b0 could be

equivalently modelled by changing the value of σv)

• Clearly the ARMA model is a pole-zero IIR filter-based model

with transfer function

H(z) =
B(z)

A(z)

where:

A(z) = 1 +
P∑
p=1

apz
−p
, B(z) =

Q∑
q=0

bqz
−q

• Unless otherwise stated we will always assume that the filter is

stable, i.e. the poles (solutions of A(z) = 0) all lie within the

unit circle (we say in this case that A(z) is minimum phase).

Otherwise the autocorrelation function is undefined and the

process is technically non-stationary.

• Hence the power spectrum of the ARMA process is:

SX(e
jωT

) = σ
2
w

|B(ejωT)|2

|A(ejωT)|2

• Note that, as for standard digital filters, A(z) and B(z) may

be factorised into the poles dq and zeros cq of the system. In

which case the power spectrum can be given a geometric

interpretation (see e.g. 3F3 laboratory):

|H(e
jΩ

)| = G

∏Q
q=1 Distance from ejΩ to cq∏P
p=1 Distance from ejΩ to dp

• The ARMA model, and in particular its special case the AR

model (Q = 0), are used extensively in applications such as

speech and audio processing, time series analysis, econometrics,

computer vision (tracking), ...

The ARMA model is quite a flexible and general way to model a

stationary random process:

• The poles model well the peaks in the spectrum (sharper peaks

implies poles closer to the unit circle)

• The zeros model troughs or nulls in the power spectrum

• Highly complex power spectra can be approximated well by

large model orders P and Q

AR models

The AR model, despite being less general than the ARMA model,

is used in practice far more often, owing to the simplicity of its

mathematics and the efficient ways in which its parameters may be

estimated from data. Hence we focus on AR models from here on.

ARMA model parameter estimation in contrast requires the solution

of troublesome nonlinear equations, and is prone to local maxima in

the parameter search space. It should be noted that an AR model

of sufficiently high order P can approximate any particular ARMA

model.

The AR model is obtained in the all-pole filter case of the ARMA

model, for which Q = 0. Hence the model equations are:

xn = −
P∑
p=1

ap xn−p + wn (25)

Autocorrelation function for AR Models

The autocorrelation function rXX[r] for the AR process is:

rXX[r] = E[xnxn+r]

Substituting for xn+r from Eq. (25) gives:

rXX[r] = E

xn
−

P∑
p=1

ap xn+r−p + wn+r

= −
P∑
p=1

apE[xnxn+r−p] + E[xnwn+r]

= −
P∑
p=1

ap rXX[r − p] + rXW [r]

Note that the auto-correlation and cross-correlation satisfy the same

AR system difference equation as xn and wn (Eq. 25).

Now, let the impulse response of the system H(z) = 1
A(z) be hn,

then:

xn =
∞∑

m=−∞
hmwn−m

Then, from the linear system results of Eq. (3),

rXW [k] = rWX[−k]

= h−k ∗ rWW [−k] =
∞∑

m=−∞
h−m rWW [m− k]

[Note that we have used the results that rXY [k] = rY X[−k] and

rXX[k] = rXX[−k] for stationary processes.]

{Wn} is, however, a zero-mean white noise process, whose

autocorrelation function is:

rWW [m] = σ
2
Wδ[m]

and hence

rXW [k] = σ
2
Wh−k

Substituting this expression for rXW [k] into equation ?? gives the

so-called Yule-Walker Equations for an AR process,

rXX[r] = −
P∑
p=1

ap rXX[r − p] + σ
2
Wh−r (26)

Since the AR system is causal, all terms hk are zero for k < 0.

Now consider inputing the unit impulse δ[k] in to the AR difference

equation. It is then clear that

h0 = −
P∑
i=1

ai(h−i = 0) + 1 = 1

Hence the Yule-Walker equations simplify to:

rXX[r] +

P∑
p=1

ap rXX[r − p] =

{
σ2
W , r = 0

0, Otherwise
(27)

or in matrix form:
rXX[0] rXX[−1] . . . rXX[−P]

rXX[1] rXX[0] . . . rXX[1− P]
...

rXX[P] rXX[P − 1] . . . rXX[0]

1

a1
...

aP

=

σ2
W

0
...

0

This may be conveniently partitioned as follows:
rXX[0] rXX[−1] . . . rXX[−P]

rXX[1] rXX[0] . . . rXX[1− P]
...

rXX[P] rXX[P − 1] . . . rXX[0]

1

a1
...

aP

=

σ2
W

0
...

0

Taking the bottom P elements of the right and left hand sides:
rXX[0] rXX[−1] . . . rXX[1− P]

rXX[1] rXX[0] . . . rXX[2− P]
...

rXX[P − 1] rXX[P − 2] . . . rXX[0]

a1

a2
...

aP

= −

rXX[1]

rXX[2]
...

rXX[P]

or

Ra = −r (28)

and

σ
2
W =

[
rXX[0] rXX[−1] . . . rXX[−P]

]

1

a1

a2
...

aP

This gives a relationship between the AR coefficients, the

autocorrelation function and the noise variance terms. If we can

form an estimate of the autocorrelation function using the observed

data then (28) above may be used to solve for the AR coefficients as:

a = −R−1
r (29)

Example: AR coefficient estimation

