
Testing

Elena Punskaya, op205@cam.ac.uk

© 2012-2013 Elena Punskaya
Cambridge University Engineering Department

It is All About Trust

!2

Defects destroy the trust required for effective software
development. The customers need to be able to trust
the software. The managers need to be able to trust
reports of progress. The programmers need to be able
to trust each other. Defects destroy this trust.

Kent Beck and Cynthia Andres, Extreme Programming Explained: Embrace Change

Main Questions:
• What is Testing?
• What to Test?
• How to Test?
• When to Test?
• Who should Test?
• What are the Tools for the Job?

© 2012-2013 Elena Punskaya
Cambridge University Engineering Department

What is Testing?
• Testing is double checking!

- If you add a column of numbers one way, there are many errors that could cause your sum to be
wrong. Add the numbers two different ways, say from top and then from the bottom and the same
answer is likely to be the right answer.
!
!
!

!

!

• Many types of tests exist, what follows is just a starting point! !

• Many ways to categorise the tests, depending on one’s perspective!

!3

Finding bugs is somewhat like fishing with a net. We
use fine, small nets (unit tests) to catch the minnows,
and big, coarse nets (integration tests) to catch the
killer sharks.

Andrew Hunt and David Thomas, The Pragmatic Programmer

© 2012-2013 Elena Punskaya
Cambridge University Engineering Department

What to Test?
Let us follow the process:!

• Unit test !
- is code that exercises a small unit (module) of software separate from other units of the application
- is the foundation of all other types of testing (if parts don’t work by themselves they won’t work

together)

• Integration (component) testing!
- ok, all parts seem to be working but how do they interact with each other, does the entire

subsystem work?
- with good OO design in place should be straightforward to detect the issues
- potentially can be the largest source of bugs in a system

• Validation and verification!
- ok, I put something together, this seems to be working as my users wanted but is this what they

needed? are functional requirements met?

!4

© 2012-2013 Elena Punskaya
Cambridge University Engineering Department

Validation and Verification?

!5

© 2012-2013 Elena Punskaya
Cambridge University Engineering Department

What to Test?
• Resource exhaustion, errors, recovery !

- ok, now the system behaves correctly under ideal condition, what about real-world?
- could it run out of

‣ memory?!
‣ disk space?!
‣ CPU bandwidth?!
‣ video resolution?!
‣ network bandwidth?!
‣ etc.!

- if it has to fail, will it fail gracefully?

• Performance testing, stress testing or testing under load!
- ok, it can work under real world conditions but what if the number of users/transactions/

connections increases? is it scalable?
- you might need to simulate the load realistically

• Usability testing!
- ok, seems to work in real world but would it with real users under real conditions? this new tool “fits

our hands” but does it “fit other users’ hands”
- human factor plays important role, is it intuitively clear how to use?
- failure to meet usability requirement is the same as dividing by zero

• Test are also software - don’t forget to test them! :-)
!6

© 2012-2013 Elena Punskaya
Cambridge University Engineering Department

Profiling Tools
• Profiling tools allow to analyse software performance!

• In particular, tracking Memory Allocation throughout runtime allows to
spot memory leaks and inefficient memory use (requiring too much
memory space without a real need)!

• Tracking time required execution of program methods helps to identify
“bottlenecks” of performance that could be caused either by ineffective
programming techniques or could benefit from optimisation

!7
XCode profiling tools, https://developer.apple.com/library/ios/#documentation/Performance/Conceptual/PerformanceOverview/
InitialEvaluation/InitialEvaluation.html#//apple_ref/doc/uid/TP40001410-CH206-SW8

© 2012-2013 Elena Punskaya
Cambridge University Engineering Department

Usability Testing
• Usability Testing is should be one of the most critical parts of software

development: designing experiences!!

• Consider web search – a user wants most relevant results in the fastest
way, relevance could be measured by analysing user clicks on the result
link, but what about speed? Is 1s fast or 0.3s or 0.03s? Is it about the
actual speed or about speed’s perception by the user?!

• Usability studies help to answer those questions by using two types of
user research: quantitative (data points) and qualitative (perception)!

• Quantitative results allow to draw conclusions approximating them on to
the whole target user set, i.e. “launching a new banking website will
cause no more than 0.1% of online banking users to call the support line”!

• Qualitative results allow to capture how users feel about their experience
with the product/ service!

• Good usability studies will use both approaches

!8

© 2012-2013 Elena Punskaya
Cambridge University Engineering Department

Usability Study Design
• Method!

- define user interactions that are going to be tested, how the user is instructed and how the system
is implemented (real product/ prototype / simulator)

- define how the user feedback is captured: interviews, scoring cards
- define how user interactions are observed and analysed: video and screen capture, eye tracking

• User group (Know Your Customer!)!
- choose the user group to provide a representative set of product/ service users

‣ an app for remote access to computers (e.g. SSH client) is likely to be used by experienced computer users!
‣ a web conferencing app (e.g.WebEx) need to be easier to setup by business (non-technical) users!
‣ a call/chat client (e.g. Skype) should be easy to use by any computer user!

- segment target users by their characteristics: demographics: age, gender; level of experience...

• Results presentation – a report should include!
- conclusions based on observations of users by the specialists to identifying e.g. a common source

of confusion
- qualitative user feedback
- quantitative results: rankings/scoring by user groups (charts/tables)

!9

© 2012-2013 Elena Punskaya
Cambridge University Engineering Department

Number of Test Users
• Jacob Nielsen advocated that most effective approach is multiple

usability studies with 5 users at a time!
!

!

!

!

!

!

!

!

!

• The chart above applies to the number of users of the same kind, in
reality, if the target user set is diverse, so it’d be better to have 5 users for
each user segment

!10

http://www.useit.com/alertbox/20000319.html

© 2012-2013 Elena Punskaya
Cambridge University Engineering Department

Number of Test Users
• Laura Faulkner in “Beyond the five-user assumption: Benefits of

increased sample sizes in usability testing” showed that 5 users do not
necessarily deliver 85% problem discovery but a set of 20 was certainly
very reliable!

• In practice, the optimum number can depend on the diversity of target
users and complexity of the product

!11

382 FAULKNER

use those formulas, such as probabilities, make them im-
practical and misleading for ordinary usability practition-
ers. Although practitioners like simple directive answers
such as the 5-user assumption, the only clear answer to
valid usability testing is that the test users must be rep-
resentative of the target population. The important and
often complex issue, then, becomes defining the target
population. There are strategies that a practitioner can
employ to attain a higher accuracy rate in usability test-
ing. One would be to focus testing on users with goals
and abilities representative of the expected user popula-
tion. When fielding a product to a general population,
one should run as many users of varying experience lev-
els and abilities as possible. Designing for a diverse user
population and testing usability are complex tasks. It is
advisable to run the maximum number of participants
that schedules, budgets, and availability allow. The
mathematical benefits of adding test users should be
cited. More test users means greater confidence that the
problems that need to be fixed will be found; as is shown
in the analysis for this study, increasing the number from
5 to 10 can result in a dramatic improvement in data con-
fidence. Increasing the number tested to 20 can allow the

practitioner to approach increasing levels of certainty
that high percentages of existing usability problems have
been found in testing. In a mission-critical system, large
user sets at all experience levels should be tested. Multi-
ple usability strategies should be applied to complement
and supplement testing.

Usability test results make for strong arguments with
design teams and can have a significant impact on fielded
products. For example, in the complex intertwining of
systems and with the common practice of integrating
commercial, off-the-shelf software products into newly
developed systems, implications of software usability
problems cannot always be anticipated, even in seem-
ingly simple programs. The more powerful argument for
implementing software usability testing, then, is not that
it can be done cheaply with, say, 5 test users, but that the
implications of missing usability problems are severe
enough to warrant investment in fully valid test practices.

REFERENCES

Grosvenor, L. (1999). Software usability: Challenging the myths and
assumptions in an emerging field. Unpublished master’s thesis, Uni-
versity of Texas, Austin.

Figure 1. The effect of adding users on reducing variance in the percentage of known usability problems found. Each point
represents a single set of randomly sampled users. The horizontal lines show the mean for each group of 100.

© 2012-2013 Elena Punskaya
Cambridge University Engineering Department

Tests from Different Perspective
• “Testing Quadrant” categorises the tests according to whether they are

Business-Facing or Technology-Facing and whether they support
development process or used to critique (review and analyse the project)!
!

!

!

!

!

!

!

!
!
!

• Brian Marick introduced Testing Quadrant, it was further discussed by Lisa Crispin and Janet Gregory in “Agile Testing: A Practical Guide for
Testers and Agile Teams” and in “Continuous Delivery” by Jez Humble and David Farley

!12

© 2012-2013 Elena Punskaya
Cambridge University Engineering Department

Business-Facing tests Supporting Development
• Acceptance testing!

- testing conducted by a customer to
verify that the system meets the
acceptance criteria of the requested
application

- ideally should be written and automated
before the development starts

- ideally should be written by the
customers or users

- for developers they answer the
question: How do I know when I am
done?

- for users they answer a question: Did I
get what I wanted?

- typically should run when the system is
in a production-like mode

!13

Acceptance tests that concern the
functionality of the system are
known as Functional acceptance
tests – the distinction between
Functional and Non-Functional is
a bit blurry and often misunderstood

http://www.d80.co.uk/post/2011/03/08/Non-Functional-
Requirements-the-forgotten-overlooked-and-underestimated.aspx

© 2012-2013 Elena Punskaya
Cambridge University Engineering Department

Technology-facing tests Supporting Development
• Technology-facing tests are written and maintained exclusively by

developers!

• Usually these are unit tests, component tests (integration tests) and
deployment tests!

• Deployment tests are performed whenever one deploys the application
and check that it is installed correctly, configured correctly, able to
contact any services required and is responding

!14

© 2012-2013 Elena Punskaya
Cambridge University Engineering Department

Business-Facing tests that Critique the Project
• The tests are not just about verifying that the application meets the

specification but also about checking that the specification is correct!

• Applications are never specified perfectly in advance so there is always
room for improvement, users try things they are not supposed to try and
break them, complain about usability of most commonly performed tasks,
identify new features!

• Showcases are particularly important - show new functionality to the
customers and users as soon as possible to catch any
misunderstandings early (can be a blessing and a curse - you might have
a lot of suggestions!)!

• Exploratory testing - “the tester actively controls the design of the tests
as those tests are performed and uses information gained while testing to
design new and better tests” [James Bach]!

• Beta testing - give your application to real user, release new features to
selected groups without them even noticing

!15

© 2012-2013 Elena Punskaya
Cambridge University Engineering Department

Technology-facing tests that Critique the Project
!

• Acceptance tests may test functionality (functional acceptance tested)
but may also test other qualities of the system such as capacity, usability,
security, modifiability, availability, etc. !

• All these are qualities other than functionality go under umbrella of
nonfunctional tests although the distinction is very blurry, however, what
is important is to bother testing them!!

• It is also not necessarily fair to say that these tests are not business
facing – often they are!

!16

© 2012-2013 Elena Punskaya
Cambridge University Engineering Department

How to Test?
• Regression Tests !

- compares the output of the previous test with the previous or known values
- make sure that bugs fixed today don’t break something else - no unpleasant surprises
- can run regression tests to make sure the components function correctly, entire subsystem

functions, performance, etc.

!17

!
• Test Data

- real-world - “typical data” collected; “typical” might be a
surprise and may reveal misunderstandings in
requirements - watch out!

- synthetic - artificially generated data (not enough real-
data, need certain statistical properties, need to stress the
boundary condition)

- real-world and synthetic - expose different types of bugs

• GUI testing
- need special tools to exercise, can’t automate everything

© 2012-2013 Elena Punskaya
Cambridge University Engineering Department

Why teams Choose to Live with Defects?

• Is it possible to create BugFree software? Yes in theory but how one would
prove this?!

• How much does it cost to create BugFree software? Are costs
astronomical? !
!

• Dilemmas: !
- bugs are expensive (direct costs of fixing and indirect costs of damaged
reputation and relationship, lost time) and eliminating bugs is expensive
=> economically viable option depends on the acceptable defects level in
any particular area!
- there will always be bugs! (Unknown unknows, unexpected
circumstances, new situation)

!18

© 2012-2013 Elena Punskaya
Cambridge University Engineering Department

• Not all SOFTWARE is created equal, choose an engineering approach
accordingly

Our tests suite takes nine minutes to run (distributed
across 30-40 machines). Our code pushes take another
six minutes. Since these two steps are pipelined that
means at peak we’re pushing a new revision of the
code to the website every nine minutes. That’s 6
deploys an hour. Even at that pace we’re often batching
multiple commits into a single test/push cycle. On
average we deploy new code fifty times a day. [1]

Horses for Courses

!19

This software never crashes. It never needs to be re-
booted. This software is bug-free. It is perfect, as perfect
as human beings have achieved. Consider these stats :
the last three versions of the program – each 420,000
lines long-had just one error each. The last 11 versions
of this software had a total of 17 errors. [2]

© 2012-2013 Elena Punskaya
Cambridge University Engineering Department

When to Test?
• The sooner one finds the defect the cheaper it is to fix it (catch it the

minute it was created and it costs nothing)!

• Late testing is expensive and leaves many defects!
!

!

!

!

!

!

• Frequent testing reduces costs and defects (fix sooner and cheaply)

!20

Kent Beck and Cynthia Andres, Extreme
Programming Explained: Embrace Change

Kent Beck and Cynthia Andres, Extreme Programming Explained: Embrace Change

We want to start testing as soon
as we have code. Those tiny
minnows have a nasty habit of
becoming giant, man-eating
sharks pretty fast, and catching
a shark is quite a bit harder.

Andrew Hunt and David Thomas,  
The Pragmatic Programmer

© 2012-2013 Elena Punskaya
Cambridge University Engineering Department

Who Should Test?
• Frequent testing (difficult to have a dedicated tester) might mean

programmers themselves write the tests, i.e. the same people who make
mistakes write the tests - they need another prospective! Buddy
programmer? Think like a users?!

• Consider two prospectives: programmers and users, involve the users at
the very early stages!

• Most developers hate testing - they tend to be very gentle
(subconsciously) with their creations and tend to avoid the weak spots
intuitively.!

• Who likes testing??? !
- testing could be very tedious – given a 100 pages long test script most humans turn on the

“zombie mode” ;)

• Solution? Automate whenever possible (so all the tedious bits are done
by the machines)!!

- But someone still needs to define all test cases and implement them in the automated testing
framework

- Also, it is difficult to substitute manual testing for capturing unexpected user behaviour, the best
testers have a six sense for breaking things :)

!21

© 2012-2013 Elena Punskaya
Cambridge University Engineering Department

Automated Testing
• The goal is to reach “coverage” – cover the most practically possible

number of test cases!

• It would typically include!

• All unit tests – developers implement and commit those to the source
code repository during the development process!

• Regression tests – given the set of know inputs, does the system still
produce the same set of outputs?!

• UI testing – cover various screen flows, difficult to automate but
increasingly more and more coverage is possible!

• Probably enough for a “standard” app, but what about large distributed
services in the “Cloud”? – Test Automation Cloud!

- Salesforce.com: average 600 change lists per day
- “Test automation cloud provides accurate, complete and fast feedbacks to every change to the

system, on a per change list basis”
- Hardware: 2000 Linux Virtual Machines and 1000 Selenium Virtual Machines to run all required

tests

!22

© 2012-2013 Elena Punskaya
Cambridge University Engineering Department

Tools for the Job
• The test tools are growing and maturing rapidly, many contributed to

Open Source by big commercial vendors and many are created and
evangelised by startups, some as examples are:!

• xUnit – a unit testing framework, ported to many languages, including
JUnit (Java) and NUnit (C#)!

• KIF – “Keep it Functional” – a new iOS UI testing framework, allows to
specify user interactions for test scenarios and check app’s resulting
behaviour (which screen appeared etc.)!

- http://corner.squareup.com/2011/07/ios-integration-testing.html

• Selenium – “Automates Browsers” – allows to simulate interactions and
check results with websites!

- http://seleniumhq.org/

• Robotium – “It’s like Selenium, but for Android”!
- http://code.google.com/p/robotium/

• Static code analysers – checking for code inconsistency/inefficiency,
security etc., e.g. FxCop (for .NET)

!23

