
Software Development Methodologies

Elena Punskaya, op205@cam.ac.uk

© 2012-2013 Elena Punskaya
Cambridge University Engineering Department

Software Process
• “Analysis is discovering and describing those aspects of a software

development about which there is no choice, that is, to which the project
is already committed”!

• Design is creating a definition of how the project goals are going to be
achieved !

• Implementation is the process of writing code, typically would be
partitioned in many subprojects!

• Building is creating a “complete” version of the software, i.e. putting all
chunks of code together, including any custom configurations for target
deployment!

• Testing is about making sure that small independent parts of code work
correctly (unit tests), that all code parts work together (integration tests),
that the functionality meets requirements (acceptance), that any new
code doesn’t break the old (regression)

!2

© 2012-2013 Elena Punskaya
Cambridge University Engineering Department

Software Process
• Deployment – actual release of the software into the end user environment,

e.g. publishing the mobile app in the App Store or launching the service on
bank’s servers!
!

• Maintenance – supporting the software during its lifetime, e.g. releasing
compatibility updates when a new version of mobile OS is released or
improving performance as user base grows!

• Traditionally, 80-90% of software system Total Cost of Ownership is attributed
to maintenance. Once the system is operational, the cost of change is high
(each new release requires a new full cycle: analyse, design, implement, build,
test, deploy). Also, to achieve a better Return on Investment, the preference
is naturally to extend the existing system than develop a new one.!

• Nowadays, in some software systems (web apps), the line between
maintenance and continuous development is less clear, consider Google and
Facebook – is scaling up to hundreds of millions of users and PetaBytes of
data maintenance or new development?

!3

© 2012-2013 Elena Punskaya
Cambridge University Engineering Department

1970: The Waterfall Model
• Sequential design process, progress is flowing steadily downwards through

the phases (Royce actually suggested a number of improvements, including
iterations and prototyping

!4

I SYSTE M

I ANALYSIS

PROGRAM DESIGN

I c o o , . o

TESTING

I OPERATIONS

Figure 2. Implementation steps to develop a large computer program for delivery to a customer.

I believe in this concept, but the implementation described above is risky and invites failure. The
problem is illustrated in Figure 4. The testing phase which occurs at the end of the development cycle is the
first event for which timing, storage, input /output transfers, etc., are experienced as distinguished from
analyzed. These phenomena are not precisely analyzable. They are not the solutions to the standard partial
differential equations of mathematical physics for instance. Yet if these phenomena fail to satisfy the various
external constraints, then invariably a major redesign is required. A simple octal patch or redo of some isolated
code wil l not f ix these kinds of diff iculties. The required design changes are l ikely to be so disruptive that the
software requirements upon which the design is based and which provides the rationale for everything are
violated. Either the requirements must be modif ied, or a substantial change in the design is required. In effect
the development process has returned to the origin and one can expect up to a lO0-percent overrun in schedule
and/or costs.

One might note that there has been a skipping-over of the analysis and code phases. One cannot, of
course, produce software wi thout these steps, but generally these phases are managed wi th relative ease and
have l i tt le impact on requirements, design, and testing. In my experience there are whole departments
consumed with the analysis of orbi t mechanics, spacecraft att i tude determination, mathematical opt imizat ion
of payload activity and so forth, but when these departments have completed their di f f icul t and complex work,
the resultant program steps involvea few lines of serial arithmetic code. If in the execution of their d i f f icul t
and complex work the analysts have made a mistake, the correction is invariably implemented by a minor
change in the code with no disruptive feedback into the other development bases.

However, I believe the illustrated approach to be fundamental ly sound. The remainder of this
discussion presents five addit ional features that must be added to this basic approach to eliminate most of the
development risks.

329

“Managing the development of large computer systems”, Winston W. Royce, 1970

© 2012-2013 Elena Punskaya
Cambridge University Engineering Department

Traditional Team
• Architect: The principal designer, defines the overall architecture, module

structure and all major interfaces, usually also an expert in the
associated technology. Responsible for Specification and High Level
Design.!

• Project Manager: Responsible for scheduling/rescheduling the work,
tracking progress and ensuring that all of the process steps are properly
completed (on time, on budget).!

• Lead Programmer: Leader of a programming team. Will typically spend
30% of his/her time managing the rest of the team.!

• Programmer: Implements specific modules and often implements module
test procedures.

!5

!
• Tester: Designs test and validation

procedures for the completed
software. Tests are based on initial
specification and will focus on the
overall product, rather than the
individual modules.

Software Management 7

Team Organisation

Architect: The principal designer, defines the overall architec-
ture, module structure and all major interfaces, usually also
an expert in the associated technology.

Project Manager: Responsible for scheduling the work, track-
ing progess and ensuring that all of the process steps are
properly completed.

Lead Programmer: Leader of a programming team. Will
typically spend 30% of his/her time managing the rest of
the team.

Programmer: Implements specific modules and often imple-
ments module test procedures.

Tester: Designs test and validation procedures for the com-
pleted software. Tests are based on initial specification and
will focus on the overall product, rather than the individual
modules.

Lead Programmer
Programmer
Programmer
Programmer

Lead Programmer
Programmer
Programmer
Programmer

Project Manager Architect

Tester
Tester

When manpower is limited, one individual may perform multiple
roles but ideally they should be distinct.

6 max

© 2012-2013 Elena Punskaya
Cambridge University Engineering Department

Traditional Tools
• Famous Gantt chats in Microsoft Project shows tasks on a calendar

!6

12 Engineering Part IIA: 3F6 - Software Engineering and Design

Example: Microsoft Project

A Gantt chart shows the tasks on a calender:

A PERT diagram is a form of activity network, which emphasises
the relationships between tasks:

Must actively track progress (add today and color % task completion

Show the critical path (centre track)

© 2012-2013 Elena Punskaya
Cambridge University Engineering Department

The Waterfall Model
Advantages!

• Early clarification of system goals!

• Can charge for changes to the requirements!

• Works well with management tools!

• If it is really possible to define all the requirements in advance a viable
option!
!

Disadvantages!

• Iterations are critical to software development process (requirements are
not always understood by the customer and developer, technology and
environment are changing, etc.)!

• A lot of time is spent on system spec, then functional spec, then
programming spec, etc. getting the system absolutely right from the
beginning maybe impossible or unimportant over the system lifecycle
(“right” today is not necessarily “right” tomorrow, doing everything “right”
takes a long time)

!7

© 2012-2013 Elena Punskaya
Cambridge University Engineering Department

The Spiral Model
• Decide in advance on fixed number of iterations (engineering prototype,

pre-production prototype, production prototype, etc.)!

• Allows to manage risk – prototype bits considered “risky” by you or
customer first

!8

Spiral Model I

• Iterative development
with systematic aspects
of the waterfall mode

• Iterative incremental
refinement though each
time around spiral

© 2012-2013 Elena Punskaya
Cambridge University Engineering Department

Evolutionary Model
• In reality many modern systems “evolve” daily and the arrival of

automatic testing not only made evolutionary models possible but also
enabled a development of a new lightweight software development
methodology

!9

2 Engineering Part IIA: 3F6 - Software Engineering and Design

The Software Life Cycle

WaterFall Model

This view of the software life cycle is based on traditional engi-
neering processes. It presents a good abstract view of what is
involved but is somewhat idealistic.

Evolutionary Model

Real projects typically involve multiple iterations at each stage.
Hence, the evolutionary model is a more pragmatic view of the
software life cycle.

No provision for
errors and omis-
sions

© 2012-2013 Elena Punskaya
Cambridge University Engineering Department

Lightweight methods emerging
• In mid-90th a number of lightweight (and later known as agile) software

development methods emerged as a reaction against one cycle, big bang
regulated methods!

• Examples include Scrum, Crystal Clear, Adaptive Software Development,
Feature Driven Development, etc. !

• One of such earlier methods is Extreme Programming

!10

• In 1996, Chrysler brought Kent Beck, a
SmallTalk practitioner, as a project leader in
“C3” (Chrysler Comprehensive
Compensation System) - a project to replace
several payroll applications

• Beck noted several problems with the
development process and took the
opportunity to implement some changes
(working with other collaborators)

• In 1999, the book Extreme Programming
Explained was published to spread the ideas
(2004 - 2nd Edition with Cynthia Andres)

© 2012-2013 Elena Punskaya
Cambridge University Engineering Department

Extreme Programming (XP)
• Everything changes (requirements, business, technology, team). The

problem isn’t change but our inability to cope with it.!

• The driving factor: improve software quality and responsiveness to changing
requirements, reduce cost of change.!

• Introduces not just agile development framework but also philosophy,
values, practices and principles.!

• Although XP is new many of the practices have been around for some time,
takes “best practices” to extreme.!

• The paradigm of XP: “Stay aware. Adapt. Change”!

• Driving metaphor (customers steer the content, the team steers the project)

!11

"Driving is not about getting the car going in the right
direction. Driving is about constantly paying attention,
making a little correction this way, a little correction
that way."

Kent Beck and Cynthia Andres, Extreme Programming Explained: Embrace Change

© 2012-2013 Elena Punskaya
Cambridge University Engineering Department

XP not just a Software Development Framework
• Practices – things you do day to day, clear and objective, good starting

point but not enough (I can “correctly prune a branch” but will not be able
to “see that the whole tree should come out”)!

• Values – the roots of the things we like and don’t like about the situation
(when the developer does not want to estimate his task it’s in fear of being
accountable not due to lack of technique; he values protection more than
communication); implicit values bring purpose to practice!

• Values and practices are ocean apart – values are expressed on too high
level, anything in the name of it (1000 page document as I value
communication?); they need to be brought together (find defect, value:
learning (don’t brush it off, practice: root-cause analysis)!

• Principle bridge the gap - domain-specific guidelines

!12Kent Beck and Cynthia Andres, Extreme Programming Explained: Embrace Change

© 2012-2013 Elena Punskaya
Cambridge University Engineering Department

XP Values
• Communication – most valuable, when problems arise someone knows

the solution but that knowledge doesn’t get through to someone with the
power to make changes!

• Simplicity – most challenging, making system simple enough to
gracefully solve only today’s problem (What is the simplest thing that can
possibly work?) - hard work!!

• Feedback – being satisfied with improvement rather than expecting
instant perfection, one uses feedback to get closer and closer to the goal,
need to differentiate important feedback from any other feeedback!

• Courage – facing fear, courage to accept responsibility, to speak truth, to
take action (rather than spend time defending yourself)!

• Respect – if the team members don’t care about their work, each other or
the project nothing will help; the contributions of each person to the team
need to be respected

!13

© 2012-2013 Elena Punskaya
Cambridge University Engineering Department

XP Principles
• Humanity – people develop software and their needs have to be met !

• Economics – somebody has to pay for all this, make sure there is business
value!

• Mutual Benefit – every activity should benefit everyone concerned
(automated testing, refactoring and clean code - some times there is no
need for extensive documentation to benefit some future unknown person)!

• Self-similarity – try copying the structure of new solution into a different
context, even at different scales!

• Improvement – “Best is the enemy of good enough”!

• Diversity – teams need to bring together a variety of skills, opinions,
perspectives - a team of everyone alike is not effective but expose them and
learn from them”

!14

© 2012-2013 Elena Punskaya
Cambridge University Engineering Department

XP Principles
!

!15

!
• Reflection – “good teams don’t just do their work, they think

about how they are working and why they are working; they
analyse why they succeeded or failed; they don’t hide
mistakes”

• Flow – deliver “a steady flow of valuable software by
engaging in all the activities of development simultaneously”;
no big chunks or discrete phases

• Opportunity – problems are opportunities for change
• Redundancy - resolve difficult problems in several different

ways
• Failure – failure is not a waste if it imparts knowledge
• Quality – people need to do work they are proud of
• Baby Steps – less overhead than aborting big changes
• Accepted responsibility – responsibility cannot be assigned,

only accepted

© 2012-2013 Elena Punskaya
Cambridge University Engineering Department

Primary XP Practices
• Sit Together to “communicate with all our senses” whether it’s a chair next to

someone, conference room for problem solving or open office - physical
proximity enhances communication!

• Whole Team - include people with ALL the skills and perspectives necessary for
the project to succeed, create a sense of a “team’!

• Informative Workspace - an observer should be able to work into the team
space and get an idea of how the project is going in 15 seconds; create
“Stories” on the wall with areas for Done, This week, This Release, Future!

• Energised Work - “software development is a game of insight, and insight
comes to the prepared, rested, relaxed mind,” burning yourself out
unproductively today, or coming in sick is not good for the team in long run!

• Pair Programming (Buddy Programming) - write all production code with two
people seating at one machine to keep on track, brainstorm for refinements,
clarify the ideas (more intense and satisfying but also more tiring)!
Note how the first Primary Practices are about PEOPLE and Organising Teams,
Peopleware is much more important than Software

!16

© 2012-2013 Elena Punskaya
Cambridge University Engineering Department

Primary XP Practices
• Stories - move from “requirements” (mandatory) to stories with description

of one functionality per story (“add email button”) plus estimated required
effort - helps to make informed decisions (Do I want a Castle for 100 mln or
a flat for 100K)!

• Weekly cycle and Quarterly Planning - a meeting per week to review last
week, pick stories for the next week, subdivide into tasks for team
members to take responsibility and estimate; plan quarterly to reflect and
look at bigger picture!

• Slack - in any plan include any minor tasks that can be dropped!
Note these are about Project management

!17

© 2012-2013 Elena Punskaya
Cambridge University Engineering Department

Primary XP Practices
• Ten Minute Build – automatically build the whole system and run all of the

tests in 10 minutes; automated build is a “stress-reliever at crunch time”!

• Continuous Integration – integrate and test changes after no more than a
couple of hours!

• Test-First Programming – write a failing automated test before changing
any code (defines scope, identifies other problems, builds trust)!

• Incremental Design – constantly bring the design back into alignment
with your ever increasing understanding

!18

© 2012-2013 Elena Punskaya
Cambridge University Engineering Department

XP Practices Corollary Practices
• Real Customer Involvement!

• Incremental Deployment – gradually, no big bang!

• Team Continuity – keep effective teams together!

• Root-Cause Analysis – each time eliminate not only a defect but also its
cause!

• Shared Code – anyone on the team can improve any part of the code any
time – collective ownership!

• Code and Tests – maintain Code and Tests, generate other documents
from Code and Tests !

• Single Code Base – there is only one code stream, temporary branches
may live no longer than a few hours!

• Daily Deployment – put new software into production every night, do not
let the programmer to be out of sync!
!

!

!19

© 2012-2013 Elena Punskaya
Cambridge University Engineering Department

Agile Manifesto
• By 2001 Extreme Programming was one of several early implementations of

what will soon be knowns as agile software development methods!

• These methodologies had a lot in common, shared a lot of the same values,
principles and practices (and many of these values, principles and practices
were not new, and were discussed earlier)!

• On February 11-13, 2001, at The Lodge at Snowbird ski resort in the Wasatch
mountains of Utah, seventeen people who thought very much alike met to
talk, ski, relax, and try to find common ground and of course, to eat. In
particular, they were discussing the lightweight methods. This is how the
Manifesto for Agile Software Development emerged.!

• They also defined 12 Principles!

!20

© 2012-2013 Elena Punskaya
Cambridge University Engineering Department

Agile Manifesto

!21

http://agilemanifesto.org/

© 2012-2013 Elena Punskaya
Cambridge University Engineering Department

Agile Methodologies
Wikipedia-known agile software development methods include:!

• Agile Modeling!

• Agile Unified Process (AUP)!

• Dynamic Systems Development Method (DSDM)!

• Essential Unified Process (EssUP)!

• Exia Process (ExP)!

• Extreme Programming (XP)!

• Test Driven Development (TDD)!

• Feature Driven Development (FDD)!

• Open Unified Process (OpenUP)!

• Scrum!

• Crystal Clear!

• Velocity tracking!

• Kanban (development)!

• GSD !22

© 2012-2013 Elena Punskaya
Cambridge University Engineering Department

Continuous Integration (CI)
• Was introduced as part of Extreme Programming by Kent Beck!

• Martin Fowler is also a big advocate of CI !

• http://martinfowler.com/articles/continuousIntegration.html!

• The idea: integration is unpredictable so has to become a part of each
“baby step” - integrate and test changes after no more than a couple of
hours!

• Check in changes, complete the build, run entire test suite and only then
proceed !

• Getting this all work smoothly is obviously a lot more than that!

• Key ingredients: !
- Source repository!
- An Automated Build!
- Agreement of the Team to adopt this

!23

© 2012-2013 Elena Punskaya
Cambridge University Engineering Department

Source Repository
• Keeping track of so many files is a major effort!

• The tools for the job: Source Code Management tools called under
configuration management, version control systems, repositories!

• Source Repository is a MUST!

• The current tools of choice are still: Subversion (open source, used to be
CVS and is still used, there are newer versions such as distributed
revision control system Mercurial, Git, Bazaar) and Perforce (need to pay
for)!

• A source repository provides!
- a central place to store all source code
- a historical record of what has been done over time
- a facility to record a set of sources as a “release”
- an ability to reconstruct a project as it was at any time in the past
- a facility to create separate code branches and merge them later!

• Check in Everything (!!!) you need to create, install, run and test: code,
tests, database scripts, build and deployments scripts, etc.

!24

© 2012-2013 Elena Punskaya
Cambridge University Engineering Department

Automated Build
• Getting code turned into a running system can be a complicated task

involving compilation, moving files around, clicking through dialog boxes,
typing strange commands - waste of time and a source for mistakes - like
everything can be and must be automated!

• Automated environments are a common feature of a system: Ant for Java,
Nant or MSBuild for .NET etc.!

• Everything must be included (everyone should be able to bring a new
machine, check everything out, and have a running system on their
machine)!

• Depending on your needs you need to build different targets: with or
without test code, some components might be built as stand-alone, etc.!

• Many IDEs (integrated development environment such as Eclipse, Microsoft
Visual Studio, Xcode) have build management process - convenient for
developers but might be fragile!

• Everything should be launched using a single command line even if it is
just to say to order your IDE to do it

!25

© 2012-2013 Elena Punskaya
Cambridge University Engineering Department

CI Key practices
• Maintain a Single Source Repository - merging anything is difficult, keep

the number of branches to a minimum (temporary experiment or pre-
production prototypes bug fixes are needed of course)!

• Automate the Build - run via the command line without your IDE to
automate, treat build scripts as codebase (test and refactor), be
independent of IDE configurations, etc.!

• Make Your Build Self-Testing - a program runs but does it do the same
thing? !

• Everyone Commits To the Mainline Every Day!

• Every Commit Should Build the Mainline on an Integration Machine!

• Keep the Build Fast!

• Test in a Clone of the Production Environment!

• Make it Easy for Anyone to Get the Latest Executable!

• Everyone can see what's happening!

• Automate Deployment

!26

© 2012-2013 Elena Punskaya
Cambridge University Engineering Department

CI Software
• Basic functionality: check with your repository if any commits have

occured, if so, check out the latest version of the software, run your build
script to compile the software, run the tests to notify about the results!

• Components:!
- long-running process that executes a workflow at regular intervals!
- a view of the results, notification of success of failure and access to

the reports!
- a web server is often included to show a list of builds that run and to

show the report!

• One of the most common tools: open source Jenkins released under hte
MIT licence (previously known as Hudson)

!27

© 2012-2013 Elena Punskaya
Cambridge University Engineering Department

Jenkins (previously known as Hudson)

!28

Jez Humble and David Farley, Continuous Delivery: Reliable Software
Releases Through Build, Test, and Deployment Automation

© 2012-2013 Elena Punskaya
Cambridge University Engineering Department

Continuous Delivery
• Continuous Integration was the foundation for Continuous Delivery !

• Traditional Release Candidate - a change to the code may or may not be
releasable (or sufficient quality and functionally complete), release
candidate is identified at the end of the process, means testing is
significantly delayed, expensive and stressful

!29

Jez Humble and David Farley, Continuous Delivery: Reliable Software Releases Through Build, Test, and Deployment Automation

!
• A different approach: build the software

that is always in a production ready state
• CI? yes, but not enough
• This is achieved by constantly running a

deployment pipeline that tests whether the
deployment is in a state to be delivered

© 2012-2013 Elena Punskaya
Cambridge University Engineering Department

Deployment Pipeline

• CI mainly focuses on development teams - not enough!

• Deployment pipeline reflects the process of getting the software from
source control into the hands of the users - automated software delivery
system!

• First Stage: developers commit changes into their source repository; the
first (commit) stage compiles the code, runs the tests, creates installers;
if all ok assemble the executable code into binaries and store them in an
artifact repository!

• Second Stage: automatically triggered by successful first stage - longer
running automated acceptance tests!

• Third stage: pipeline branches to enable independent deployment of your
builds in various environments (user acceptance tests, capacity tests and
production). The testers should be able to see the release candidates
available to them and their status plus any comments and at a press of a
button deploy in a relevant environment

!30

© 2012-2013 Elena Punskaya
Cambridge University Engineering Department !31

© 2012-2013 Elena Punskaya
Cambridge University Engineering Department

Go showing which changes passed which stages

!32

© 2012-2013 Elena Punskaya
Cambridge University Engineering Department

Is it strategically important?
• Keeping the system constantly production has huge benefits!

- allows more frequent feedback from business colleagues, user, etc.!
- can release important features earlier (edge to competitors)!
- but being closer and understanding users better developers may create
something new!

- delivering better reliability and stability!
- automating repeated tasks saves time!

• BUT also comes at a cost!
- more intense collaboration between departments!
- more investment in automation !
- more effort required to deploy regularly!
!

• One needs to assess whether this is strategically important to your
particular business case

!33

© 2012-2013 Elena Punskaya
Cambridge University Engineering Department

Test Driven Development (TDD)
• Having a comprehensive test suite is essential for Continuous Deployment!

• “Test - Code - Refactor” rhymes rediscovered by Kent Beck and is related
to the Test-First Programming practice from Extreme Programming!

• Repetition of a very short development cycle: !
- write an automated test that defines new improvement/functionality and

make it fail!
- write code to introduce the improvement/functionality that passes the

test by any means necessary!
- refactor the code to acceptable standard!

• More recently has created more general interest in its own right!

• The technique is heavily emphasized by those using agile software
development methodologies!

• There might be slight variations among TDD practitioners!

• Has benefits and shortcomings so choose your strategy wisely

!34

© 2012-2013 Elena Punskaya
Cambridge University Engineering Department

TDD Benefits
• The suit of unit tests provides constant feedback that everything is still

working!

• The unit tests also act as documentation that never goes out of date,
everything else is generated from this documentation when and only
when needed - no time or effort wasted!

• Test passes and refactoring done means “it’s done, move on” !

• The developer has much better understanding what the result should be
before he/she even starts - better design!

• The developer has confidence and freedom: the code always works as
the tests are always running, the code always can be refactored so no
need to get it right immediately - better design!

• Significantly reduced debugging time

!35

© 2012-2013 Elena Punskaya
Cambridge University Engineering Department

What is a Good Unit Test?
• Runs fast (otherwise is not used often enough)!

• Is very limited in scope, tests one and one thing only (if fails, obvious
where to look for a problem)!

• Run and pass in isolation no matter where it is run (don’t depend on the
environmental set up)!

• Simulates any dependencies (no calls out to a database or filesystem)!

• Clearly reveals its purpose (anyone can look and understand what the
production code should do)

!36

© 2012-2013 Elena Punskaya
Cambridge University Engineering Department

TDD Shortcomings
• Difficult to use when full functional tests are required to determine

success, for example, UI, software that works with databases or needs
special network setup, etc!

• Both tests and code is written by the same person - blind spots might
exist!

• Might create a false sense of security and lead to fewer integration and
other tests!

• Tests become a maintenance overhead (they may have bugs, may need
refactoring, etc.)!

• High dependence on earlier written tests that become of huge
significance

!37

© 2012-2013 Elena Punskaya
Cambridge University Engineering Department

Refactoring
• Building software is not building constructions (an architect draws up

blueprints; contractors dig the foundation and build the structure; people
move in and live happily ever after) - software evolves!

• As it evolves it becomes necessary to rethink earlier decisions and to
rework portions of the code!

• Refactoring - rewriting, reworking and re-architecting the code!

• The questions are:!

• When to refactor?!
- if something looks wrong - change it if possible - there is no time like the

present; if not possible “leave the programmer’s debt” !
- the sooner the cheaper (hurts more later)!

• How to refactor? Depends on your methodology ... !
- subdivide into baby steps!
- make sure solid tests are in place!
- avoid adding new functionality while refactoring unless necessary

!38

© 2012-2013 Elena Punskaya
Cambridge University Engineering Department

Code Smells
• Code Smell - is a hint that something might be wrong !

• “Bad Smells in Code” an essay by KentBeck and MartinFowler, Chapter 3
of Refactoring by Martin Fowler

!39

!
• Among Other

“Smells”
-Duplicated code
-Long Method
-Large Class
-Long Parameter List
-Parallel Inheritance
Hierarchies

-etc.
• Pragmatic Approach:

consider on a case by
case basis; leave
‘programmer debt”

© 2012-2013 Elena Punskaya
Cambridge University Engineering Department

Behaviour Driven Development (BDD)
• BDD is a technique developed by Dan North as a response to the

problems he experience teaching TDD (where to start, what to do, what to
call, etc.)!

• http://dannorth.net/introducing-bdd/!

• “Behaviour” is a better word than “test” - different focus!
- Unit tests are behaviours that are described by sentences starting with “Should ..”
- Acceptance tests are User Stories “As a [role] I want [feature] so that [benefit]”
- Acceptance criteria in terms of scenarios: “Given [initial context], when [event

occurs], then [ensure some outcomes]”

• All must be in order of importance or business value!

• BDD provides a “ubiquitous language” for analysis process!

• Andrew Glover (the founder of the easyb BDD framework and the co-
author of "Continuous Integration", "Groovy in Action" and "Java Testing
Patterns"): “BDD is TDD done right”!

!40

© 2012-2013 Elena Punskaya
Cambridge University Engineering Department

Root-Cause Analyses - Five Whys
• When using an adaptive or agile methodology there is a need in a natural

feedback loop.!

• Kent Beck recommends the use of root-cause analyses technique Five
Whys - a bit like a child who keeps asking “Why?”!

• The idea: each time eliminate not only a defect but also its cause !

• “Five Whys” was originally introduced by Taiichi Ohno, the Father of the
Toyota Production System and the Lean Manufacturing: preserve value
with less work by eliminating waste!

• The Lean Startup 2012 takes it and develops it further by introducing
incremental proportional investment at each stage!

• http://ecorner.stanford.edu/authorMaterialInfo.html?mid=2296!

• The idea is: repeating “Why?” five times helps uncover the root of the
problem and correct it !

• Don’t let Five Whys become Five Blames!

!41

© 2012-2013 Elena Punskaya
Cambridge University Engineering Department

Five Whys in Action
• Eric Ries, ‘The Lean Startup,” the IGN (American global entertainment

website that focuses on video games, films, music and other media) story!
• http://www.ign.com/blogs/ign-tech/2011/02/17/blogs-outage-and-five-whys!

!42

Why couldn't you add or edit posts on the blogs?

Answer: The article content api posts were returning 500 errors
Proportional Investment: Allow users to edit drafts without errors,
better user experience.

Why was the content api returning 500 errors?

Answer: The bson_ext gem [a packaged Ruby application or library] was
incompatible with other gems it depends upon. Proportional
Investment: Remove the gem.

Why was the gem incompatible?

Answer: We added a new version of the gem in addition to the existing
version and the app started using it unexpectedly. Proportional
Investment: convert our app to use Bundler for gem management.

!

© 2012-2013 Elena Punskaya
Cambridge University Engineering Department

IGN Example

!43

Why did we add a new version of a gem in production without
testing?

Answer: We didn't think we needed a test in these cases. Proportional
Investment: Write a test for the api that failed in this case

Why do we add additional gems that we don't intend to use
right way?

Answer: In preparation for a code push we wanted to get all new
gems ready in the production environment. Proportional Investment:
Automate gem management and installation into Continuous
Integration and Continuous Delivery process.

Bonus Why - Why are we doing things in production on Friday
night?

Answer: Noone says we can’t and it was convenient for the developer.
Proportional Investment:

 Until we are fully CD, no production changes on the apis on Friday,
Saturday, and Sunday unless an exception has been made and
approved.

© 2012-2013 Elena Punskaya
Cambridge University Engineering Department

Benefits
• Without Five Whys one developer would be told not to do silly things and

move on!
!

• With Five Whys the whole deployment was made easier, quicker and
never ever the process will allow a developer to place gems into
production system with unintended consequences

!44

© 2012-2013 Elena Punskaya
Cambridge University Engineering Department

Software Industry Evolving: 2012 – Lean Startup
These methods are constantly evolving and other approaches keep
emerging such as very recent Lean Startup

!45

Eric Ries - The Lean Startup - Google Tech Talk, http://www.slideshare.net/startuplessonslearned/eric-ries-the-lean-startup-google-tech-talk

© 2012-2013 Elena Punskaya
Cambridge University Engineering Department

Where Next?

!46

"... I can only show you the door. You're
the one that has to walk through it ...”
!

...anything is possible. Where we go from
there is a choice I leave to you."

