
The Concepts Behind Software Design

Elena Punskaya, elena.punskaya@eng.cam.ac.uk

© 2012-2016 Elena Punskaya
Cambridge University Engineering Department

Course Objectives
• Object-Oriented Software Design

- Understand the benefits of object-oriented analysis and design, its concepts and processes
- Be familiar with formal design tools for object orientated design and analysis
- Recognise and understand some frequently used design patterns
- Be aware of the process involved in user interface design

• Software Systems and Engineering
- Appreciate the basic design issues and concepts in distributed, real time and concurrent systems
- Understand software development methodologies
- Understand the main issues and processes necessary to achieve effective software product

development

• The course is not about becoming a Code Ninja
- so we are not going to learn programming in Scala, Ruby on Rails, Go!, Java or Thumb
- but we might discuss them

• It is neither about becoming a Project Management Guru
- so we are not going to make Gantt charts and milestones
- but we could talk about priorities, teams and metrics

2

© 2012-2016 Elena Punskaya
Cambridge University Engineering Department

Additional Books
• Ian Sommerville, Software Engineering, Addison-Wesley

• Roger Pressman, Software Engineering: A Practitioner's Approach

• Fred Brooks, The Mythical Man Month, Addison-Wesley

• Martin Fowler, UML Distilled: A Brief Guide to the Standard Object
Modeling Language, Addison-Wesley

• Andrew Hunt and David Thomas, The Pragmatic Programmer

• Don Norman, Design of Everyday Things

• Kent Beck with Cynthia Andres, Extreme Programming Explained:
Embrace Change

• Donald Norman, Living with Complexity

• Jez Humble and David Farley, Continuous Delivery: Reliable Software
Releases Through Build, Test and Deployment Automation

3

© 2012-2016 Elena Punskaya
Cambridge University Engineering Department

Definitions
• Software

- is a collection of computer programs and related
data that provide the instructions for telling a
computer what to do and how to do it. (Wikipedia)

• Engineering
- the way that something has been designed and

built. (Cambridge Business English Dictionary)

• Software Engineering
- a collection of methods, techniques and tools that

could be applied to design, build and maintain the
“instructions for telling a computer what to do and
how to do it”

• What is a computer?

4

© Metro-Goldwyn-Mayer Studios Inc. All Rights Reserved.

© 2012-2016 Elena Punskaya
Cambridge University Engineering Department

Everything, Everywhere

5

• Everything is a COMPUTER (or needs one)

• A COMPUTER needs SOFTWARE

• Everything needs SOFTWARE :)
5

© 2012-2016 Elena Punskaya
Cambridge University Engineering Department

What is a Computer?
Example: Tesla Car

• Tesla iPhone App
- “The Tesla Motors app puts Tesla owners in direct  

communication with their cars anytime, anywhere”

• Tesla In-Car software
- provides functionality to control the car functions  

and to access car’s location data

• Tesla Application server
- manages the car, location and user data

• GPS Receiver chip in the car
- processes GPS signals

• Navigation Satellite
- broadcasts navigation messages

• Everything is a COMPUTER (or needs one)

6

© 2012-2016 Elena Punskaya
Cambridge University Engineering Department

Software Types
Example: Tesla Car

• Tesla iPhone App – consumer software application
- puts Tesla owners in direct communication with their cars anytime, anywhere  

• Tesla Application server – distributed concurrent software system
- aggregates and correlates user and location data

• Tesla In-Car software – operating system, provides the platform for car
applications

- provides functionality to control the car functions, including accessing car’s location data acquired
by the GPS receiver chip 

• GPS Receiver chip – implements digital signal processing software
- processes GPS signals 

• Navigation Satellite – uses system control software
- broadcasts navigation messages

7

Not all SOFTWARE is created equal, choose an engineering approach
accordingly

Our tests suite takes nine minutes to run (distributed across
30-40 machines). Our code pushes take another six minutes.
Since these two steps are pipelined that means at peak we’re
pushing a new revision of the code to the website every
nine minutes. That’s 6 deploys an hour. Even at that pace we’re
often batching multiple commits into a single test/push cycle. On
average we deploy new code fifty times a day. [1]

© 2012-2016 Elena Punskaya
Cambridge University Engineering Department

Engineering Approach: Horses for Courses

8

This software never crashes. It never needs to be re-booted.
This software is bug-free. It is perfect, as perfect as human
beings have achieved. Consider these stats : the last three
versions of the program – each 420,000 lines long-had just one
error each. The last 11 versions of this software had a total of
17 errors. [2]

Space shuttle - can there
be a simple procedure to
roll back to the previous
version in the middle of
the mission?

IMVU - one of the first
companies to pioneer
continuous deployment

© 2012-2016 Elena Punskaya
Cambridge University Engineering Department

A look back in history: Cambridge [3]
• 1948-9 Research on programming methods under

M.V. Wilkes, including:
- definition and refinement of Initial Orders (Wheeler);
- closed subroutines (Wheeler);
- building of a library of subroutines (all laboratory members interested in

programming, plus Professor D. R. Hartree).

• 6 May 1949, First logged program on EDSAC 1
(computing squares of 0-99) – World’s first stored
program computer

• 1950 First Summer School on Programme Design for
Automatic Digital Computing Machines, with 51
attendees

• 1953 Diploma in Numerical Analysis and Automatic
Computing began

- The Diploma “would include theoretical and practical work ... [and
also] instruction about the various types of computing-machine ... and
the principles of design on which they are based.”

9

EDSAC I, 1947/8 P.J.Farmer R.Piggott
M.V.Wilkes W.A.Renwick

M.V.Wilkes, 1913-2010

© 2012-2016 Elena Punskaya
Cambridge University Engineering Department

Software Engineering is Born
• The NATO Software Engineering Conferences - reached a crisis point

• 1968: “In Europe alone there are about 10,000 installed computers — this number is
increasing at a rate of anywhere from 25 per cent to 50 per cent per year. The quality
of software provided for these computers will soon affect more than a quarter of a
million analysts and programmers.” [4]

10

P. Naur and B. Randell, (Eds.). Software
Engineering: Report of a conference
sponsored by the NATO Science
Committee, Garmisch, Germany, 7-11 Oct.
1968, Brussels, Scientific Affairs Division,
NATO (1969) 231pp.

B. Randell and J.N. Buxton, (Eds.).
Software Engineering Techniques: Report
of a conference sponsored by the NATO
Science Committee, Rome, Italy, 27-31
Oct. 1969, Brussels, Scientific Affairs
Division, NATO (1970) 164pp.

© 2012-2016 Elena Punskaya
Cambridge University Engineering Department

Typical Software Project (1968)

• The need for feedback is already identified

11

Selig: “External specifications at any
level describe the software product in
terms of the items controlled by and
available to the user.

The internal design describes the
software product in terms of the
program structures which realize the
external specifications. It has to be
understood that feedback between
the design of the external and
internal specifications is an
essential part of a realistic and
effective implementation process.

Furthermore, this interaction must
begin at the earliest stage of
establishing the objectives, and
continue until completion of the
product.” [4]

© 2012-2016 Elena Punskaya
Cambridge University Engineering Department

Learning From Mistakes
• Traditionally, large scale project disasters are seen as the impetus for

developing software engineering as a discipline in order to mitigate the
risks

• Most referenced disaster projects include:
- 1991-1992, London Ambulance Service – an attempt to switch to a fully automated dispatch

system (26 Oct 1992: went live, 02 Nov 1992: switched back to the manual system)
- 1985-1987, Therac-25 – a computer-controlled radiation therapy machine massively overdosed 6

people
- 1996, Ariane 5 – the first launch of a new rocket terminated in self-destruction due to a software

bug in the control software

• More recently
- 2003, Northeast Blackout – a power outage affecting est. 55m people in USA and Canada, an early

alarm failed due to a “race condition” in the energy management system software
- 2005-2006, Sensotronic Brake Control – almost 2m Mercedes cars recalled, the system is no longer

used in production
- April, 2011 – Amazon Elastic Compute Cloud (EC2) service disruption takes down FourSquare,

Quora, Reddit
- Oct 2011 – 3 days BlackBerry services outage affecting subscribers worldwide
- Dec 2013 - Cyber Monday: IT outage leaves NatWest and RBS customers unable to use debit and

credit cards on one of the busiest online shopping days of the year following systems meltdown in
2012

12

© 2012-2016 Elena Punskaya
Cambridge University Engineering Department

Complexity of the Software Systems

13

Software entities are more complex for their size than perhaps
any other human construct... Many of the classical problems of
developing software products derive from this essential complexity
and its nonlinear increases with size.

Fred Brooks, “No Silver Bullet – Essence and Accident in Software Engineering” [5]

1986

2016

• Hardware is more capable – has more and more software

• Software needs to support more features, use cases, devices, platforms

• Open source – more libraries, languages, frameworks to choose from

• Better communication channels – distributed teams

• Time to market is much shorter

• Overall complexity increased yet more manageable as smaller pieces

© 2012-2016 Elena Punskaya
Cambridge University Engineering Department

Measuring Complexity: Lines of Code

• F-22 Raptor: 1.7m

• Radio and navigation system in the current S-class Mercedes-Benz: 20m

• IBM OS/360 (1966): 1m

• Android Mobile OS: 1m

• Facebook main site: 9.2m

• Google Chrome browser: 4.5m

• Of course, the number lines depends on the programming language and
less is not always better

14

perl -MYAML -ne '$c{$_}++for split//;END{print Dump\%c}' data.txt

All data is as reported in 2011/2012, unless specified

© 2012-2016 Elena Punskaya
Cambridge University Engineering Department

Measuring complexity: another prospective
Facebook, data as reported 2011/2012

• 800m users [8]

• 500m visit daily

• 350m on mobile

• all data is stored in a database (MySQL)

• 60 million queries per second

• 4 million row changes per second

15

0"

100"

200"

300"

400"

500"

600"

700"

800"

De
c.
04

"

M
ar
.0
5"

Ju
n.
05
"

Se
p.
05
"

De
c.
05

"

M
ar
.0
6"

Ju
n.
06
"

Se
p.
06
"

De
c.
06

"

M
ar
.0
7"

Ju
n.
07
"

Se
p.
07
"

De
c.
07

"

M
ar
.0
8"

Ju
n.
08
"

Se
p.
08
"

De
c.
08

"

M
ar
.0
9"

Ju
n.
09
"

Se
p.
09
"

De
c.
09

"

M
ar
.1
0"

Ju
n.
10
"

Se
p.
10
"

De
c.
10

"

M
ar
.1
1"

Ju
n.
11
"

m
ill
io
n&

Facebook&User&Growth&[6]&

© 2012-2016 Elena Punskaya
Cambridge University Engineering Department

Measuring complexity: another prospective
eBay, data as reported 2011/2012

• “The size of the problem”
- “The problem involves both the number of changes and the

velocity of the changes. The eBay code base consists of
hundreds of thousands of source elements (with total lines of
code in the tens of millions). The applications – which comprise
web, services, messaging, and batch style – number in the
thousands. It is common for an application to use tens of
thousands of source elements. The elements themselves are
contributed by different teams and are shared with other
applications.” [8]

16

Code Type Count

Source elements 100,000’s

Source elements per application 10,000’s

Applications 1000’s

Features per month 100’s

Source elements changed per feature 100’s (sometimes 1000’s)

Projects 1000’s

Source elements per project 10-100’s (sometimes 1000’s)

© 2012-2016 Elena Punskaya
Cambridge University Engineering Department

Ever Increasing Complexity: Better Faster Stronger
Data from 2011/2012

• Instagram: 60 photos per second;

• Tumblr: 900 posts per second

• Twitter: 8,868 Tweets per second (during
MTV Awards)

• Netflix: stream 1 billion hours in Q4 2011

• PayPal: 5 million transactions a day

• London Stock Exchange: 22.4 million
trades in Dec 2011

• Google: over 1 billion searches per day

• Youtube: over 100 million views a day on
mobile

17

Ever Increasing Complexity Software
Systems Drive World’s Economic Growth

All data is as reported in 2011/2012, unless specified

End of 20th century

• Google, PayPal - only just
founded (1998)

• Firefox/Chrome did not exist

• First smartphone with
touchscreen and iPod are
about to appear

• Social media is an unknown
term (even MySpace didn’t
exist)

• “DotCom” was still a
buzzword, no “wearables” no
“Internet of Things”

© 2012-2016 Elena Punskaya
Cambridge University Engineering Department

Software Engineering Aims
• Managing complexity and Minimizing risks

• Designing systems that
- meet requirements (“known knowns”)
- can adapt to changes (“known unknowns”)
- and withstand any unexpected use cases (“unknown unknowns”)

• Software Engineering is also about:

18

[T]here are known knowns; there are things we know we know.
We also know there are known unknowns; that is to say we
know there are some things we do not know.
But there are also unknown unknowns – there are things we
do not know we don't know.

Former United States Secretary of Defense Donald Rumsfeld

Making Better Mistakes Tomorrow!

Having Happy (Alive) Users!

© 2012-2016 Elena Punskaya
Cambridge University Engineering Department

Software Process
• “Analysis is discovering and describing those aspects of a software

development about which there is no choice, that is, to which the project
is already committed”

• Design is creating a definition of how the project goals are going to be
achieved

• Implementation is the process of writing code, typically would be
partitioned in many subprojects

• Building is creating a “complete” version of the software, i.e. putting all
chunks of code together, including any custom configurations for target
deployment

• Testing is about making sure that small independent parts of code work
correctly (unit tests), that all code parts work together (integration tests),
that the functionality meets requirements (acceptance), that any new
code doesn’t break the old (regression)

19

© 2012-2016 Elena Punskaya
Cambridge University Engineering Department

Software Process
• Deployment – actual release of the software into the end user environment,

e.g. publishing the mobile app in the App Store or launching the service on
bank’s servers

• Maintenance – supporting the software during its lifetime, e.g. releasing
compatibility updates when a new version of mobile OS is released or
improving performance as user base grows

• Traditionally, 80-90% of software system Total Cost of Ownership is attributed
to maintenance. Once the system is operational, the cost of change is high
(each new release requires a new full cycle: analyse, design, implement, build,
test, deploy). Also, to achieve a better Return on Investment, the preference
is naturally to extend the existing system than develop a new one.

• Nowadays, in some software systems (web apps), the line between
maintenance and continuous development is less clear, consider Google and
Facebook – is scaling up to hundreds of millions of users and PetaBytes of
data maintenance or new development?

20

© 2012-2016 Elena Punskaya
Cambridge University Engineering Department

Example

21
© Paragon Innovations, Inc. All Rights Reserved. 
http://www.paragoninnovations.com/ng4/guide.shtml

© 2012-2016 Elena Punskaya
Cambridge University Engineering Department

Requirements Analysis not Analysis Paralysis

• It is impossible to know in advance everything required to build the
software system. Why?

• Users don’t know 100% what it should do

• Developers don’t know 100% how users would use it

• The only 100% certainty is that things will change:
- the deployment environment change, e.g. new version of hardware/software platform
- the business requirements change, e.g. adding a new method to a payment system
- the scale changes, e.g. from 1m users to 800m

22

The hardest single part of building a software system is
deciding precisely what to build. No other part of the
conceptual work is as difficult as establishing the detailed
technical requirements, including all the interfaces to people, to
machines, and to other software systems. No other part of the
work so cripples the resulting system if done wrong.

Fred Brooks, “No Silver Bullet – Essence and Accident in Software Engineering” [5]

© 2012-2016 Elena Punskaya
Cambridge University Engineering Department

The Answer?
• Almost 50 years since The 1968 NATO

Software Engineering conference, the
issues discussed are as much present
as then

• No Silver Bullet – there is no single
answer/process/method

• but we can ...

✓Build for Change

✓Communicate Clearly

✓Test Continuously, Test Everything
- problem understanding, user behaviour assumptions,

code, integration...

✓Choose the Tools for the Job
- Object-Oriented Analysis and Design
- Extreme/Agile Programming
- Continuous Integration/Deployment
- IDEs, Source Control, UML ...

23

Grow, don’t build, software.
Fred Brooks, “No Silver Bullet – Essence and

Accident in Software Engineering”

© Warner Bros. Ent. All rights reserved.

© 2012-2016 Elena Punskaya
Cambridge University Engineering Department

References and Further Reading
1.http://timothyfitz.wordpress.com/2009/02/10/continuous-deployment-at-imvu-doing-the-impossible-fifty-times-a-day/

2.http://www.fastcompany.com/magazine/06/writestuff.html

3.http://www.cl.cam.ac.uk/conference/EDSAC99/history.html

4.http://homepages.cs.ncl.ac.uk/brian.randell/NATO/nato1968.PDF

5.http://www.cs.nott.ac.uk/~cah/G51ISS/Documents/NoSilverBullet.html

6.http://www.facebook.com/press/info.php?timeline

7.http://www.facebook.com/press/info.php?statistics

8.http://www.ebaytechblog.com/2011/12/15/rapid-development-setup-in-large-environments/

9.http://www.securityfocus.com/news/8016

10.http://aws.amazon.com/message/65648/

11.http://www.autoweek.com/article/20051216/FREE/51216010

12.http://www.computerworlduk.com/news/mobile-wireless/3310790/we-do-not-know-why-system-failed-says-blackberry-ceo/

13.http://spectrum.ieee.org/green-tech/advanced-cars/this-car-runs-on-code/0

14.http://highscalability.com/

15.http://martinfowler.com/bliki/UseCases.html

24

