
© 2012-2013 Elena Punskaya
Cambridge University Engineering Department

Object-Oriented Programming Design
and Analysis

Elena Punskaya, op205@cam.ac.uk
!1

© 2012-2013 Elena Punskaya
Cambridge University Engineering Department

Object-Oriented Programming
• First programs: “anything goes” !

• 1960s-1970s: structured programming!
- any “computable function” can be achieved by

‣ “sequencing” (ordered statements)"
‣ “selection” (conditions, e.g. if/else) and "
‣ “repetition” (iteration, e.g. for i=0, i<10, i++)"

- "Go To Statement Considered Harmful", Dijkstra
- Procedural programming: modularity

• 1967 – “objects” first formal appearance
in Simula’67!

• 1980 – Smalltalk-80: “everything is an
object” (including primitive data types
such as integers)

!2

The Squares Program
This program, written by Maurice Wilkes in June 1949, outputs the following table of squares and differences of the
numbers 1 to 100.

1 1 1
2 4 3
3 9 5

....
98 9604 195
99 9801 197

100 10000 199

The following is an annotated listing of the program.

Order bit pattern Loc Order Meaning Comment

00101 0 0001111011 0 31: T123S m[123]=A; ABC=0 The required first word
00011 0 0001010100 0 32: E84S goto 84 Jump to start

00000 0 0000000000 0 33: PS data 0 For the next decimal digit
00000 0 0000000000 0 34: PS data 0 For the current power of ten

00100 1 1100010000 0 35: P10000S data 10000<<1 The table of 16-bit
00000 0 1111101000 0 36: P1000S data 1000<<1 powers of ten
00000 0 0001100100 0 37: P100S data 100<<1
00000 0 0000001010 0 38: P10S data 10<<1
00000 0 0000000001 0 39: P1S data 1<<1

00001 0 0000000000 0 40: QS data 1<<12 00001 in MS 5 bits,
used to form digits

01011 0 0000000000 0 41: #S data 11<<12 Figure shift character
11100 0 0000101000 0 42: A40S End limit for values

placed in m[52]
10100 0 0000000000 0 43: !S data 20<<12 Space character
11000 0 0000000000 0 44: &S data 24<<12 Line feed character
10010 0 0000000000 0 45: @S data 18<<12 Carriage return character
01001 0 0000101011 0 46: O43S wr(m[43]) Write a space
01001 0 0000100001 0 47: O33S wr(m[33]) Write a digit
00000 0 0000000000 0 48: PS data 0 The number to print

11100 0 0000101110 0 49: A46S A+=m[46] Print subroutine entry point
00101 0 0001000001 0 50: T65S m[65]=A; ABC=0 Put O43S in m[65]

00101 0 0010000001 0 51: T129S m[129]=A; ABC=0 Clear A
11100 0 0000100011 0 52: A35S A+=m[35] A is next power of ten.

m[52] cycles through
A35S, A36S, A37S,
A38S and A39S

00101 0 0000100010 0 53: T34S m[34]=A; ABC=0 Store it in m[34]
00011 0 0000111101 0 54: E61S goto 61
00101 0 0000110000 0 55: T48S m[48]=A; ABC=0 Store value to be printed

11100 0 0000101111 0 56: A47S A+=m[47] Store instruction O33S
00101 0 0001000001 0 57: T65S m[65]=A; ABC=0 in m[65]
11100 0 0000100001 0 58: A33S A+=m[33] Increment the decimal digit
11100 0 0000101000 0 59: A40S A+=m[40] held in the MS 5 bits
00101 0 0000100001 0 60: T33S m[33]=A; ABC=0 of m[33]

11100 0 0000110000 0 61: A48S A+=m[48]; ABC=0 Get value to print
11100 0 0000100010 0 62: S34S A−=m[34] Subtract a power of 10
00011 0 0000110111 0 63: E55S if A>=0 goto 55 Repeat, if positive

11100 0 0000100010 0 64: A34S A+=m[34] Add back the power of 10
00000 0 0000000000 0 65: PS data 0 This is replaced by either

O43S to write a space, or
O33S to write a digit

00101 0 0000110000 0 66: T48S m[48]=A; ABC=0 Set the value to print
00101 0 0000100001 0 67: T33S m[33]=A; ABC=0 Set digit to 0
11100 0 0000110100 0 68: A52S A+=m[52] Increment the address field
11100 0 0000000100 0 69: A4S A+=m[4] of the instruction
00111 0 0000110100 0 70: U52S m[52]=A in m[52]
01100 0 0000101010 0 71: S42S A−=m[42] Compare with A40S and
11011 0 0000110011 0 72: G51S if A<0 goto 51 Repeat, if more digits

11100 0 0001110101 0 73: A117S A+=m[117] Put A35S back
00101 0 0000110100 0 74: T52S m[52]=A; ABC=0 in m[52]
00000 0 0000000000 0 75: PS data 0 To hold the return jump

instruction which is
E95S, E110S or E118S

00000 0 0000000000 0 76: PS data 0 Holds x
00000 0 0000000000 0 77: PS data 0 Holds x2

00000 0 0000000000 0 78: PS data 0 Holds previous x2

00000 0 0000000000 0 79: PS data 0 Holds ∆x2

00011 0 0001101110 0 80: E110S goto 110 Order to place in m[52]
00011 0 0001110110 0 81: E118S goto 118 Order to place in m[52]
00000 0 0001100100 0 82: P100S data 100<<1 End limit for x
00011 0 0001011111 0 83: E95S goto 95 Order to place in m[52]

01001 0 0000101001 0 84: O41S wr(m[41]) Write figure shift

00101 0 0010000001 0 85: T129S m[129]=A; ABC=0 Start of main loop
01001 0 0000101100 0 86: O44S wr(m[44]) Write line feed
01001 0 0000101101 0 87: O45S wr(m[45]) Write carriage return
11100 0 0001001100 0 88: A76S A+=m[76]; ABC=0 Get x
11100 0 0000000100 0 89: A4S A+=m[4] Increment it
00111 0 0001001100 0 90: U76S m[76]=A and store it back in x
00101 0 0000110000 0 91: T48S m[48]=A; ABC=0 Put it also in m[48]

for printing
11100 0 0001010011 0 92: A83S A+=m[83] Put return jump E95S
00101 0 0001001011 0 93: T75S m[75]=A; ABC=0 into m[75]
00011 0 0000110001 0 94: E49S goto 49 Enter the print subroutine
01001 0 0000101011 0 95: O43S wr(m[43]) Write a space
01001 0 0000101011 0 96: O43S wr(m[43]) Write a space
10101 0 0001001100 0 97: H76S R=m[76] Multiply x by
11111 0 0001001100 0 98: V76S ABC+=m[76]*RS itself and
11001 0 0001000000 0 99: L64S ABC<<8 re-position
11001 0 0000100000 0 100: L32S ABC<<7 the result
00111 0 0001001101 0 101: U77S m[77]=A Store in location for x2
01100 0 0001001110 0 102: S78S A−=m[78] Subtract the previous value
00101 0 0001001111 0 103: T79S m[79]=A; ABC=0 and store the new ∆x2
11100 0 0001001101 0 104: A77S A+=m[77] Update variable holding
00111 0 0001001110 0 105: U78S m[78]=A the previous x2

00101 0 0000110000 0 106: T48S m[48]=A; ABC=0 Put x2
in m[48] for printing

11100 0 0001010000 0 107: A80S A+=m[80] Put return jump E110S
00101 0 0001001011 0 108: T75S m[75]=A; ABC=0 into m[75]
00011 0 0000110001 0 109: E49S goto 49 Enter the print subroutine

01001 0 0000101011 0 110: O43S wr(m[43]) Write a space
01001 0 0000101011 0 111: O43S mr(m[43]) Write a space
11100 0 0001001111 0 112: A79S A+=m[79] Get ∆x2
00101 0 0000110000 0 113: T48S m[48]=A; ABC=0 Put it in m[48] for printing
11100 0 0001010001 0 114: A81S A+=m[81] Put return jump E118S
00101 0 0001001011 0 115: T75S m[75]=A; ABC=0 into m[75]
00011 0 0000110001 0 116: E49S goto 49 Enter the print subroutine

11100 0 0000100011 0 117: A35S A+=m[35] Order to place in m[52]

11100 0 0001001100 0 118: A76S A+=m[76] Get x
01100 0 0001010010 0 119: S82S A−=m[82] Subtract the end limit (=100)
11011 0 0001010101 0 120: G85S if A<0 goto 85 Repeat, if more to do
01001 0 0000101001 0 121: O41S wr(m[41]) Write figure shift
01101 0 0000000000 0 122: ZS Stop Stop the machine

The Green Door
The green door on your left was the Corn Exchange Street entrance to the Mathematical Laboratory where EDSAC was
built. By convention, the brass plaque on this door holds the engraved names of those retired members of the Laboratory
who used the door in its original location.

Links

http://www.dcs.warwick.ac.uk/~edsac/
This links to Martin Campbell-Kelly’s excellent EDSAC simulator and related documents.

http://www.cl.cam.ac.uk/U0CCL/misc/EDSAC99
This links to pages relating to the celebration, held in Cambridge in April 1999, of the 50th anniversary of the
EDSAC 1 Computer.

http://www.cl.cam.ac.uk/~mr/Edsac.html
This links to a shell based EDSAC simulator that runs on Pentium based Linux systems. It was designed to
be educational having a built-in interactive debugger allowing single step execution, the setting of breakpoints
and convenient inspection and setting of memory and register values. It can be used to explore the execution of
the programs described in this poster. This simulator also appears as a demonstration program in the Cintcode
BCPL system (http://www.cl.cam.ac.uk/~mr/BCPL.html).

http://www.cl.cam.ac.uk/~mr/edsacposter.pdf
This is a PDF version of this poster on two A4 pages.

A2 S 1 3 T S 0 A 0 L S 1 A S 4 R S 1 1 E SL ST 2 A S 8 L S 1 S 3 T S 1 2 E S 5 S S 2 AV1 S LI 0 T S 6 1 R S A S 0 I S 0 S 5 P S 1 P02 ST E6 S 0 S 2 H S T0T

T6 S 6 4 A S P S 3 O S 3 4 O S @ S & S ! S3 A4 S # S Q S 1 P 0 1 P S 0 0 1 P S 0 0 0 1S0 P 00 0 0 1 P S P S S 4 8 E S 3 2 1 TPS S 6 S 1 3 S S 5 2 U S 4 A S 5G

52 T S 7 1 1 A S 5 G S 2 4 S S 2 5 U S 4 A1 52 A S 3 3 T S 8 T S P S 4 3 A S 5 5 E S 44S 3 8S 4 A S 3 3 T S 4 A S 3 3 A S 5 6 T 7 40S AS 8S 4 T S 1 6 E S 3 T S 5 3 A S 9 2 1 T S 54

L3 S 4 6 L S 6 7 S 6 7 H S 3 4 O S 3 4 O SV E4 S 5 7 T S 3 8 S 8 4 T S 6 7 U S 4 A S 6A9 7 5S 4 O S 4 4 O S 2 1 T S 1 4 O S 5 9 E S 09A 0 P1 S 8 1 1 E S 0 1 E S P S P S P S P S P S1

S S 1 4 O S 5 8 G S 2 8 S SZ A7 S 5 3 A S 9 4 S 5 7 T S 1 8 A S 8 4 T SE6 9 SA 3 4 O S 3 4 O 9 4 E S 5 7 T S 0 8 A S 8S7 4 ST 8 7 U S 7 7 A 9 7 T S 8 7 S S 7 7 U S 2S

The corrected tape segments etched on the Tea Room glass panels

The Squares Program (excerpt) written for EDSAC, 1949

http://www.cl.cam.ac.uk/~mr10/edsacposter.pdf

http://en.wikipedia.org/wiki/Procedural_programming_languages

© 2012-2013 Elena Punskaya
Cambridge University Engineering Department

Object-Oriented Analysis and Design

• Object-Oriented Programming!
- “Object-oriented programming is a method of implementation in which programs are organized

as cooperative collections of objects ...”

• Object-Oriented Design!
- “Object-oriented design is a method of design encompassing the process of object- oriented

decomposition ...” – using object and classes to describe the system

• Object-Oriented Analysis!
- “Object-oriented analysis is a method of analysis that examines requirements from the

perspective of the classes and objects found in the vocabulary of the problem domain”

!3

In the early days of object technology, many people
were initially introduced to “OO” through
programming languages. They discovered what these
new languages could do for them and tried to practically
apply the languages to solve real-world problems. As
time passed, languages improved, development
techniques evolved, best practices emerged, and formal
object-oriented methodologies were created.. "

Object-Oriented Analysis and Design with Applications, Grady Booch, Robert A.
Maksimchuk, Michael W. Engel, Bobbi J. Young, Jim Conallen, Kelli A. Houston

© 2012-2013 Elena Punskaya
Cambridge University Engineering Department

Abstractions in Software

• Object Oriented approach allows to use a meaningful abstraction in
software design!

- Looking at a design diagram anyone can have a good guess what the Circle class represents in
the Drawing Editor or the Customer class in the Online Banking system

• Essentially, Object Orientation is the way of describing a system in terms
of meaningful abstractions (classes), relationship and interactions
between them!

• Can be used on both Conceptual and Implementation levels

!4

Geometric abstractions are powerful tools. The floor plan of a
building helps both architect and client evaluate spaces, traffic
flows, views. Contradictions and omissions become obvious.
Scale drawings of mechanical parts and stick-figure models of
molecules, although abstractions, serve the same purpose. A
geometric reality is captured in a geometric abstraction.
The reality of software is not inherently embedded in space.
Hence, it has no ready geometric representation in the way that
land has maps, silicon chips have diagrams, computers have
connectivity schematics. "

Fred Brooks, “No Silver Bullet – Essence and Accident in Software Engineering”

© 2012-2013 Elena Punskaya
Cambridge University Engineering Department

What are these?

!5

© 2012-2013 Elena Punskaya
Cambridge University Engineering Department

Abstractions
• Cars, of course!!

• However, a Fiat Punto and a Buggatti Veron are very different objects, yet
we can call both a car and be correct!

• Abstractions are generalisations that define certain key characteristics
and behaviour!

• All cars have!
- 4 wheels, at least a driver seat, an engine

• All cars can!
- move, stop, steer

• All birds have two wings and can fly, all cameras have a lens and can take
pictures ...

!6

Classification is the means whereby we order knowledge. In object- oriented
design, recognizing the sameness among things allows us to expose the
commonality within key abstractions and mechanisms and eventually leads us
to smaller applications and simpler architectures. "

Object-Oriented Analysis and Design with Applications, Grady Booch, Robert A. Maksimchuk,  
Michael W. Engel, Bobbi J. Young, Jim Conallen, Kelli A. Houston

www.morgan3wheeler.co.uk

there are always exceptions ...

© 2012-2013 Elena Punskaya
Cambridge University Engineering Department

Class
• A class represents a key concept within the system!

• It encapsulates data and behaviour!

• Object-oriented approach requires thinking about:!
- What classes of objects are present in the problem?
- What behaviour does each class have to provide?
- What should happen when an action is requested of an object?

!7

Concept Data Behaviour
bank account balance debit/credit
car speed move/stop
message text send

© 2012-2013 Elena Punskaya
Cambridge University Engineering Department

Object
• Each class can be used to create multiple instances, i.e. objects that can

contain data and behave according to the class definition!

• Bank account no.12234456 vs Bank account no.65443221!

• Credit 100 EUR, Debit 200 EUR!

• Given the same data (state) two independent instances of the same class
will behave exactly the same: e.g. crediting 100 EUR will increase the
current balance by 100 EUR!

• In production (when the software is used) a large number of objects are
created, interact with each other, destroyed if no longer needed

!8

Account no.12234456 
balance = 300 EUR

Account no.65443221 
balance = 30,000 EURAccount no.12234456 

balance = 300 EURAccount no.12234456 
balance = 300 EURAccount no.12234456 
balance = 300 EURAccount no.12234456 
balance = 300 EURAccount no.12234456 
balance = 300 EURAccount no.12234456 
balance = 300 EUR

Account no.65443221 
balance = 30,000 EURAccount no.65443221 
balance = 30,000 EURAccount no.65443221 
balance = 30,000 EURAccount no.65443221 
balance = 30,000 EURAccount no.65443221 
balance = 30,000 EUR

Bank Simple

Credit 1
00 EUR

© 2012-2013 Elena Punskaya
Cambridge University Engineering Department

Encapsulation
• Classes provide abstractions. An object can be used without any

knowledge of how it works. This allows to describe the system in
manageable concepts!
"

"

"

• All drivers know that a steering wheel makes the car go left if we turn it
left and right if we turn it right!

• Most drivers have no idea why/how it works!

• By exposing only WHAT it can do and not HOW, a designer can later
improve the steering wheel without changing how the driver interacts
with it, !

- e.g. adding power steering or adding play music controls

• In Object Orientation this approach is called Encapsulation or
Information/Data Hiding and is complimentary to Abstraction

!9

© 2012-2013 Elena Punskaya
Cambridge University Engineering Department

Data Hiding

• Suppose class Person has a Name attribute, which defines a full name!

• One way to access the Name  
would be to declare a direct  
access to the attribute (variable)!

• Consider a Change request: we sold the software in France and now need
to display the Last Name first!

• We can extend our Person class  
to have two variable and let the  
display code decide the order!

• OR we can keep Name variables 
hidden from the outside and 
allow to access via a method!

• Compare the change request:!
- in the original case we would need to modify  

code in ALL cases where the Name is shown
- in the latter case we only need to make a  

change to the implementation of the method

!10

class Person!
{!
 public String FIRST_NAME = “John”!
 public String LAST_NAME = “Smith”!
}!"
print Person.FIRST_NAME + Person.LAST_NAME

if (in France)!
 print Person.LAST_NAME +
Person.FIRST_NAME!
else!
 print Person.FIRST_NAME +
Person.LAST_NAME

class Person!
{!
 private String FIRST_NAME = “John”!
 private String LAST_NAME = “Smith”!"
 public String Name!
 {!
 if (in France)!
 return Person.LAST_NAME +
Person.FIRST_NAME!
 else!
 return Person.FIRST_NAME +
Person.LAST_NAME!
 }!
}!"
print Person.NAME

© 2012-2013 Elena Punskaya
Cambridge University Engineering Department

Encapsulation and Data Hiding

• Getters/Setters (i.e. Properties) are
used to provide controlled access to
internal data fields!
"

"

"

"

"

• They allow to implement constraints
checking, e.g. should not be null or
should contain be formatted as an
email address!

• Control concurrent access!

• Hide actual data sources (e.g.
database)

!11

Startup style development?
"We could have getters and
setters, but... Life's too
short"

a Cambridge software startup, 2012

"You only need to floss the
teeth you want to keep"

an old saying

“the point of encapsulation isn't really
about hiding the data, but in hiding
design decisions, particularly in areas
where those decisions may have to
change. The internal data representation
is one example of this, but not the only
one and not always the best one. The
protocol used to communicate with an
external data store is a good example of
encapsulation - one that's more about the
messages to that store than it is about any
data representation.”

Martin Fowler, http://martinfowler.com/bliki/GetterEradicator.html

class Person!
{!
 private String email;!
 public String getEmail { return email;
}!
 public setEmail(String newEmail)!
 {!
 if ((newEmail != null) &&!
 (newEmail.contains(‘@’))!
 {!
 email = newEmail;!
 }!
}

© 2012-2013 Elena Punskaya
Cambridge University Engineering Department

Inheritance
• Classes can be related!

- Superclass AKA base class (parent) can be extended/inherited from
- Subclass (child) can be extending/deriving/inheriting from

• Each Subclass can hold all the data and perform all the actions of the
Superclass!

• Subclass, however, can also !
- hold additional data
- perform new actions
- and/or perform original actions differently

• Example: !
- to draw a circle requires to know a point of origin and the radius
- to draw a triangle requires us know know coordinates of its vertexes
- both can have a fill colour

!12

superclass

subclass

subclass

extend

extend

© 2012-2013 Elena Punskaya
Cambridge University Engineering Department

Polymorphism
• Class inheritance hierarchy allows us to choose the level of abstraction

at which we interact with an object:!
- to calculate how much money is in the bank in total, the system needs only one piece of data - the

current balance, every account will have the balance and for these purposed there is no difference
if it’s a savings account or a current account

- however, the way the balance calculated could be very different (including the rules about interest)
- Polymorphism allows us to request the same action from objects yet allow for it to be executed in

different ways

• Why is it useful? Extensibility! Compare!
"

"

"

"

• to

!13

foreach CurrentAccount in Bank!
{!
 TotalMoney = TotalMoney + CurrentAccount.balance()!
}!
foreach SavingsAccount in Bank!
{!
 TotalMoney = TotalMoney + SavingsAccount.balance()!
}!
foreach SuperHighInterestAccount in Bank!
{!
 TotalMoney = TotalMoney +
SuperHighInterestAccount.balance()!
}

foreach Account in Bank!
{!
 TotalMoney = TotalMoney + Account.balance()!
}

© 2012-2013 Elena Punskaya
Cambridge University Engineering Department

Polymorphism and Inheritance
• Polymorphism separates the declaration of the functionality from

specifics of its implementation!

• Polymorphism is one of the key concept of Object Orientation!

• Requires a principally different view on the system!

• Identifying good key Classes and Inheritance Hierarchy is not simple!
"

"

"

"

"

"

• Inheritance “IS A” relationship – Subclass “IS A” Superclass!
- Coffee IS a Drink, Car IS a Vehicle

!14

Engine, Window, Wheel are NOT Cars

A new quality/feature does NOT equal a new class
Furthermore, Fast, Red, Expensive are Values not Attributes,
where the Attributes could actually be Speed, Colour, Price

© 2012-2013 Elena Punskaya
Cambridge University Engineering Department

Abstract Classes
• In our previous example, we used

Triangle and Circle classes that extend
the Shape class!

• In our system, Shape is a conceptual
class, i.e. we will never have an actual
object which is just a Shape, we will have
either a Circle or Triangle!

• This makes Shape class Abstract – a
class that can not be instantiated!

• Abstract classes are a high level
“blueprints” for Objects in the system,
but to actually make Objects we would
need some “concrete” classes!

• Abstract classes capture the higher level
view of the system

!15

© 2012-2013 Elena Punskaya
Cambridge University Engineering Department

Interfaces
• A purely abstract class that defines only behaviour (not data) is called an

Interface!

• All WaterCrafts can float on water, but only a Submarine can go under
water!

• Interfaces help to add specific behaviour to classes!

• Typically, a class can only extend one superclass but it can and often will
“implement” multiple interfaces

!16

© 2012-2013 Elena Punskaya
Cambridge University Engineering Department

Object Orientation Summary
• Object Oriented approach allows us to understand the requirements and

design a solution on the conceptual level!

• It allows us to design and build extensible solutions, addressing the key
challenge of software engineering – building for change!

• To achieve this it offers us encapsulation, inheritance, polymorphism!

• Terminology!
- Object is an Instance of a Class
- Class, Subclass, Superclass
- Inheritance, Polymorphism
- Abstract Classes, Interfaces

• It allows us to communicate ideas and concepts in a clear consistent way
to all team members!

• It works across all stages of the software development process from
Analysis to Maintenance via Design and Implementation

!17

