Object-Oriented Programming Design
and Analysis

Elena Punskaya, op205@cam.ac.uk
© 2012-2013 Elena Punskaya 1

Cambridge University Engineering Department

e First programs: “anything goes”

e 1960s-1970s: structured programming
- any “computable function” can be achieved by

» “sequencing” (ordered statements)

> “selection” (conditions, e.g. if/else) and
> “repetition” (iteration, e.g. for i=0, i<10, i++)

- "Go To Statement Considered Harmful", Dijkstra
- Procedural programming: modularity

Procedural
procedure
record
module

procedure call

e 1967 — “objects” first formal appearance
in Simula’67

e 1980 — Smalltalk-80: “everything is an
object” (including primitive data types
such as integers)

Object-oriented
method
object
class

message

http://en.wikipedia.org/wiki/Procedural_programming_languages

Order bit pattern

00101
00011

00000
00000

00100
00000
00000
00000
00000

00001

01011
11100

10100
11000
10010
01001
01001
00000

11100
00101

00101
11100

00101
00011
00101

11100
00101
11100
11100
00101

11100
11100
00011

11100
00000

00101
00101
11100
11100
00111
01100
11011

11100
00101
00000

0

0001111011
0001010100

0000000000
0000000000

1100010000
1111101000
0001100100
0000001010
0000000001

0000000000

0000000000
0000101000

0000000000
0000000000
0000000000
0000101011
0000100001
0000000000

0000101110
0001000001

0010000001
0000100011

0000100010
0000111101
0000110000

0000101111
0001000001
0000100001
0000101000
0000100001

0000110000
0000100010
0000110111

0000100010
0000000000

0000110000
0000100001
0000110100
0000000100
0000110100
0000101010
0000110011

0001110101
0000110100
0000000000

o o

[eNeRoNoReo]

[oNeoReNoNo o)

o oo o o

[eloNeNoNe]

o oo

[oNeReoNoReoNa] oo

o oo

Order

T123S
E84S

PS
PS

P10000S
P1000S
P100S
P10S
Pis

Qs

#3
A40S

'S
&S
@S
0438
033s
PS

A46S
T65S

T129S
A35S

T34S
E61S
T48S

A4T7S
T65S
A338
A408
T33S

A48S
S$34S
EB58

A343
PS

T48S
T33S
A528
A4S

U528
S428
G518

A117S
T528
PS

Meaning

m[123]=A; ABC=0
goto 84

data 0
data O

data 10000<<1
data 1000<<1
data 100<<1
data 10<<1
data 1<<1

data 1<<12

data 11<<12

data 20<<12
data 24<<12
data 18<<12
wr (m[43])
wr (m[33])
data 0

A+=n[46]
m[65]=A; ABC=0

m[129]=A; ABC=0
A+=m[35]

m[34]=A; ABC=0
goto 61
m[48]=A; ABC=0

A+=m [47]
m[65]=A; ABC=0
A+=m[33]
A+=m [40]
m[33]=A; ABC=0

A+=m[48]; ABC=0
A-=m[34]
if A>=0 goto 55

A+=m[34]
data 0

m[48]=A; ABC=0
m[33]=A; ABC=0
A+=m[52]
A+=m[4]
m[52]=A
A-=m[42]
if A<O goto 51

A+=m [117]
m[52]=A; ABC=0
data O

Comment

The required first word
Jump to start

For the next decimal digit
For the current power of ten

The table of 16-bit
powers of ten

00001 in MS 5 bits,
used to form digits

Figure shift character

End limit for values
placed in m[52]

Space character

Line feed character

Carriage return character

Werite a space

Write a digit

The number to print

Print subroutine entry point
Put 043S in m [65]

Clear A

A is next power of ten.
m [52] cycles through
A35S, A36S, A37S,
A38S and A39S

Store it in m [34]

Store value to be printed

Store instruction 033S
in m[65]

Increment the decimal digit
held in the MS 5 bits
of m[33]

Get value to print
Subtract a power of 10
Repeat, if positive

Add back the power of 10

This is replaced by either
043S to write a space, or
033S to write a digit

Set the value to print

Set digit to 0

Increment the address field
of the instruction
in m[52]

Compare with A40S and

Repeat, if more digits

Put A35S back
in m[52]

To hold the return jump
instruction which is
E95S, E110S or E118S

The Squares Program (excerpt) written for EDSAC, 1949
http://www.cl.cam.ac.uk/~mr10/edsacposter.pdf

© 2012-2013 Elena Punskaya 2
Cambridge University Engineering Department

In the early days of object technology, many people
were initially introduced to “O0” through BJECT—ORIENTED
programming languages. They discovered what these Qfﬁf‘flﬁﬁ\&%i@
new languages could do for them and tried to practically -an. ‘
apply the languages to solve real-world problems. As I —

I JIM CONALLEN, KELLI A. HOUSTON

time passed, languages improved, development
techniques evolved, best practices emerged, and formal —_——
object-oriented methodologies were created.. S

BIO0ICH
JACOBSOH!

Object-Oriented Analysis and Design with Applications, Grady Booch, Robert A. AUMBAUGK
Maksimchuk, Michael W. Engel, Bobbi J. Young, Jim Conallen, Kelli A. Houston R

oisoN-wEsLEY

e Object-Oriented Programming

- “Object-oriented programming is a method of implementation in which programs are organized
as cooperative collections of objects ...”

e Object-Oriented Design

- “Object-oriented design is a method of design encompassing the process of object- oriented
decomposition ...” — using object and classes to describe the system

e Object-Oriented Analysis

- “Object-oriented analysis is a method of analysis that examines requirements from the
perspective of the classes and objects found in the vocabulary of the problem domain”

© 2012-2013 Elena Punskaya 3
Cambridge University Engineering Department

Geometric abstractions are powerful tools. The floor plan of a
building helps both architect and client evaluate spaces, traffic
flows, views. Contradictions and omissions become obvious.
Scale drawings of mechanical parts and stick-figure models of
molecules, although abstractions, serve the same purpose. A
geometric reality is captured in a geometric abstraction.

The reality of software is not inherently embedded in space.

|THE

Hence, it has no ready geometric representation in the way that Sl ‘
land has maps, silicon chips have diagrams, computers have \" YTl '\”C\ E‘
connectivity schematics. 5 MAN-MONTH

Fred Brooks, “No Silver Bullet — Essence and Accident in Software Engineering”

e Object Oriented approach allows to use a meaningful abstraction in

software design

- Looking at a design diagram anyone can have a good guess what the Circle class represents in
the Drawing Editor or the Customer class in the Online Banking system

e Essentially, Object Orientation is the way of describing a system in terms
of meaningful abstractions (classes), relationship and interactions
between them

e Can be used on both Conceptual and Implementation levels

© 2012-2013 Elena Punskaya 4
Cambridge University Engineering Department

7117 unl77

© 2012-2013 Elena Punskaya 5
Cambridge University Engineering Department

e Cars, of course!

e However, a Fiat Punto and a Buggatti Veron are very different objects, yet
we can call both a car and be correct

* Abstractions are generalisations that define certain key characteristics
and behaviour

there are always exceptions ...

e All cars have
- 4 wheels, at least a driver seat, an engine

e All cars can
- move, stop, steer

e All birds have two wings and can fly, all cameras have a lens and can take
pictures ...

Classification is the means whereby we order knowledge. In object- oriented
design, recognizing the sameness among things allows us to expose the
commonality within key abstractions and mechanisms and eventually leads us
to smaller applications and simpler architectures.

Object-Oriented Analysis and Design with Applications, Grady Booch, Robert A. Maksimchuk,
Michael W. Engel, Bobbi J. Young, Jim Conallen, Kelli A. Houston

© 2012-2013 Elena Punskaya 6
Cambridge University Engineering Department

e A class represents a key concept within the system
* |t encapsulates data and behaviour

e Object-oriented approach requires thinking about:
- What classes of objects are present in the problem?
- What behaviour does each class have to provide?
- What should happen when an action is requested of an object?

Concept Data Behaviour ‘
bank account |balance debit/credit llass
car speed move/stop data
message text send behaviouyr
[Bank Accoant Zay ‘ Meggaqe
™ speed beat
credit move send 2
é’ror

© 2012-2013 Elena Punskaya
Cambridge University Engineering Department

e Each class can be used to create multiple instances, i.e. objects that can
contain data and behave according to the class definition

e Bank account no.72234456 vs Bank account no.65443221
e Credit 100 EUR, Debit 200 EUR

e Given the same data (state) two independent instances of the same class
will behave exactly the same: e.g. crediting 100 EUR will increase the
current balance by 100 EUR

e In production (when the software is used) a large number of objects are
created, interact with each other, destroyed if no longer needed

Account n0.65443221
balance = 30,000 EUR

Account no.12234456
balance = 300 EUR

© 2012-2013 Elena Punskaya 8
Cambridge University Engineering Department

e Classes provide abstractions. An object can be used without any
knowledge of how it works. This allows to describe the system in
manageable concepts

e All drivers know that a steering wheel makes the car go left if we turn it
left and right if we turn it right

e Most drivers have no idea why/how it works

e By exposing only WHAT it can do and not HOW, a designer can later
improve the steering wheel without changing how the driver interacts
with it,

- e.g. adding power steering or adding play music controls

* In Object Orientation this approach is called Encapsulation or
Information/Data Hiding and is complimentary to Abstraction

© 2012-2013 Elena Punskaya
Cambridge University Engineering Department

e Suppose class Person has a Name attribute, which defines a full name

e One way to access the Name
would be to declare a direct
access to the attribute (variable)

class Person

{
public String FIRST NAME = “John"”
public String LAST NAME = “Smith”

}

print Person.FIRST NAME + Person.LAST NAME

e Consider a Change request: we sold the software in France and now need

to display the Last Name first

e We can extend our Person class
to have two variable and let the
display code decide the order

* OR we can keep Name variables
hidden from the outside and
allow to access via a method

e Compare the change request:

- in the original case we would need to modify
code in ALL cases where the Name is shown

- in the latter case we only need to make a
change to the implementation of the method

if (in France)

print Person.LAST NAME +
Person.FIRST NAME
else

print Person.FIRST NAME +
Person.LAST NAME

class Person

{
private String FIRST NAME = “John”
private String LAST NAME = “Smith”

public String Name
{
if (in France)
return Person.LAST NAME +
Person.FIRST NAME
else
return Person.FIRST NAME +
Person.LAST NAME
}
}

print Person.NAME
© 2012-2013 Elena Punskaya
Cambridge University Engineering Department

10

o Getters/Setters (i.e. Properties) are

used to provide controlled access to

internal data fields

class Person

{

}

private String email;
public String getEmail { return email;

public setEmail (String newEmail)

{

if ((newEmail != null) &&
(newEmail.contains(‘@’))

{

email = newEmail;

}

* They allow to implement constraints
checking, e.g. should not be null or
should contain be formatted as an
email address

e Control concurrent access

e Hide actual data sources (e.g.
database)

Startup style development?
"We could have getters and
Setters, but... Life's too
short”

a Cambridge software startup, 2012

"You only need to floss the
teeth you want to keep"

an old saying

‘the point of encapsulation isn't really
about hiding the data, but in hiding
design decisions, particularly in areas
where those decisions may have to
change. The internal data representation
IS one example of this, but not the only
one and not always the best one. The
protocol used to communicate with an
external data store is a good example of
encapsulation - one that's more about the
messages to that store than it is about any

data representation.”
Martin Fowler, http://martinfowler.com/bliki/GetterEradicator.html|

© 2012-2013 Elena Punskaya
Cambridge University Engineering Department

11

e Classes can be related
- Superclass AKA base class (parent) can be extended/inherited from
- Subclass (child) can be extending/deriving/inheriting from

e Each Subclass can hold all the data and perform all the actions of the
Superclass

e Subclass, however, can also
- hold additional data
- perform new actions
- and/or perform original actions differently

e Example:
- to draw a circle requires to know a point of origin and the radius
- to draw a triangle requires us know know coordinates of its vertexes
- both can have a fill colour

‘Triavvqle
extend coTners subclass
fillCcoloar) | Zile ‘]
extend centre subclass
superclass g
vadius

© 2012-2013 Elena Punskaya 12
Cambridge University Engineering Department

Polymorphism

e Class inheritance hierarchy allows us to choose the level of abstraction

at

which we interact with an object:

- to calculate how much money is in the bank in total, the system needs only one piece of data - the
current balance, every account will have the balance and for these purposed there is no difference

if it's a savings account or a current account

- however, the way the balance calculated could be very different (including the rules about interest)
- Polymorphism allows us to request the same action from objects yet allow for it to be executed in

different ways

e Why is it useful? Extensibility! Compare

* to

foreach CurrentAccount in Bank

{

TotalMoney = TotalMoney + CurrentAccount.balance()
}

foreach SavingsAccount in Bank

{

TotalMoney = TotalMoney + SavingsAccount.balance()

}

foreach SuperHighInterestAccount in Bank
{

TotalMoney = TotalMoney +
SuperHighInterestAccount.balance()

}

Sarerﬂiqh\w%eres’mccww’r

Account

foreach Account in Bank

{

TotalMoney = TotalMoney + Account.balance()

}

balance \ 54VlV\¢14ACCOuV|\' IJ
CavventAccount J

© 2012-2013 Elena Punskaya 13
Cambridge University Engineering Department

Polymorphism and Inheritance

e Polymorphism separates the declaration of the functionality from
specifics of its implementation

e Polymorphism is one of the key concept of Object Orientation
e Requires a principally different view on the system

 Identifying good key Classes and Inheritance Hierarchy is not simple

: A new quality/feature does NOT equal a new class
Furthermore, Fast, Red, Expensive are Values not Attributes,

where the Attributes could actually be Speed, Colour, Price
Engine, Window, Wheel are NOT Cars

e Inheritance “IS A” relationship — Subclass “IS A” Superclass
- Coffee IS a Drink, Car IS a Vehicle

© 2012-2013 Elena Punskaya 14
Cambridge University Engineering Department

e |[n our previous example, we used

Triangle and Circle classes that extend [Trange
corneys
the Shape class i 4/}
* In our system, Shape is a conceptual fillCeoloir) Jb\ Zirele)
class, i.e. we will never have an actual cev:\frve J
object which is just a Shape, we will have radius

either a Circle or Triangle

* This makes Shape class Abstract — a
class that can not be instantiated

e Abstract classes are a high level
“blueprints” for Objects in the system, i
but to actually make Objects we would L

1 7y AW'&V\Q
need some “concrete” classes o] |
e Abstract classes capture the higher level Q\, F‘q‘*’fme*j

view of the system

© 2012-2013 Elena Punskaya 15
Cambridge University Engineering Department

e A purely abstract class that defines only behaviour (not data) is called an

Interface

o All WaterCrafts can float on water, but only a Submarine can go under

water

 Interfaces help to add specific behaviour to classes

e Typically, a class can only extend one superclass but it can and often will

“implement” multiple interfaces

Submevsible

dive

Waterlratt

Submavrine

float

Ol Tankeyr

Cmiseslnir

© 2012-2013 Elena Punskaya 16
Cambridge University Engineering Department

e Object Oriented approach allows us to understand the requirements and
design a solution on the conceptual level

* |t allows us to design and build extensible solutions, addressing the key
challenge of software engineering — building for change

e To achieve this it offers us encapsulation, inheritance, polymorphism

 Terminology
- Object is an Instance of a Class
- Class, Subclass, Superclass
- Inheritance, Polymorphism
- Abstract Classes, Interfaces

* It allows us to communicate ideas and concepts in a clear consistent way
to all team members

* |t works across all stages of the software development process from
Analysis to Maintenance via Design and Implementation

© 2012-2013 Elena Punskaya 17
Cambridge University Engineering Department

