
Formal Tools: introduction to UML

Elena Punskaya, op205@cam.ac.uk

© 2012-2013 Elena Punskaya
Cambridge University Engineering Department

Diagrams are Useful
• Can help you win a cocktail making contest!

!2

source: The Pragmatic Programmer, Andrew Hunt and David Thomas

© 2012-2013 Elena Punskaya
Cambridge University Engineering Department

Unified Modelling Language (UML)
• UML is a formal graphical language comprising a set of diagrams for

describing software systems.!

• It is used for designing, documenting and communicating various views
of the software architecture and program behaviour.!

• These different views of the system can be used at varying scales,
presenting the key information and suppressing unimportant detail as
desired.

!3source: Wikipedia

© 2012-2013 Elena Punskaya
Cambridge University Engineering Department

Brief History
• UML evolved from notations used in three earlier rival approaches

independently developed between 1989 and 1994.!
- Booch method
- Object Oriented Software Engineering
- Object Modelling Technique

• All three of them (‘three amigos’) got involved in Rational Software – the
company that produced a development framework (tools, processes and
services)!

• UML was developed as the notation for Rational Unified Process (RUP)
and was released by the Object Management Group, a consortium that
was setup to establish Object-Oriented standards and was founded by
the likes of DEC, HP, IBM, Microsoft, Oracle, and Texas Instruments.!

• Complete version of UML (V1.1) was released in 1997 and has been since
managed by OMG!

• Current version is 2.4.1 (released Aug 2011)!

• “In Process” version 2.5 (released Oct 2012)

!4

© 2012-2013 Elena Punskaya
Cambridge University Engineering Department

UML Diagrams and Modes
• To describe a system we need to communicate !

- structures: items, and how they are connected !
- behaviour: how items interact!

• In UML, structures are described by Class Diagrams!

• Class diagrams describe the software architecture of the system by
specifying what classes are present in the system, and their relationships!

• Behaviour diagrams show interactions between Objects, most commonly
as Sequence and Communication Diagrams!

• There are many more types of diagrams but these 3 types are the most
practical ones!

• Martin Fowler observes that UML can be used “AsSketch”, “AsBlueprint”
and “AsProgrammingLanguage” with “AsSketch” being the most popular
mode!

‣ http://martinfowler.com/bliki/UmlMode.html"

• The key property of using “UmlAsSketch” is communicating parts of the
system in a group of people

!5

© 2012-2013 Elena Punskaya
Cambridge University Engineering Department

State of the Art
• 14 types are defined in UML 2.2

!6

source: Wikipedia

© 2012-2013 Elena Punskaya
Cambridge University Engineering Department

Class Diagram
• These show the classes in a software system, their attributes and

operations and their relationships!
"

"

"

"

• This diagram says the following!

• The system consists of a Bank that manages “0 or more” Accounts!

• Each Account can be owned by 1 Person and each Person can own “1 or
more” Accounts!

• An Account has account number and can calculate interest!

• A Person has a name and can be contacted

!7

© 2012-2013 Elena Punskaya
Cambridge University Engineering Department

Class Diagrams
• Each class is represented by a

box split into three sections!
- name
- attributes
- operations/methods

• The visibility of the attribute
or method is noted by!

- “+” for public, i.e. accessible by any
other object

- “-” for private, i.e. internally used
attributes and methods

• Mostly only public features of
the class are useful to
represent as they define
interactions and relationships
with other classes

!8

© 2012-2013 Elena Punskaya
Cambridge University Engineering Department

Point of View
• In design and communication of ideas the right level of abstraction

should be used in order to keep diagrams useful!
"

"

"

"

"

"

"

"

• It is common to drop the visibility indicator and assume that all shown
attributes and methods are public!

• Omitting any methods/attributes all together allows to focus on class
relationships

!9

higher abstraction

= Bank has “0 or more” Customers

= Bank manages “0 or more”
Accounts. Each Account is
owned by 1 Person and
each Person can own “1 or
more” Accounts

© 2012-2013 Elena Punskaya
Cambridge University Engineering Department

Class Relationships
• Objects will often contain references (connections) to other objects. For

example, a VideoFrame might contain a reference to a Time object rather
than just an int to represent the timestamp !

• This could be shown in a class definition!
"

"

• However, more usefully, it maybe shown as an association

!10

© 2012-2013 Elena Punskaya
Cambridge University Engineering Department

Association
"

"

"

"

"

"

"

• The line shows an association between VideoFrame and Time, which is!
- directional: a VideoFrame knows what its timestamp is but the Time object doesn't know which

VideoFrame it linked to (indeed not all Time objects do belong to VideoFrames)
- meaningful: a name for the role that the Time object plays within VideoFrame, in this case

"timestamp"
- constrained: a number defines the multiplicity/cardinality of the relationship, i.e. stating how many

Time objects a VideoFrame can be in this relationship at the same time, in this case one. This can
be a fixed number or a range, e.g. ‘0..1’ or ‘*’ or ‘1..*’)

!11

© 2012-2013 Elena Punskaya
Cambridge University Engineering Department

Navigability
• Associations can also show bidirectional navigability. For example,

consider the relationship between lecturers and lecture courses in a
timetabling application!
"

"

"

"

• This shows that each Lecturer object knows about all the courses they
are teaching and that each Course knows which lecturer is in charge. The
* indicates that a lecturer may be in charge of any number of courses
(including none)!

• The direction of associations is often not shown if it does not add to the
meaning of the diagram, e.g. at the conceptual diagram abstraction level

!12

© 2012-2013 Elena Punskaya
Cambridge University Engineering Department

Composition
• UML also allows a class association to be adorned with a diamond. Not

all users of UML employ this, however, it is useful to know the meaning.!

• A filled diamond denotes Composition!
"

"

"

• If A is a House and B is a Room, then Composition relationship means
that a Room cannot exist without a House, i.e. it will be destroyed if the
House is destroyed!
"

"

"

• Composition is potentially useful to emphasise the strength of the
relationship between classes, e.g. an exclusive ownership

!13

© 2012-2013 Elena Punskaya
Cambridge University Engineering Department

Aggregation
• An empty diamond denotes Aggregation and indicates that objects of class

A contain objects of class B, i.e. B is a part of A!

• A does not however control the lifecycle of object of class B!
"

"

"

• A College Society can have a number of member Students, but it would be
unreasonable to “destroy” students if the Society was to be closed

!14

“Aggregation is strictly meaningless; as a result, I recommend
that you ignore it in your own diagrams.” "

UML Distilled , Martin Fowler

© 2012-2013 Elena Punskaya
Cambridge University Engineering Department

Inheritance
• As we discussed before, Inheritance and Polymophism are the key

features of Object Orientation that allow us to design extensible systems!

• In UML, Inheritance relationship between classes is represented as
follows

!15

/ abstract

Using Italics to signify abstract methods is a bit difficult in
hand-writing – marking a method/class {abstract} is a valid
alternative

© 2012-2013 Elena Punskaya
Cambridge University Engineering Department

Interfaces
• There are two cases when Inheritance is useful!
-Implementation inheritance – the superclass implements some

functionality that can be re-used by all of its subclasses!
-Behaviour inheritance when a class can expose a certain set of functionality!

• Interfaces are used to define behavioural inheritance and denoted in UML
as!
"

"

"

• or, more fully

!16

© 2012-2013 Elena Punskaya
Cambridge University Engineering Department

Interfaces Example
• Defining the same functionality/ behaviour to very different concepts!

• Example: can we compare Apples and Oranges?!
"

"

"

"

"

• Yes, we can! – if Apples and Oranges “know” how to compare!
"

"

"

• Of course, the tricky part is how the comparison is made :)

!17

 IComparable apple = new Apple();!
 IComparable orange = new Orange();!
"
 apple.compareTo(orange);

© 2012-2013 Elena Punskaya
Cambridge University Engineering Department

Class Diagram Example
• Drawing Editor can be described as the following!
"

"

"

"

"

"

"

"

"

"

"

• What can we understand from reading this diagram?

!18

© 2012-2013 Elena Punskaya
Cambridge University Engineering Department

Class Diagram Example
• Drawing Editor provides 1 (and

only 1) Toolbox!

• Toolbox consists of “0 or more”
Tools!

• There are three types of tools that
are used to create Rectangles,
Ellipses and make a Selection!

• Drawing editor can show “0 or
more” Shapes. There are two
types of shapes: Ellipse and
Rectangle!

• Drawing Editor maintains the
Current Selection!

• Only 1 shape can be selected at a
time. Selection Tool makes the
Current Selection which includes
Shape

!19

maintains

makes
includes

shows provides

consists of

© 2012-2013 Elena Punskaya
Cambridge University Engineering Department

Dynamic View
• Class diagrams are very useful to capture the relationships, but this is

only one part of a story – this is only a list of ingredients from a recipe,
but to make a dish we need to know how to put them together!

• To understand how the system works (and validate the design) we need
to understand how objects interact with each other for a purpose of a
particular action!

• There are two main types of UML diagrams that capture interactions!
- Sequence Diagrams!
- Collaboration/Communication Diagrams!

• Both could be used for exactly same purposes!

• Sequence Diagrams present a more clear view of the timeline, therefore
could be particularly helpful to capture the logic flow!

• Communication Diagrams can focus more on the nature of collaboration
between the object to perform an action

!20

© 2012-2013 Elena Punskaya
Cambridge University Engineering Department

Sequence Diagram
• Consider the drawing Editor example!
"

"

"

"

• Suppose the drawing consists of two rectangles and the display() method
is called on the DrawingEditor. The series of calls that take place can be
shown in a sequence diagram:

!21

© 2012-2013 Elena Punskaya
Cambridge University Engineering Department

Sequence Diagram
• This diagram shows three objects. These are: one object of type Drawing

Editor called adrawing and two objects of type Rectangle called
rectangle1 and rectangle2. The vertical axis of this diagram corresponds
to time (traveling downward). The white boxes show the duration of each
call. This diagram explicitly shows the return from the two draw() calls
with dashed lines although these are often omitted!
"

"

"

"

"

"

"

• UML defines additional notation  
(e.g. object deletion/creation) – rarely used

!22

1. display() is called in adrawing

2. adrawing calls the clear screen() method in itself

3. This method returns

4. adrawing calls the draw() method in rectangle1.

5. This method returns.

6. adrawing calls the draw() method in rectangle2

7. This method returns.

8. The display() method is completed and returns

© 2012-2013 Elena Punskaya
Cambridge University Engineering Department

Communication Diagram

• Communication diagrams show the method flow between objects by
numbering method calls!
"

"

"

"

"

"

"

"

• Both diagram types capture the dynamic behaviour of the system in a
specific scenario!

- Sequence diagrams are easier to read when there are a few objects with potentially a lot of calls
- Communication diagrams are easier to read when there are a few method calls between potentially

many objects

!23

© 2012-2013 Elena Punskaya
Cambridge University Engineering Department

State Diagrams
• Sometimes the behaviour of a single object depends on its state, UML

offers State Diagrams to capture it!
"

"

"

"

"

"

"

"

"

"

• The need for such diagrams is more common in e.g. Embedded Software
development

!24

© 2012-2013 Elena Punskaya
Cambridge University Engineering Department

UML Summary
• UML is a notation that helps to capture, share and validate design

concepts!

• It can be used in conjunction with formal software processes (e.g. RUP),
where even source code can be generated from UML diagrams!

• The main strength is however in the ability to describe the static and
dynamic view of the system in the common way!

- Class and Sequence (Communication) diagrams are by far the most used parts of UML

• Using UML as a basis, project teams can adapt and extend it to their
need, but creating new types of diagrams, modifying the notation etc. is
OK, as long as:!

- everyone on the project can understand it
- everyone’s understanding is the same ;)

!25

aBank

James

