
OO Programming Languages Syntax 
Exceptions Handling

Elena Punskaya, op205@cam.ac.uk



© 2012-2013 Elena Punskaya 
Cambridge University Engineering Department

OO in Java
• Abstract class defines shared 

implementation!

• Methods declared Abstract 
MUST be implemented by 
subclasses!

• Interface can only define 
method signatures (names, 
parameters, output) and no 
implementation!

• Classes can Extend other 
classes and Implement 
interfaces!

• By default, all class methods 
can be overridden (extended/
implemented) in the subclasses

!2

	 //abstract class declaration	
	  public abstract class Account	
	  {	
	 	  private int mAccountNumber;	
	 	  //constructor	
	 	  public Account(int accountNumber)	
	 	  {	
	 	 	  mAccountNumber = accountNumber;	
	 	  }	
	 	  // abstract method declaration	
	 	  public abstract void credit(Amount amount);	
	  }	
	  	
	  //interface declaration	
	  public interface IVerifiable	
	  {	
	 	  //declaring the interface method	
	 	  public boolean isVerified();	
	  }	
	  	
	  //PayPal derives from Account and realises IVerifiable	
	  public class PayPalAccount extends Account implements IVerifiable	
	  {	
	 	  //constructor, calls the superclass	
	 	  public PayPalAccount(int accountNumber)	
	 	  {	
	 	 	  super(accountNumber);	
	 	  }	
	 	  //implementation of the abstract method	
	 	  public void credit(Amount amount)	
	 	  {	
	 	 	  //send money to PayPal	
	 	  }	
	 	  //implementation of the interface method	
	 	  public boolean isVerified()	
	 	  {	
	 	 	  //do check and return result	
	 	  }	
	  }



© 2012-2013 Elena Punskaya 
Cambridge University Engineering Department

OO in C#
• Very similar to Java syntax and 

concepts, but also some 
differences!

• Any non-abstract class 
methods have to be explicitly 
declared virtual so can be 
overridden (extended/
implemented) in the subclasses!

• C# vs Java comparison:!
- http://msdn.microsoft.com/en-us/library/

ms836794.aspx

!3

	 //abstract class declaration	
	  public abstract class Account	
	  {	
	 	  private int mAccountNumber;	
	 	  //constructor	
	 	  public Account(int accountNumber)	
	 	  {	
	 	 	  mAccountNumber = accountNumber;	
	 	  }	
	 	  // abstract method declaration	
	 	  public abstract void credit(Amount amount);	
	  }	
	  	
	  //interface declaration	
	  public interface IVerifiable	
	  {	
	 	  //declaring the interface method	
	 	  public boolean isVerified();	
	  }	
	  	
	  //PayPal derives from Account and realises IVerifiable	
	  public class PayPalAccount extends :Account, implements IVerifiable	
	  {	
	 	  //constructor, calls the superclass	
	 	  public PayPalAccount(int accountNumber) : base(accountNumber)	
	 	  {	
	 	 	  super(accountNumber);	
	 	  }	
	 	  //implementation of the abstract method	
	 	  public void credit(Amount amount)	
	 	  {	
	 	 	  //send money to PayPal	
	 	  }	
	 	  //implementation of the interface method	
	 	  public boolean isVerified()	
	 	  {	
	 	 	  //do check and return result	
	 	  }	
	  }



© 2012-2013 Elena Punskaya 
Cambridge University Engineering Department

OO in C++
• Methods need to be declared 

virtual to be extended (as in C#)!

• Pure virtual methods (ending 
declarations with “=0”) are 
equivalent to abstract methods 
in Java!

• No dedicated concept of 
Interfaces, but same effect is 
achieved by  defining a class 
that contains pure virtual 
methods only!

• C++ and Java differences!
- http://www.cprogramming.com/tutorial/

java/syntax-differences-java-c++.html

!4

	 //class declaration	
	  class Account	
	  {	
	 	  //declaring all publicly accessible methods/attributes	
	  	  public:	

	 	  //constructor	
	 	  Account(int accountNumber)	
	 	  {	
	 	 	  mAccountNumber = accountNumber;	
	 	  }	
	 	  // abstract method declaration	
	 	  virtual void credit(Amount amount) = 0;	!

	 	  private:	
	 	  	 int mAccountNumber;	
	  };	
	  	
	  //interface (equivalent) declaration	
	  class IVerifiable	
	  {	
	 	  //pure virtual (abstract) method declaration	
	 	  public:	

virtual bool isVerified() = 0;	
	  }	
	  	
	  //PayPal derives from Account and IVerifiable	
	  public class PayPalAccount : public Account, public IVerifiable	
	  {	
	 	  public:	
	 	  //constructor, calls the superclass	

	 	  PayPalAccount(int accountNumber):Account(accountNumber)	
	 	  {	
	 	  }	
	 	  //declaring the implementation	
	 	  virtual void credit(Amount amount);	!
	 	  //declaring the implementation	
	 	  virtual bool isVerified();	

	  }



© 2012-2013 Elena Punskaya 
Cambridge University Engineering Department

• All software encounters error 
conditions during operations!

• Good software will manage 
error situations gracefully and 
robustly!

• Error handling has to be 
implemented in the code!

• A standard option from 
procedural languages – Error 
Codes!

• Main idea:!
- use a code to indicate some specific 

error 
- make the function to return a code 
- check the return code if it is OK or 

error

Error Handling

!5

	 // add error reporting to code that can fail	
	 public int doSomethingRisky()	
	 {	
	 	 <..>	
	 	 if (problemNumber1Happened)	
	 	 	 return 1;	
	 	 else if (problemNumber2Happened)	
	 	 	 return 2;	
	 	 else	
	 	 	 return 0; //all good	
	 }	
	 	
	 //using this method, need to build in checks	
	 int result = riskyAction.doSomethingRisky();	
	 if (result == 0)  	
	 {	
	 	 //All good, can proceed	
	 }	
	 else if(result == 1)	
	 {	
	 	 //handle Problem1	
	 }	
	 else if(result == 2)	
	 {	
	 	 //handle Problem2	
	 }



© 2012-2013 Elena Punskaya 
Cambridge University Engineering Department

Exceptions
• Errors such as the above represent 

exceptions to the normal program flow.!

• Handling exceptions via return codes 
has a number of disadvantages:!

- Extra code needs to be inserted in each function to 
pass the errors back. 

- If one function fails to check for errors and pass 
them back, the errors will not get handled 

- The extra error checking obscures the main 
function of the code, making it difficult to 
understand 

- Error recovery code becomes intertwined with the 
normal operation code 

- Functions cannot use return values for normal 
purposes 

• There is another way...!

• Exceptions!

!6

	 // add error reporting to code that can fail	
	 public void doSomethingRisky()	
	 {	
	 	 <..>	
	 	 if (problemNumber1Happened)	
	      //throw forces us to exit the current	
         //method and returns an exception object	
	 	 	 throw problemNumber1Exception;	
	 	 else if (problemNumber2Happened)	
	 	 	 throw problemNumber2Exception;	
	 }	
	 	
	 //using this method, wrap it in try/catch block	
    //to catch returned exceptions	
	 try  	
	 {	
	 	 riskyAction.doSomethingRisky();	
	 }	
	 catch (ProblemNumber1Exception error)	
	 {	
	 	 //handle Problem1	
	 }	
	 catch (ProblemNumber2Exception error)	
	 {	
	 	 //handle Problem2	
	 }



© 2012-2013 Elena Punskaya 
Cambridge University Engineering Department

Exceptions
• C++ example!

• Using exceptions, the code is easier 
to follow because the error handling 
parts are clearly separated from the 
regular program flow!

• An exception handler can throw the 
exception again allowing some 
errors to be trapped and repaired 
and others to be propagated, e.g. 
from TE_GetPrice() to MyTrader() to 
the main method, where it is 
handled!

• Exceptions should REALLY be 
exceptional and not be a part of 
normal program flow

!7

//C++ class to define Exceptions	
class TradingErr { 	

TradingErr (ErrType ee, Time tt) {e=ee; t=tt;} 	
ErrType e; Time t;	

};	
//main program method	
int main() {	

try { 	
<..>	
//MyTrader() can re-throw an exception	
MyTrader(); 	
<..>	

//Exception handling	
} catch (TradingError x) {	

ReportError(x.e, x.t);	
}	

} 	
//------------------------------------------------ 
void MyTrader() {	

<..> 	
//code that can re-throw an exception	
float price = TE_GetPrice(day); 	
<..>	

} 	
//------------------------------------------------ 
float TE_GetPrice(int day) {	

<..> 	
//code that can throw an exception	
if (!Valid(day))	

throw TradingErr(BAD_DAY,TimeNow()); 	
<..>	

}



© 2012-2013 Elena Punskaya 
Cambridge University Engineering Department

No Code Wars! – Tools for the Job

• Debating comparative advantages 
and disadvantages of programming 
languages makes a good (if often 
heated) conversation, but in reality 
the choice of the language is often 
dictated by the application!!

• For example, in mobile application 
development:!

- Android, Blackberry, J2ME: Java 
- iPhone:  Objective-C 
- Windows Phone: C# 
- Symbian (RIP): C++ 
!

• Being proficient in a range of 
languages helps

!8

Source: http://www.rackspace.com/cloud/blog/2011/05/17/infographic-evolution-of-
computer-languages/


