OO Programming Languages Syntax

Exceptions Handling

Elena Punskaya, op205@cam.ac.uk



e Abstract class defines shared

implementation

Methods declared Abstract
MUST be implemented by
subclasses

Interface can only define
method signatures (names,
parameters, output) and no
iImplementation

Classes can Extend other
classes and Implement
interfaces

By default, all class methods
can be overridden (extended/
implemented) in the subclasses

//abstract class declaration
public abstract class Account

{

}

private int mAccountNumber;
//constructor
public Account(int accountNumber)

{
}

// abstract method declaration
public abstract void credit(Amount amount);

mAccountNumber = accountNumber;

//interface declaration
public interface IVerifiable

{

}

//declaring the interface method
public boolean isVerified();

//PayPal derives from Account and realises IVerifiable
public class PayPalAccount extends Account implements IVerifiable

{

//constructor, calls the superclass
public PayPalAccount(int accountNumber)

{

3
//implementation of the abstract method

public void credit(Amount amount)

{
¥

//implementation of the interface method
public boolean isVerified()

{
}

super(accountNumber);

//send money to PayPal

//do check and return result

© 2012-2013 Elena Punskaya
Cambridge University Engineering Department

2



OO0 in C#

* Very similar to Java syntax and
concepts, but also some
differences

* Any non-abstract class
methods have to be explicitly
declared virtual so can be
overridden (extended/
implemented) in the subclasses

e C# vs Java comparison:

- http://msdn.microsoft.com/en-us/library/
Ms836794.aspx

//abstract class declaration
public abstract class Account

{

}

private int mAccountNumber;
//constructor
public Account(int accountNumber)

{
}

// abstract method declaration
public abstract void credit(Amount amount);

mAccountNumber = accountNumber;

//interface declaration
public interface IVerifiable

{

}

//declaring the interface method
pubtie boolean isVerified();

//PayPal derives from Account and realises IVerifiable
public class PayPalAccount extends :Account, impltements IVerifiable

{

//constructor, calls the superclass
public PayPalAccount(int accountNumber) : base(accountNumber)

{

3
//implementation of the abstract method

public void credit(Amount amount)

{
¥

//implementation of the interface method
public boolean isVerified()

{
}

—creerfaccountNumberd)+

//send money to PayPal

//do check and return result

© 2012-2013 Elena Punskaya 3
Cambridge University Engineering Department



e Methods need to be declared
virtual to be extended (as in C#)

e Pure virtual methods (ending
declarations with “=0") are
equivalent to abstract methods
in Java

* No dedicated concept of
Interfaces, but same effect is
achieved by defining a class
that contains pure virtual
methods only

e C++ and Java differences

- http://www.cprogramming.com/tutorial/
java/syntax-differences-java-c++.htm!

//class declaration

class Account
{
//declaring all publicly accessible methods/attributes
public:
//constructor
Account(int accountNumber)

{
¥

// abstract method declaration
virtual void credit(Amount amount) = 0;

mAccountNumber = accountNumber;

private:
int mAccountNumber;

3

//interface (equivalent) declaration
class IVerifiable

{
//pure virtual (abstract) method declaration
public:
virtual bool isVerified() = 0;
}

//PayPal derives from Account and IVerifiable
public class PayPalAccount : public Account, public IVerifiable
{

public:

//constructor, calls the superclass

PayPalAccount(int accountNumber):Account(accountNumber)

{

ks

//declaring the implementation
virtual void credit(Amount amount);

//declaring the implementation
virtual bool isVerified();

© 2012-2013 Elena Punskaya 4
Cambridge University Engineering Department



Error Handling

o All software encounters error
conditions during operations

e Good software will manage
error situations gracefully and
robustly

e Error handling has to be
implemented in the code

o A standard option from
procedural languages — Error
Codes

e Main idea:

- use a code to indicate some specific
error

- make the function to return a code

- check the return code if it is OK or
error

// add error reporting to code that can fail
public int doSomethingRisky()

<..>

if (problemNumberlHappened)
return 1;

else if (problemNumberZHappened)
return 2;

else
return @; //all good

}

//using this method, need to build in checks
int result = riskyAction.doSomethingRisky();
i1f (result == 0)

' //Al1l good, can proceed
ilse if(result == 1)

{ //handle Probleml

ilse if(result == 2)

' //handle Problem2

}

© 2012-2013 Elena Punskaya
Cambridge University Engineering Department



e Errors such as the above represent
exceptions to the normal program flow.

 Handling exceptions via return codes

has a number of disadvantages:

- Extra code needs to be inserted in each function to

pass the errors back.

- If one function fails to check for errors and pass

them back, the errors will not get handled

- The extra error checking obscures the main
function of the code, making it difficult to
understand

- Error recovery code becomes intertwined with the

normal operation code

- Functions cannot use return values for normal

purposes

e There is another way...

o Exceptions!

// add error reporting to code that can fail
public void doSomethingRisky()
{
<..>
if (problemNumberlHappened)
//throw forces us to exit the current
//method and returns an exception object
throw problemNumberlException;
else if (problemNumberZHappened)
throw problemNumber2Exception;

}

//using this method, wrap it in try/catch block
//to catch returned exceptions

try

{

}

catch (ProblemNumberlException error)

{
ks
catch (ProblemNumberZ2Exception error)

1
¥

riskyAction.doSomethingRisky();

//handle Probleml

//handle Problem2

© 2012-2013 Elena Punskaya 6
Cambridge University Engineering Department



//C++ class to define Exceptions

class TradingErr {
TradingErr (ErrType ee, Time tt) {e=ee; t=tt;}
ErrType e; Time t;

e C++ example

e Using exceptions, the code is easier

to follow because the error handling
parts are clearly separated from the
regular program flow

An exception handler can throw the
exception again allowing some
errors to be trapped and repaired
and others to be propagated, e.g.
from TE_GetPrice() to MyTrader() to
the main method, where it is
handled

Exceptions should REALLY be
exceptional and not be a part of
normal program flow

s
//main program method
int main() {
try {
<..>
//MyTrader() can re-throw an exception
MyTrader();
<..>
//Exception handling
} catch (TradingError x) {
ReportError(x.e, x.t);

void MyTrader() {
<..>
//code that can re-throw an exception
float price = TE_GetPrice(day);
<..>

float TE_GetPrice(int day) {
<..>
//code that can throw an exception
if (!Valid(day))
throw TradingErr(BAD_DAY,TimeNow());
<..>

}

© 2012-2013 Elena Punskaya
Cambridge University Engineering Department



No Code Wars! — Tools for the Job

e Debating comparative advantages
and disadvantages of programming
languages makes a good (if often
heated) conversation, but in reality

PROGRAMMING LANGUAGE POPULARITY

RPG
SCHEME

the choice of the language is often TRANSACT/SOL

H H H PASCAL
dictated by the application! "
 For example, in mobile application _—
development: DELPH

- Android, Blackberry, J2ME: Java Msc::

- iPhone: Objective-C RUBY

. PERL

- Windows Phone: C# ISUAL(BASIC

- Symbian (RIP): C++ PYTHON

OBJECTIVE-C
PHP

Cit

* Being proficient in a range of s
languages helps :

JAVA

Source: http://www.rackspace.com/cloud/blog/2011/05/17/infographic-evolution-of-
computer-languages/

© 2012-2013 Elena Punskaya 8
Cambridge University Engineering Department



