
© 2012-2013 Elena Punskaya
Cambridge University Engineering Department

Design Patterns

Elena Punskaya, elena.punskaya@eng.cam.ac.uk
!1

© 2012-2013 Elena Punskaya
Cambridge University Engineering Department

Design Patterns
• Software systems can be very large and very complex. However, we

often find the same architectural structures occurring repeatedly (with
subtle variations), created in response to commonly recurring problems.
These solutions can be identified and recorded as design patterns!

• This course will look at a few of the most common design patterns with
two aims:!

- To explain how to use these specific patterns in software designs and in communicating about
software that uses them

- To introduce the language of design patterns and illustrate the more general benefits from thinking
about software construction in this way

• A more comprehensive set can be found in!
- Design Patterns: Elements of Reusable Object-Oriented  

Software, Erich Gamma et al, Addison-Wesley –  
AKA the “Gang of Four” (GoF) book

• which describes 23 design patterns in detail

!2

© 2012-2013 Elena Punskaya
Cambridge University Engineering Department

Why Patterns?
• While software projects are very diverse, conceptually, there are many

things that are commonly desired!

• Can we have a notification when something specific happens?!

• Yes, we can! – Observer!

• Can we undo the last operation?!

• Yes, we can! – Memento and Command!

• Can we access all elements of a collection in a sequential order?!

• Yes, we can! – Iterator!

• Can we build an effective system that allows us to display and manipulate
data?!

• Indeed! – Model View Controller (MVC)!

• All modern programming languages implement a lot of these patterns in
their API, e.g. Collections-Iterators

!3

© 2012-2013 Elena Punskaya
Cambridge University Engineering Department

Structure of Patterns
• Each pattern could be described using a standard format.!

• Motivation: outline some specific functionality that we would like our
software to provide.!

• Solution options: explore some ways of providing this functionality and
discuss their limitations.!

• Optimal solution: present a preferred solution based on a design pattern.!

• Code example: an example of what the design solution looks like using
any programming language.!

• Design pattern: discuss the general principle underlying a good solution
and its applicability to other situations. Show the generic design pattern
using UML.!

• Disadvantages: discuss the shortcomings of the design pattern and why
you might not want to use it for certain cases.!

• We are just familiarising ourselves so will use light version of this
approach!

!4

© 2012-2013 Elena Punskaya
Cambridge University Engineering Department

Composite
• Composite design pattern is used when we want to operate on individual

items and groups of those in a common way!

• Problem!
- We want our drawing editor to support grouping and ungrouping operations so that a number of

shapes can be collected together and treated as a single entity.

• Solution 1!
- We could add a group member field into Shape to indicate which group each shape belongs to

(using the number -1 to indicate that the object is not in any group)

!

!

!

• Pros – simple, Cons – cannot support nested groups!

• Other options? A better approach is to introduce a new class
ShapeGroup to manage a group of shapes. This new class is a subclass
of Shape and so it preserves the standard Shape class interface

!5

16 Engineering Part IIA: 3F6 - Software Engineering and Design

Composite Pattern

Problem

We want our drawing editor to support grouping and ungrouping
operations so that a number of shapes can be collected together
and treated as a single entity.

Solution 1

We could add a group member field into Shape to indicate which
group each shape belongs to (using the number -1 to indicate that
the object is not in any group).

Shape
-group_id: int

+draw()
+move()
+get_bbox(): BBox

-1 means not
in a group

Pros: - simple
Cons: - cannot support nested groups

© 2012-2013 Elena Punskaya
Cambridge University Engineering Department

Composition
• The ShapeGroup class provides a means by which several shapes can be

grouped together into a single entity which behaves in the same way as a
single shape.!

• Most of the ShapeGroup class methods are implemented simply by
calling the same function for each of its constituent shapes. Computing
the bounding box is only a little bit more complicated and can be done in
a similar manner.

!6

Design Patterns (I) 17

Good Solution

A better approach is to introduce a new class ShapeGroup to
manage a group of shapes. This new class is a subclass of Shape
and so it preserves the standard Shape class interface.

The ShapeGroup class provides a means by which several shapes
can be grouped together into a single entity which behaves in the
same way as a single shape.

Most of the ShapeGroup class methods are implemented simply
by calling the same function for each of its constituent shapes.
Computing the bounding box is a only little more complicated
and can be done in a similar manner.

Shape
+draw()
+move()
+get_bbox(): BBox

ShapeGroup
+draw()
+move()
+get_bbox(): BBox
+add_shape()
+remove_shape()

 contents
 *

Rectangle

Ellipse

Picture

Equation

for each c in contents{
 c->draw();
}

find the min and max of x and y
over all c in contents

© 2012-2013 Elena Punskaya
Cambridge University Engineering Department

Composition
• Composition of objects: each component can be a leaf or a composite of

other components that in turn can each be either a leaf or a composite!
!

!

!

!

!

!

!

• Disadvantages!
- The composite pattern is very powerful, but can sometimes be too general. For example, it is

difficult to restrict the objects which can be included in the composite group.
- Since the Composite class usually has to be extended to provide access to the individual group

members (add/remove), client code must be able to distinguish between composite objects and
non-composite objects.

!7

Client
operation()

Component

operation()

Leaf

operation()

Composite

foreach.child.in.children
{
....child.operation()
}

*
children

*

works.with

© 2012-2013 Elena Punskaya
Cambridge University Engineering Department

Observer
• Allows multiple objects to maintain a consistent view on the state of the

object of interest!
!

!

!

!

!

!

!

• Applies virtually everywhere:!
- your Twitter followers are your observers
- when you type a search term on Google website, it is observing each keystroke as you type and

tries to provide a match dynamically
- a camera on the phone can notify your app when a snapshot is available
- a multi-window (multi-view) application can maintain a synchronised view

!8

8 Engineering Part IIA: 3F6 - Software Engineering and Design

The Observer Design Pattern

This is also sometimes known as the Model-View-Controller (MVC)
pattern. The key idea is that it separates the model (or docu-
ment (or colour)) from the user interface display of that state.
The model only needs to know that it has a set of observers, not
the details of each observer.

Subject
+Attach(o:Observer)
+Detach(o:Observer)
+Notify()

Observer
+Update()

ConcreteSubject
+subjectstate:
+GetState()
+SetState()

ConcreteObserver
+Update()

observers
*

 subject
 1

for each o in observers {
 o->Update();
}

s = subject->GetState();
display(s);

Disadvantages

This pattern can lead to a large amount of computational over-
head. For example consider gradually moving a slider bar in the
colour selector example. This will generate several set colour

calls to the ColourHandler which in turn will generate n times
that many update calls to the n colour selectors.

© 2012-2013 Elena Punskaya
Cambridge University Engineering Department

Observer
• Disadvantages!

• This pattern could lead to a large amount of computational overhead if
not safe-guarded, in particular, if a rate of notifications is high and the
reaction to those updates is a heavy-load operation.!

• For example, consider an augmented reality mobile app!
- it requests the camera for a real-time snapshots, when the snapshot is ready, the app can analyse

it – a heavy operation, involving image processing, Internet access and update of the user
interface

- however, while we analysing the snapshot 1, a snapshot 2 can be available already
- need to make sure we ignore “snapshot ready” notifications while analysing

!9
www.layar.com

© 2012-2013 Elena Punskaya
Cambridge University Engineering Department

10 year retrospective
• Erich Gamma, a co-author of the “original” (published in 1994) book on

Design Patterns – one of the “Gang of Four”!

• Interviewed in 2004 to reflect on 10 years of Design Patterns!
- Source: http://www.artima.com/lejava/articles/gammadp.html

!10

Erich Gamma: I think patterns as a whole can help people learn object-oriented thinking:
how you can leverage polymorphism, design for composition, delegation, balance
responsibilities, and provide pluggable behavior. Patterns go beyond applying objects to
some graphical shape example, with a shape class hierarchy and some polymorphic draw
method. You really learn about polymorphism when you've understood the patterns. So
patterns are good for learning OO and design in general.

Erich Gamma: One comment I saw in a news group just after patterns started to become
more popular was someone claiming that in a particular program they tried to use all 23
GoF patterns. They said they had failed, because they were only able to use 20. They
hoped the client would call them again to come back again so maybe they could squeeze in
the other 3.
!
Trying to use all the patterns is a bad thing, because you will end up with synthetic
designs—speculative designs that have flexibility that no one needs. These days software is
too complex. We can't afford to speculate what else it should do. We need to really focus on
what it needs. That's why I like refactoring to patterns. People should learn that when they
have a particular kind of problem or code smell, as people call it these days, they can go to
their patterns toolbox to find a solution.

© 2012-2013 Elena Punskaya
Cambridge University Engineering Department

Decorator
• Decorator Pattern allows to add functionality without changing the

original class!

• Problem!
- Suppose our drawing editor allows us to include many sorts of shapes including rectangles,

ellipses, text, equations, pictures etc.
!
!
!
!
!
!

- Now we want to introduce a facility into the editor to allow frames to be added to arbitrary objects.
For example we might want to put a picture frame around an image, or we might want to frame an
equation or some text in a simple box

!11

Design Patterns (I) 3

Decorator Pattern

Problem

Suppose our drawing editor allows us to include many sorts of
shapes including rectangles, ellipses, text, equations, pictures etc.

Shape
+draw()
+move()
+fill()

Rectangle Ellipse Text Equation Picture

Now we want to introduce a facility into the editor to allow frames
to be added to arbitrary objects. For example we might want to
put a picture frame around an image, or we might want to frame
an equation or some text in a simple box.

Section 1

This is text inside a
text box that is going
to get very full after a
while. I am then
going to make the text
so small that you can
hardly see it. Really it
would have been
better to paste in some
real text.

Text

Section 1

This is text inside a
text box that is going
to get very full after a
while. I am then
going to make the text
so small that you can
hardly see it. Really it
would have been
better to paste in some
real text.

Text in a frame

Design Patterns (I) 3

Decorator Pattern

Problem

Suppose our drawing editor allows us to include many sorts of
shapes including rectangles, ellipses, text, equations, pictures etc.

Shape
+draw()
+move()
+fill()

Rectangle Ellipse Text Equation Picture

Now we want to introduce a facility into the editor to allow frames
to be added to arbitrary objects. For example we might want to
put a picture frame around an image, or we might want to frame
an equation or some text in a simple box.

Section 1

This is text inside a
text box that is going
to get very full after a
while. I am then
going to make the text
so small that you can
hardly see it. Really it
would have been
better to paste in some
real text.

Text

Section 1

This is text inside a
text box that is going
to get very full after a
while. I am then
going to make the text
so small that you can
hardly see it. Really it
would have been
better to paste in some
real text.

Text in a frame

© 2012-2013 Elena Punskaya
Cambridge University Engineering Department

Decorator
• Solution 1!

- Since we want to be able to add frames to objects of all types, we could add an attribute into the
Shape class to specify the type of frame the object has (if any)
!
!
!
!
!
!

• Pros: simple and adequate for case where we only want to add one
special attribute to shapes!

• Cons: the code can become clumsy since, for example, the draw method
would need a case switch for each of the possible frame types

!12

4 Engineering Part IIA: 3F6 - Software Engineering and Design

Solution 1

Since we want to be able to add frames to objects of all types, we
could add an attribute into the Shape class to specify the type
of frame the object has (if any).

Shape
-frame_type: int
+draw()
+move()
+fill()

Pros: - simple and adequate for case where we only
want to add one special attribute to shapes

Cons: - wastes storage since all objects contain all attribute data
- the code itself will become clumsy since, for example,

the draw method will need to have a case switch
for each of the possible frame types

void Shape::draw() {

switch(frame_type) {

case NONE:

break;

case SIMPLE_FRAME:

draw_simple_frame();

break;

...

}

}

void Text::draw() {

Shape::draw();

// render text

}

switch(frame_type) {	
case NONE: break;	
case SIMPLE_FRAME: 	
draw_simple_frame();	
break;	

...	
}

© 2012-2013 Elena Punskaya
Cambridge University Engineering Department

Decorator
• Solution 2!

- An alternative would be to derive new classes such as Fr Rectangle, Fr Picture, Fr Equation etc. to
provide framed versions of each shape class
!
!
!
!
!
!
!

• Pros: framing can be restricted to particular shapes, efficient use of
storages since frame data is only allocated when actually needed!

• Cons: huge proliferation in classes, hard to turn decorations on and off at
runtime!

• Note that the framed versions will inherit exactly the same interface as
their parents, as it is essential that any client using any shape object sees
an identical interface

!13

Design Patterns (I) 5

Solution 2

An alternative would be to derive new classes such as Fr Rectangle,
Fr Picture, Fr Equation etc. to provide framed versions of each
shape class:

+draw()
+move()
+fill()

Shape

Rectangle Ellipse Text Equation Picture

Fr _Rectangle Fr _Ellipse Fr _Text Fr _Equation Fr _Picture

Pros: - framing can be restricted to particular shapes
- e⇥cient use of storage since frame data is

only allocated when actually needed
Cons: - huge proliferation in classes

- hard to turn decorations on and o� at run-time

Note that the framed versions will inherit exactly the same inter-
face as their parents. This is important since it is essential that
any client using any shape object sees an identical interface.

© 2012-2013 Elena Punskaya
Cambridge University Engineering Department

Decorator
• Optimal solution!

- A much better way to solve this problem is to add a single new subclass of Shape called
FramedShape. Each FramedShape will have a pointer to a Shape object which is the shape
contained in the frame
!
!
!
!
!
!
!
!
!
!
!
!
!

- The addition of this extra class allows us to frame any kind of shape, simply by creating a
FramedShape object and making its contents point to the Shape object that we want to frame

- We can even create a frame around a FramedShape!

!14

6 Engineering Part IIA: 3F6 - Software Engineering and Design

Good Solution

A much better way to solve this problem is to add a single new
subclass of Shape called FramedShape. Each FramedShape will
have a pointer to a Shape object which is the shape contained
in the frame.

S h a p e

+ d r a w ()

+ m o v e ()

+ f i l l ()

Rec t a n g l e

E l l i p se

T e x t

E qu a t i o n

P i c t u r e

F r am e d S h a p e

- f r a m e _ t y p e : i n t

+ d r a w ()

+ m o v e ()

+ f i l l ()

- d r a w _ f r a m e ()

c o n t e n t s - > d r a w () ;

d r a w _ f r a m e () ;

+ c o n t e n t s

 1

The addition of this extra class allows us to frame any kind of
shape, simply by creating a FramedShape object and making its
contents point to the Shape object that we want to frame.

We can even create a frame around a FramedShape (see example
in the object diagram below!).

© 2012-2013 Elena Punskaya
Cambridge University Engineering Department

Decorator
• Example of the object structure at runtime!

- Note, Picture p1 has a double frame

!15

Design Patterns (I) 7

This software architecture will give rise to run-time structures
similar to that shown in the following object diagram:

adrawing: DrawingEditor

my_shapes[]

r1: Rectangle

p1: Picture

f1: FramedShape p2: Picturecontents

e1: Ellipse

f2: FramedShape q1: Equationcontents

q2: Equation

f3: FramedShape f4: FramedShape

p1: Picture

contents

 contents

Note that the picture p1 is embedded in two frames.

© 2012-2013 Elena Punskaya
Cambridge University Engineering Department

Decorator
• Decorator Pattern provides a way

of adding optional functionality
(“decoration”) to all classes in a
hierarchy without changing the
code for either the base class or
any of the subclasses  

- Using this pattern, multiple decorations
can be applied to an object, e.g. we can
add a picture frame and scrollbars (in either
order) to a picture in the drawing editor. If
there are several different kinds of
decoration that we want to be able to use,
we can derive a number of classes from the
Decorator class to handle these separate
kinds of added functionality

!16

Design Patterns (I) 9

we can derive a number of classes from the Decorator class to
handle these separate kinds of added functionality.

Component
+Operation()

ComponentType1
+Operation()

ComponentType2
+Operation()

 Decorator
+Operation()

 component
 1

component->Operation();
ConcreteDecoratorA
-Added_State:
+Operation()

ConcreteDecoratorB
-Added_State:
+Operation()
+AddedBehaviour()

Decorator::Operation();
AddedBehaviour();

Client

Disadvantages

If there are not too many kinds of added functionality and they
appear fairly commonly, it may be more convenient to use so-
lution 1 (above). The decorator pattern can make it hard to
resolve the identity of the objects we are dealing with since the
decorator is a distinct object from the component it decorates. In
a running system, this can result in long chains of small objects
that point to each other, making the software hard to debug.

© 2012-2013 Elena Punskaya
Cambridge University Engineering Department

Decorator
• Disadvantages!

• If there are not too many kinds of added functionality and they appear
fairly commonly, it may be more convenient to use solution 1!

• The decorator pattern can make it hard to resolve the identity of the
objects we are dealing with since the decorator is a distinct object from
the component it decorates. In a running system, this can result in long
chains of small objects that point to each other, making the software hard
to debug!

• Consider!
!

!

!

!

• Not every feature should become a decorator class!

!17

ScrollableShape FramedShape ShapeWithShadow ShapeWithReflection ShapeWithTransparency

© 2012-2013 Elena Punskaya
Cambridge University Engineering Department

Memento
• Memento Pattern allows us to track the state of the object externally,

without knowing all details of that state!

• Problem!
- A drawing editor is not very useful if it does not support Undo/Redo functionality

• Solution 1!
- each action makes a copy of the object before applying changes and saves it
- when Undo is called, the editor substitutes the current reference to the object with a reference to

the previously saved copy of the object
- e.g. before calling ChangeColour(Red) the editor makes a copy of the Shape as

ShapeBeforeTheColourChange, then to Undo, it will “forget” the reference to the Shape and instead
change it to the ShapeBeforeTheColourChange

- What about Redo?

• Pros: the history is maintained without knowing what changed inside the
object!

• Cons: expensive – each action makes a full copy of the whole object

!18

© 2012-2013 Elena Punskaya
Cambridge University Engineering Department

• Optimal solution!
- encapsulate the change into an object of the dedicated class – Memento
- make the Editor to request a Memento from the Shape before applying any changes
- make the Shape responsible for creating and restoring “Mementos”

Memento

!19

Shape
createMemento
setMemento

Memento
getColour
setColour

Editor*

keeps historycreates

aCircle aMemento theEditor

createMemento

setColour(newColour)

undo

create

setMemento

getColour

setColour(currentColour)

© 2012-2013 Elena Punskaya
Cambridge University Engineering Department

Memento
• Memento Design pattern allows to capture and externalise object’s

internal state without breaking encapsulation!
!

!
!

- Using this pattern, the Caretaker decides when to request a Memento from the Originator
- the Originator knows what data should be saved for restoring its State later and can create a

Memento and return it to the Caretaker
- the Caretaker can keep an ordered history of Mementos

!

• Disadvantages!
- Originator’s state could include a lot of data (probably, the overall design needs a review)
- When managing a multiple number of Originators, need to maintain which Memento is for which

Originator
- Both can lead to performance degrading, consider:

‣ Adobe Photoshop can support up to 1000 history states (Undo’s) but limits it to 20(!) states by default!
‣ Before Photoshop v.5.0 (1998) only a single level of Undo was available

!20

Originator
createMemento
setMemento

Memento
getState
setState

Caretaker*

historycreates

© 2012-2013 Elena Punskaya
Cambridge University Engineering Department

Design Patterns Summary
• When thinking of ways of implementing functionality, it helps to check

whether other designers/developers have already come across a similar
problem? If yes, then maybe there is already a “recommended” way of
solving it!

• Don’t re-invent the wheel – use established patterns!

• Helps to keep the implementation design (code) extensible (“design for
change”) and easy to understand!

• There are many sources to get familiar with patterns and concrete
implementations in specific languages/application types:!
!

!

!

• However, using patterns != good design!
- it is NOT about “we implemented 15 patterns in our app, it must be good” or “this is a simple

problem, but I am sure I can make it more complicated and then use design patterns to solve it –
everyone will see then how clever I am”

!21

© 2012-2013 Elena Punskaya
Cambridge University Engineering Department

“Am I Bothered?”
• Job listings that mention “design patterns”!
!

!

!

!

!

!

!

!

!

!

!

• 5,430 on Jobserve and 462 on Stackoverflow

!22

jobserve.co.uk careers.stackoverflow.com

