Design Patterns

Elena Punskaya, elena.punskaya@eng.cam.ac.uk
J13 Elena Punskaya 1
Cambridge University Engineering Department

o Software systems can be very large and very complex. However, we
often find the same architectural structures occurring repeatedly (with
subtle variations), created in response to commonly recurring problems.
These solutions can be identified and recorded as design patterns

e This course will look at a few of the most common design patterns with
two aims:

- To explain how to use these specific patterns in software designs and in communicating about
software that uses them

- To introduce the language of design patterns and illustrate the more general benefits from thinking
about software construction in this way

e A more comprehensive set can be found in

- Design Patterns: Elements of Reusable Object-Oriented Desion Patterns
Software, Erich Gamma et al, Addison-Wesley — EICIW‘EO‘, _—_—
AKA the “Gang Of FOUr” (GOF) bOOk Object-Oriented Software

Erich Gamma
» - - - - ISi(hard Helm
e which describes 23 design patterns in detail e

v
2
S
7]
A
(@]
z
<
=
=
z
=
=z
=
=
=
2
=
93
&
%
P
o
£
c
=
z
(o]
w
o}
i
=
@

© 2012-2013 Elena Punskaya 2
Cambridge University Engineering Department

e While software projects are very diverse, conceptually, there are many
things that are commonly desired

e Can we have a notification when something specific happens?

* Yes, we can! — Observer

e Can we undo the last operation?

e Yes, we can! — Memento and Command

e Can we access all elements of a collection in a sequential order?
e Yes, we can! — lterator

e Can we build an effective system that allows us to display and manipulate
data?

e Indeed! — Model View Controller (MVC)

e All modern programming languages implement a lot of these patterns in
their API, e.g. Collections-lterators

© 2012-2013 Elena Punskaya 3
Cambridge University Engineering Department

e Each pattern could be described using a standard format.

* Motivation: outline some specific functionality that we would like our
software to provide.

e Solution options: explore some ways of providing this functionality and
discuss their limitations.

e Optimal solution: present a preferred solution based on a design pattern.

e Code example: an example of what the design solution looks like using
any programming language.

e Design pattern: discuss the general principle underlying a good solution
and its applicability to other situations. Show the generic design pattern
using UML.

e Disadvantages: discuss the shortcomings of the design pattern and why
you might not want to use it for certain cases.

e We are just familiarising ourselves so will use light version of this
approach!

© 2012-2013 Elena Punskaya 4
Cambridge University Engineering Department

e Composite design pattern is used when we want to operate on individual
items and groups of those in a common way

e Problem

- We want our drawing editor to support grouping and ungrouping operations so that a number of
shapes can be collected together and treated as a single entity.

e Solution 1

- We could add a group member field into Shape to indicate which group each shape belongs to
(using the number -1 to indicate that the object is not in any group)

Shape

-group id: int O - -

+draw ()
+move ()
+get bbox(): BBox

-1 means not
in a group

e Pros — simple, Cons — cannot support nested groups

e Other options? A better approach is to introduce a new class
ShapeGroup to manage a group of shapes. This new class is a subclass
of Shape and so it preserves the standard Shape class interface

© 2012-2013 Elena Punskaya
Cambridge University Engineering Department

5

e The ShapeGroup class provides a means by which several shapes can be
grouped together into a single entity which behaves in the same way as a
single shape.

e Most of the ShapeGroup class methods are implemented simply by
calling the same function for each of its constituent shapes. Computing
the bounding box is only a little bit more complicated and can be done in
a similar manner.

contents

Shape -

+draw()
+move()
+get befég: BBox

W
Rectangle ShapeGroup
- +draw () for each c in contents{
Ellipse +tmove () c->draw();
+get bbox(): BBox }
+add_shape()
- +remove shape()
Picture
: find the min and max of x and y
Equation over all ¢ in contents

© 2012-2013 Elena Punskaya 6
Cambridge University Engineering Department

e Composition of objects: each component can be a leaf or a composite of
other components that in turn can each be either a leaf or a composite

*

Component *
Client works with
operation() children
Z} foreach child in children
{
child.operation()
}
Leaf Composite
operation() operation() O’/

e Disadvantages

- The composite pattern is very powerful, but can sometimes be too general. For example, it is
difficult to restrict the objects which can be included in the composite group.

- Since the Composite class usually has to be extended to provide access to the individual group
members (add/remove), client code must be able to distinguish between composite objects and
non-composite objects.

© 2012-2013 Elena Punskaya 7
Cambridge University Engineering Department

e Allows multiple objects to maintain a consistent view on the state of the

object of interest

Subject

observers SI' Opserver

+Attach(o:0Observer)
+Detach(o:0Observer)
+Notify() O-=-=-=-=-~--

+Update()

}

for each o in observers {
o->Update();

subject

ConcreteSubject }&

+subjectstate:

+GetState()
+SetState()

e Applies virtually everywhere:
- your Twitter followers are your observers

1

ConcreteObserver

+Update() Q

s = subject->GetState();
display(s);

- when you type a search term on Google website, it is observing each keystroke as you type and
tries to provide a match dynamically

- a camera on the phone can notify your app when a snapshot is available

- a multi-window (multi-view) application can maintain a synchronised view

© 2012-2013 Elena Punskaya
Cambridge University Engineering Department

8

Observer

e Disadvantages

e This pattern could lead to a large amount of computational overhead if
not safe-guarded, in particular, if a rate of notifications is high and the
reaction to those updates is a heavy-load operation.

e For example, consider an augmented reality mobile app

- it requests the camera for a real-time snapshots, when the snapshot is ready, the app can analyse
it —a heavy operation, involving image processing, Internet access and update of the user
interface

- however, while we analysing the snapshot 1, a snapshot 2 can be available already
need to make sure we ignore “snapshot ready” notifications while analysing

Layar - Impactful Augmented Reality in Your Everyday Life
by layarmobile

www.layar.com © 2012-2013 Elena Punskaya g
Cambridge University Engineering Department

e Erich Gamma, a co-author of the “original” (published in 1994) book on
Design Patterns — one of the “Gang of Four”

* Interviewed in 2004 to reflect on 10 years of Design Patterns
- Source: http://www.artima.com/lejava/articles/gammadp.html

Erich Gamma: | think patterns as a whole can help people learn object-oriented thinking:
how you can leverage polymorphism, design for composition, delegation, balance
responsibilities, and provide pluggable behavior. Patterns go beyond applying objects to
some graphical shape example, with a shape class hierarchy and some polymorphic draw
method. You really learn about polymorphism when you've understood the patterns. So
patterns are good for learning OO and design in general.

Erich Gamma: One comment | saw in a news group just after patterns started to become
more popular was someone claiming that in a particular program they tried to use all 23
GoF patterns. They said they had failed, because they were only able to use 20. They
hoped the client would call them again to come back again so maybe they could squeeze in
the other 3.

Trying to use all the patterns is a bad thing, because you will end up with synthetic
designs—speculative designs that have flexibility that no one needs. These days software is
too complex. We can't afford to speculate what else it should do. We need to really focus on
what it needs. That's why I like refactoring to patterns. People should learn that when they
have a particular kind of problem or code smell, as people call it these days, they can go to
their patterns toolbox to find a solution.

© 2012-2013 Elena Punskaya
Cambridge University Engineering Department

Decorator

e Decorator Pattern allows to add functionality without changing the
original class
* Problem

- Suppose our drawing editor allows us to include many sorts of shapes including rectangles,
ellipses, text, equations, pictures etc.

Shape

+draw()
+move/()
+£ill()

Rectangle | | Ellipse | | Text Equation Picture

- Now we want to introduce a facility into the editor to allow frames to be added to arbitrary objects.
For example we might want to put a picture frame around an image, or we might want to frame an
equation or some text in a simple box

Section 1

This is text inside a
text box that is going
to get very full after a
while. I am then
going to make the text
so small that you can
hardly see it. Really it
would have been
better to paste in some
real text.

Text

Section 1

This is text inside a
text box that is going
to get very full after a
while. T am then
going to make the text
so small that you can
hardly see it. Really it
would have been
better to paste in some
real text.

Text in a frame
© 2012-2013 Elena Punskaya 11
Cambridge University Engineering Department

e Solution 1

- Since we want to be able to add frames to objects of all types, we could add an attribute into the
Shape class to specify the type of frame the object has (if any)

Shape
-frame type: int
+draw()

+move ()
+f111()

* Pros: simple and adequate for case where we only want to add one
special attribute to shapes

e Cons: the code can become clumsy since, for example, the draw method
would need a case switch for each of the possible frame types

switch(frame_type) {
case NONE: break;
case SIMPLE_FRAME:
draw_simple_frame();
break;

© 2012-2013 Elena Punskaya 12
Cambridge University Engineering Department

e Solution 2

- An alternative would be to derive new classes such as Fr Rectangle, Fr Picture, Fr Equation etc. to
provide framed versions of each shape class

Shape

+draw()
+move ()
+fill()

A
I I | | I

Rectangle Ellipse Text Equation Picture

T T T T T

Fr_Rectangle | |Fr_Ellipse| | Fr_Text| |Fr_Equation Fr_Picture

e Pros: framing can be restricted to particular shapes, efficient use of
storages since frame data is only allocated when actually needed

e Cons: huge proliferation in classes, hard to turn decorations on and off at
runtime

e Note that the framed versions will inherit exactly the same interface as
their parents, as it is essential that any client using any shape object sees
an identical interface

© 2012-2013 Elena Punskaya 13
Cambridge University Engineering Department

Decorator

e Optimal solution

- A much better way to solve this problem is to add a single new subclass of Shape called
FramedShape. Each FramedShape will have a pointer to a Shape object which is the shape

contained in the frame

Shape

tdraw() + contents
+move () 6_
+£i11()

Rectangle

Ellipse

Text

Equation

Picture

JaN

FramedShape
-frame type: int
+draw()o
+move ()
+£il11 ()

1
1
1
-draw_frame () 1
1
1
1

contents->draw () ;
— draw_frame () ;

- The addition of this extra class allows us to frame any kind of shape, simply by creating a
FramedShape object and making its contents point to the Shape object that we want to frame

- We can even create a frame around a FramedShape!

© 2012-2013 Elena Punskaya 14
Cambridge University Engineering Department

Decorator

o Example of the object structure at runtime

- Note, Picture p1 has a double frame

adrawing: DrawingEditor

O

my_shapes|]

%' r1: Rectangle
%' p1: Picture

%' f1: FramedShape

%' el: Ellipse

%' f2: FramedShape

contents .
>| p2: Picture

%' g2: Equation

Contents>| q1: Equation

%' f3: FramedShape

Contents>| f4: FramedShape

\l/contents

p1: Picture

© 2012-2013 Elena Punskaya 15
Cambridge University Engineering Department

e Decorator Pattern provides a way
of adding optional functionality
(“decoration”) to all classes in a
hierarchy without changing the
code for either the base class or
any of the subclasses

- Using this pattern, multiple decorations
can be applied to an object, e.g. we can
add a picture frame and scrollbars (in eithe
order) to a picture in the drawing editor. If
there are several different kinds of
decoration that we want to be able to use,
we can derive a number of classes from the
Decorator class to handle these separate
kinds of added functionality

Client

!

Component

component

1

+Operation()

ComponentType1

+Operation()

Decorator

+Operation() @

ComponentType2

+Operation()

ConcreteDecoratorA

component—>0peration();[ﬁ

-Added_State:

+Operation()

ConcreteDecoratorB

-Added_State:

+Operation() O- === -
+AddedBehaviour ()

== -~ -| Decorator: :0Operation();
AddedBehaviour();

© 2012-2013 Elena Punskaya 16
Cambridge University Engineering Department

e Disadvantages

e If there are not too many kinds of added functionality and they appear
fairly commonly, it may be more convenient to use solution 1

e The decorator pattern can make it hard to resolve the identity of the
objects we are dealing with since the decorator is a distinct object from
the component it decorates. In a running system, this can result in long
chains of small objects that point to each other, making the software hard
to debug

e Consider

[ScrollabIeShape]—»[FramedShape j{shapeWithShadow}—v[ShapeWithReflectionHShapeWithTransparencyj

* Not every feature should become a decorator class!

© 2012-2013 Elena Punskaya 17
Cambridge University Engineering Department

* Memento Pattern allows us to track the state of the object externally,
without knowing all details of that state

 Problem
- A drawing editor is not very useful if it does not support Undo/Redo functionality

e Solution 1
- each action makes a copy of the object before applying changes and saves it

- when Undo is called, the editor substitutes the current reference to the object with a reference to
the previously saved copy of the object

- e.g. before calling ChangeColour(Red) the editor makes a copy of the Shape as
ShapeBeforeTheColourChange, then to Undo, it will “forget” the reference to the Shape and instead
change it to the ShapeBeforeTheColourChange

- What about Redo?

e Pros: the history is maintained without knowing what changed inside the
object

e Cons: expensive — each action makes a full copy of the whole object

© 2012-2013 Elena Punskaya 18
Cambridge University Engineering Department

e Optimal solution
- encapsulate the change into an object of the dedicated class — Memento
- make the Editor to request a Memento from the Shape before applying any changes
- make the Shape responsible for creating and restoring “Mementos”

Shape Memento %
createMemento -------eeeeeeeeee-- > getColour Editor
setMemento creates setColour keeps history
aCircle aMemento theEditor
createMemento
create
... 9

setColour(newColour)

A

setMemento

getColour undo

pa
~

© 2012-2013 Elena Punskaya 19
Cambridge University Engineering Department

 Memento Design pattern allows to capture and externalise object’s
internal state without breaking encapsulation

Originator Memento *
createMemento |----------ei-eeeee- > getState Caretaker
setMemento creates setState history

- Using this pattern, the Caretaker decides when to request a Memento from the Originator

- the Originator knows what data should be saved for restoring its State later and can create a
Memento and return it to the Caretaker

- the Caretaker can keep an ordered history of Mementos

e Disadvantages
- Originator’s state could include a lot of data (probably, the overall design needs a review)

- When managing a multiple number of Originators, need to maintain which Memento is for which
Originator
- Both can lead to performance degrading, consider:
> Adobe Photoshop can support up to 1000 history states (Undo’s) but limits it to 20(!) states by default
> Before Photoshop v.5.0 (1998) only a single level of Undo was available

© 2012-2013 Elena Punskaya 20
Cambridge University Engineering Department

 When thinking of ways of implementing functionality, it helps to check
whether other designers/developers have already come across a similar
problem? If yes, then maybe there is already a “recommended” way of
solving it

 Don’t re-invent the wheel — use established patterns

e Helps to keep the implementation design (code) extensible (“design for
change”) and easy to understand

 There are many sources to get familiar with patterns and concrete
implementations in specific languages/application types:

INSIDEI!

INSIDE! INSIDEI INSIDE!

Cocoa

Design Patterns

Y B
QriRi=pR- PN

e However, using patterns != good design

- it is NOT about “we implemented 15 patterns in our app, it must be good” or “this is a simple
problem, but | am sure | can make it more complicated and then use design patterns to solve it —
everyone will see then how clever | am”

© 2012-2013 Elena Punskaya 21
Cambridge University Engineering Department

“Am | Bothered?”

e Job listings that mention “design patterns”

Home Job Seekers Advertisers Resources

.1l CAREERS 2.0

by stackoverflow

=

Home > Search Results

Quick Search

- 5,340 matching jobs found

PowerSearch || Browsebyindustry | BrowsebyLocation || SearchHistory |

sortby: Search relevance s

462 jobs for “design patterns”

Industry

[17 Industries Selected

|ﬂ ((Within 7 days

Keywords

[design patterns |

Any Job Type

' l

*

Senior Software Developer University of Minnesota Carlson School of Mgmt
Minneapolis, MN

3 weeks ago

15% - Project Management -Develop project plans -Determine Requirements and Scope of Work -Develop...

projoc’amnagemm| asp.net| Aneﬂranwork|ilﬂ

Searching United Kingdom (English) Change 7 PHP BACKEND DEVELOPER (M/W) Zalando GmbH €E) 4 days ago
Berlin, Germany; Germany
Entwicklung, Weiterentwicklung und Optimierung des Backends unserer Web-Plattform sowie diverser...
ZaSAsuggtasmd alternative is "design patterns” click here. php | mysql | mve | zend-framework | design-patterns |
HME Sort by: ((BestMatch #) Format: ((Summary $)with((20 %)
Salary Range _
fory (£ per annum) Java Developer (J2EE) (Sprina) (Desian Pattems *okok D 7 Senior Java Software Developer - Application... Netspend Corporation 3 days ago
Not Specified (576) Locati L K Austin, TX; Atlanta, GA
Below £15000 (15) ocation: ondon, -)) —
ﬂmgﬁ {g; ploy Paribus Global Limited NetSpend Corporation is seeking a Senior Java Software Developer - Application Development Team to...
£25000-£30000 (756) Im.stw ﬁ."""w Pee| java| jboss | weblogic | design-patterns |
£30000-£40000 (1616) Rate: -
£40000-£50000 (1705) o up to £350 per Day))
£50000-£75000 (1634) Java I::\;ebper (J2EE) (Sprbr:;)e(doesg(n Pa:‘ttems) ‘ESOAP) Ja:lt_:e D:veg:opesﬁEE) (ngVm)DLD;sngn Patterns) ;SOAP)
5000-£100000 reguired for exciting project- work with a market-leader. i candidate wil e experience in front-
Aoers £100000 (159). back development through the whole SDLC using an Agile i and SCRUM On the 7 Software Developer The Motley Fool 3 days ago
te (£ per hour) *Calc. Dall B:;;lj 2EEng m:h uve.:b nga pwogpqr (J2nEdE) (Spring) (Design Patterns) (SOAP) will have experience with both Core Java Alexandria, VA (relocation offered)
P -

ggﬁf’ggﬁéf ™ :oslod: 02102/2012 1:436:0 R':,;‘:,';:“:"_\,;:EHAVS;, Job Summary: The Software Developer will be responsible for enhancing and supporting The...
£10-£20 (59)
22083 o .Net Developer/DotNet - C#, ASP.NET, MVC & Design Pattems adaard Aroly | ﬂ ﬂ
g&gg {:;3 Location: Hampshire, UK)
£65-£80 (200 Employment Agency: Nationwide People Ltd nationwide
£90.£100 (99) Type: Pormanent O v 7 DevOps engineer / Web developer TheFrameworks 6 days ago
Above £100 (12) Industry: T London

Rate: £42K + Bens i i ol i
All None Net Developer/DotNet - G, ASP.NET, MVC & Design Patters. Our Household name client based in Hampshire seeks We have a great opportunity for a DevOps Engineer / Web Developer to join our growing London web...

an astute, dynamic and technically focused .NET Developer with 3-4 years' experience. The ideal NET developer with

C# NET programming language will also have experience of ASP.NET, MVC, Design Patterns and Practices and will be linux | apache | mysql| php

working on live applications issues, design, develop, test and delivery solutions in effective manner. A key part of the

Industries role is to review changes and faults more ->

jobserve.co.uk

careers.stackoverflow.com

e 5,430 on Jobserve and 462 on Stackoverflow

© 2012-2013 Elena Punskaya
Cambridge University Engineering Department

22

