Question 1

Signal Space: Consider the four waveforms \(x_1(t), \ldots, x_4(t) \) shown below.

(a) Determine the dimensionality of the waveforms and a set of orthonormal basis functions.

(b) Use the basis functions to represent the four waveforms by vectors \(x_1, x_2, x_3, x_4 \).

(c) The distance between any two waveforms \(x_i(t), x_j(t) \) can be defined as

\[
d_{ij} = \left(\int (x_i(t) - x_j(t))^2 dt \right)^{\frac{1}{2}}.
\]

Show that \(d_{ij} = \|x_i - x_j\| \). (Note that \(\|x\| \) denotes the Euclidean norm of the vector \(x \).)

(d) Use part (c) to determine the minimum distance between any pair of waveforms shown above.

Question 2

Detection with non-uniform symbol probabilities: Consider BPSK modulation with symbols \(\{+A, -A\} \) over the discrete-time AWGN channel

\[
Y = X + N
\]

where \(N \) is Gaussian noise \(\sim \mathcal{N}(0, N_0/2) \). Suppose that \(P(X = A) = p \) and \(P(X = -A) = 1 - p \).

(a) Derive the detection rule that that minimises the probability of detection error. Sketch the decision regions when \(p = 2/3 \) and \(A/N_0 = 4 \).

(b) Obtain the average probability of detection error, first in terms of \(p, A, N_0 \), then express in terms of \(p \) and \(E_b/N_0 \).
Question 3

M-ary Pulse Amplitude Modulation (PAM): Consider the M-ary PAM constellation shown in the figure below. For \(M \geq 2 \), the constellation consists of \(M \) symbols \(\{p_1, \ldots, p_M\} \) on the real line, symmetric around 0 and with equal spacing \(d \) between symbols. That is,

\[
p_i = (2i - 1 - M)\frac{d}{2}, \quad i = 1, \ldots, M
\]

Suppose that we use this constellation to signal over the discrete-time AWGN channel

\[
Y = X + N
\]

where the Gaussian noise \(N \) is distributed \(\sim \mathcal{N}(0, N_0/2) \). Assuming all the constellation symbols are equally likely:

(a) Sketch the decision regions that minimise the probability of detection error.

(b) Obtain the probability of error when \(p_1 \) or \(p_M \) is sent.

(c) Obtain the probability of error when \(p_i \) is sent, for \(2 \leq i \leq M - 1 \). Combine this with part (b) to obtain an expression for the overall probability of error \(P_e \).

(d) Show that the average symbol energy \(E_s \) is \(\frac{(M^2 - 1)d^2}{12} \). (Induction may be useful)

(e) Express the probability of error \(P_e \) in terms of \(\frac{E_b}{N_0} \). For fixed \(E_b/N_0 \), how does \(P_e \) vary as \(M \) increases? Is this what you’d expect?

Question 4

Quadrature Phase Shift Keying: Consider QPSK modulation over an AWGN channel

\[
Y = X + N
\]

where the noise \(N \) is a complex random variable distributed as \(\mathcal{CN}(0, N_0) \), i.e., the real and imaginary parts of \(N \) are i.i.d. Gaussian \(\sim \mathcal{N}(0, N_0/2) \). \(X \) is a symbol drawn uniformly from the QPSK constellation below.

\[
p_1 = (-A/\sqrt{2}, A/\sqrt{2}) \quad \quad p_2 = (A/\sqrt{2}, -A/\sqrt{2})
\]

\[
p_3 = (-A/\sqrt{2}, -A/\sqrt{2}) \quad \quad p_4 = (A/\sqrt{2}, A/\sqrt{2})
\]

Sketch the optimal decision regions, and show the probability of detection error \(P_e \leq 2Q(\sqrt{2E_b/N_0}) \).

(The main steps involved in computing \(P_e \) are outlined in Handout 7.)
Question 5

Quadrature Amplitude Modulation: Consider the 16-QAM constellation shown in the figure below, with adjacent symbols in the vertical and horizontal directions spaced d apart.

![16-QAM constellation diagram]

This constellation is used for signalling (with uniform distribution on the symbols) over the AWGN channel

$$Y = X + N.$$

The noise N is a complex random variable distributed as $CN(0, N_0)$, i.e., the real and imaginary parts of N are i.i.d. Gaussian $\sim N(0, N_0/2)$.

(a) Derive an upper bound for the probability of error when $X = p_1$ (or $X = p_4/p_{13}/p_{16}$, one of the corner points of the constellation).

(b) Derive an upper bound for the probability of error when $X = p_2$.

(c) Derive an upper bound for the probability of error when $X = p_6$.

(d) Using the union bound show that the average probability of error satisfies

$$P_e \leq 3Q\left(\frac{d}{\sqrt{2N_0}}\right) = 3Q\left(\sqrt{\frac{4E_b}{5N_0}}\right)$$

where E_b is the average energy per bit of the constellation. (For the last equality, you’ll first need to show that $E_s = 2.5d^2$)

Question 6

M-ary FSK: After demodulation, an M-ary FSK receiver has the length-M vector Y, given by

$$Y = X + N,$$

where N_1, \ldots, N_s are i.i.d. Gaussian $\sim N(0, N_0/2)$. If message i was transmitted, X has $\sqrt{E_s}$ in the ith entry and zeros elsewhere. Note that $E_s = E_b\log_2 M$ is the transmitted energy per symbol.

(a) Derive the optimal detection rule for the M-ary FSK receiver.

(b) Show that the probability of detection error can be bounded as $P_e \leq e^{-(\log_2 M)(\frac{E_b}{N_0}-2\ln 2)}$. (The main steps are outlined in Handout 7. You also need to use the bound $Q(x) < \frac{1}{2}e^{-x^2/2}$ for $x > 0$.)

(c) Compare the bandwidth efficiency (rate/bandwidth) of M-ary FSK with M-ary QAM assuming that the bandwidth of the QAM signal is $2W$ where $W = \frac{1}{T}$. Can you give an intuitive explanation for why QAM is more bandwidth efficient than FSK as M grows large?
(d) How do the probabilities of detection error for the two modulation schemes (M-QAM and M-FSK) compare as M grows large? (Hint: using a union bound, show that the probability of error for any symbol of square M-QAM constellation (like in Q.5) can be bounded by $4Q\left(\frac{d}{\sqrt{2N_0}}\right)$; then use the fact that $d^2 = \kappa E_s = \kappa E_b \log_2 M$ for some constant κ.)

Question 7

BPSK over a Rayleigh Flat Fading channel: In Handout 10, we showed that the probability of error for BPSK over a fading channel with coherent detection is given by

$$P_e = \mathbb{E} \left[Q\left(\sqrt{2|h|^2 \text{snr}}\right) \right] \quad \text{where snr} = \frac{E_b}{N_0}. \quad (1)$$

Recall that $|h|^2$, the squared-magnitude of the fading coefficient h has an exponential density f:

$$f(x) = \exp(-x), \quad x \geq 0.$$

Show that the average error probability in (1) is equal to $\frac{1}{2} \left(1 - \sqrt{\frac{\text{snr}}{1+\text{snr}}}\right)$.

(Hint: Write the expression in (1) as a double integral and interchange the order of integration.)

Question 8

Diversity via Repetition coding: Consider the fading channel

$$Y = hX + N$$

In Handout 10, we saw how repetition coding can be used to improve the error performance of BPSK on the fading channel. Here we explore repetition coding with QPSK symbols. Consider L uses of the channel above to transmit a symbol x drawn uniformly from the QPSK constellation shown in Question 6. The output vector is

$$\mathbf{Y} = \mathbf{h}x + \mathbf{N}$$

where $\mathbf{h} = (h[1], \ldots, h[L])^T$ is a vector of complex Gaussian rvs that are i.i.d. $\sim \mathcal{CN}(0,1)$. (We assume that there is interleaving so that the L uses of the channel are over different coherence periods.) $\mathbf{N} = (N[1], N[2], \ldots, N[m])^T$ is a vector of complex Gaussian rvs that are i.i.d. $\sim \mathcal{CN}(0, N_0)$.

We now perform coherent detection.

(a) Project \mathbf{Y} along the direction of \mathbf{h}, and observe that the problem reduces to an instance of QPSK detection in AWGN. Write down or sketch the decision regions.

(b) Show that the probability of error conditioned on \mathbf{h} is upper bounded by $2Q\left(\sqrt{\frac{2|h|^2 E_b}{N_0}}\right)$.

(c) The Q function can be upper bounded as $Q(x) < \frac{1}{2} e^{-x^2/2}$ for $x > 0$. Use this to show that

$$P_e|\mathbf{h} \leq \prod_{m=1}^{L} e^{-\frac{E_b}{N_0}|h[m]|^2}$$

(d) Show that the average probability of error is

$$P_e < \left(1 + \frac{E_b}{N_0}\right)^{-L}$$

Hint: Use the fact that the rvs $|h[m]|^2$ for $m = 1, \ldots, L$ are i.i.d. with exponential density $f(x) = e^{-x}, \ x \geq 0$
(e) Repeat the steps above assuming \(x \) came from a 4-PAM constellation \(\{-3d/2, -d/2, d/2, 3d/2\} \). Show that the average probability of error is upper bounded by

\[
P_e < \frac{3}{4} \left(1 + \frac{2E_b}{5N_0}\right)^{-L}.
\]

(Your calculations for Question 5 will be useful)

Thus QPSK has better error performance than 4-PAM as \(E_b/N_0 \) gets large though both transmit 2 bits per symbol. This is because QPSK uses two dimensions, while PAM packs all four symbols along the same dimension.

Question 9

Diversity via multiple Transmit Antennas:

Answers

Q1. (d) The minimum distance between waveforms is \(\sqrt{5} \).

Q2. (a) Decode \(\hat{X} = A \) when \(Y \geq T \) and \(\hat{X} = -A \) when \(Y < T \), where the threshold \(T = \frac{N_0}{4A} \ln \left(\frac{1-p}{p}\right) \).

Note that \(T = 0 \), when \(p = \frac{1}{2} \).

(c) \(P_e = p Q \left(\frac{A-T}{\sqrt{N_0/2}} \right) + (1-p) Q \left(\frac{A+T}{\sqrt{N_0/2}} \right) \); \(E_b = A^2 \)

Q3. (b) \(Q \left(\frac{d}{\sqrt{2N_0}} \right) \); (c) \(2Q \left(\frac{d}{\sqrt{2N_0}} \right) \), overall \(P_e = \frac{2(M-1)}{M} Q \left(\frac{d}{\sqrt{2N_0}} \right) \)

Q5. (a) \(2Q \left(\frac{d}{\sqrt{2N_0}} \right) \); (b) \(3Q \left(\frac{d}{\sqrt{2N_0}} \right) \); (c) \(4Q \left(\frac{d}{\sqrt{2N_0}} \right) \)