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The Typical Set

Recall the AEP:
If X1,X2, . . . are i.i.d. ∼ P, then for any ε > 0

Pr

( ∣∣∣∣−
1

n
logP(X1,X2, . . . ,Xn)− H(X )

∣∣∣∣ < ε

)
n→∞−→ 1.

The typical set Aε,n with respect to P is the set of sequences
(x1, . . . , xn) ∈ X n with the property

2−n(H(X )+ε) ≤ P(x1, . . . , xn) ≤ 2−n(H(X )−ε)

“Sequences whose probability is concentrated around 2−nH(X )”

Note the dependence on n and ε

A sequence belonging to the typical set is called an ε-typical
sequence.
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Properties of the Typical Set

Notation: We will use X n to denote the vector X1,X2, . . . ,Xn

Property 1

If X n = (X1, . . . ,Xn) is generated i.i.d. ∼ P, then

Pr(X n ∈ Aε,n)
n→∞−→ 1

Proof: From the definition of Aε,n, note that

X n ∈ Aε,n ⇔ 2−n(H(X )+ε) ≤ P(X n) ≤ 2−n(H(X )−ε) (1)

⇔ H(X )− ε ≤ − 1
n logP(X n) ≤ H(X ) + ε

AEP says that

Pr(X n ∈ Aε,n) = Pr
(
H(X )− ε ≤ − 1

n logP(X n) ≤ H(X ) + ε
)

n→∞−→ 1.
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Property 2

|Aε,n| ≤ 2n(H(X )+ε)

(|Aε,n| is the number of elements in the set Aε,n)

Proof:

1 =
∑

xn∈X n

P(xn)

≥
∑

xn∈Aε,n
P(xn)

(a)

≥
∑

xn∈Aε,n
2−n(H(X )+ε)

= 2−n(H(X )+ε) |Aε,n|

Hence |An,ε| ≤ 2n(H(X )+ε). (Inequality (a) follows from the
definition of the typical set.)

4 / 19



Property 3

For sufficiently large n, |Aε,n| ≥ (1− ε) 2n(H(X )−ε)

Proof: From Property 1, Pr(X n ∈ Aε,n)→ 1 as n→∞.
This means that for any ε > 0, for sufficiently large n we have
Pr(X n ∈ Aε,n) > 1− ε. Thus, for sufficiently large n:

1− ε < Pr(X n ∈ Aε,n)

=
∑

xn∈Aε,n
P(xn)

(b)

≤
∑

xn∈Aε,n
2−n(H(X )−ε)

= 2−n(H(X )−ε) |Aε,n|

Hence |An,ε| ≥ (1− ε)2n(H(X )−ε). (Inequality (b) follows from the
definition of the typical set.)
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Properties of the Typical Set

Summary: For large n,

Suppose you generate X1, . . . ,Xn i.i.d. ∼ P. With high
probability, the sequence you obtain will be typical, i.e., its
probability is close to 2−nH(X ).

The number of typical sequences is close to 2nH(X ).

How is all this relevant to communication ?

We will soon answer this. First, data compression.
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Compression
GOAL: To compress a source producing symbols X1,X2, . . . that
are i.i.d. ∼ P

For concreteness, consider English text:

X = {a b . . . z , . space ; @ #} |X | = 32

(English text is not really i.i.d., but for now assume it is)

Assume that we know the source entropy H(X ).

H(X ) can be estimated by measuring the frequency of each
symbol. E.g. by measuring the frequencies of a, b etc.
separately, the entropy estimate for English text is ≈ 4 bits.

Näıve Representation

List all the |X |n possible length n sequences.

Index these as {0, 1, . . . , |X |n − 1} using dlog|X |ne bits

Number of bits/ sequence = n log|X | (5n for English)
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Compression via the Typical Set

All |X |n sequences

Aε,n

2n(H(X )+ε) sequences

Compression scheme:

There are at most 2n(H(X )+ε) ε-typical sequences.
(2n(4+ε) for our example)

Index each sequence in Aε,n using dlog 2n(H(X )+ε)e bits. Prefix
each of these by a flag bit 0.

Bits/typical seq. = dn(H(X ) + ε)e+ 1 ≤ n(H(X ) + ε) + 2

Index each sequence not in Aε,n using dlog|X |ne bits . Prefix
each of these by a flag bit 1.

Bits/non-typical seq. = dn log|X |e+ 1 ≤ n log|X |+ 2

This code assigns a unique codeword to each sequence in |X |n
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Average code length

Let `(X n) be length of the codeword assigned to sequence X n.

E[`(X n)] =
∑

xn

P(xn)`(xn)

=
∑

xn∈Aε,n
P(xn)`(xn) +

∑

xn /∈Aε,n
P(xn)`(xn)

≤
∑

xn∈Aε,n
P(xn)(n(H(X ) + ε) + 2) +

∑

xn /∈Aε,n
P(xn)(n log|X |+ 2)

≤ 1 · n(H(X ) + ε) + ε · n log|X |+ 2

= n(H(X ) + ε) + εn log|X |+ 2

= n(H(X ) + ε′)

where ε′ = ε+ ε log|X |+ 2
n .

ε′ can be made arbitrarily small by picking ε small enough and then
n sufficiently large.
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Fundamental Limit of Compression
We have just shown that we can represent sequences X n using
nH(X ) bits on the average.

More precisely . . .

Let X n be i.i.d. ∼ P. Fix any ε > 0. For n sufficiently large, there
exists a code that maps sequences xn of length n into binary
strings such that the mapping is one-to-one and

E
[
1
n`(X

n)
]
≤ H(X ) + ε.

In fact, more is true – you cannot do any better than H(X ), i.e.,

The expected length of any uniquely decodable code satisfies

E
[
1
n`(X

n)
]
≥ H(X )

(For a proof of this, see [Cover & Thomas, Chapter 5]; also in 3F1 notes.)

Entropy is the fundamental limit of lossless compression
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All |X |n sequences

Aε,n

2n(H(X )+ε) sequences

The typical set is very small subset of the set of all sequences,
but contains almost all the probability!
This is the reason that even with an i.i.d. model, English text
can be compressed to ≈ 4 bits/sample.
Can compress even more if we consider correlations in the
text. E.g. q always followed by u.
What kind of source cannot be compressed at all ?

Is this scheme practical?

- No. To find the codeword for any xn, we need to go through
a table of 2nH entries – computationally complex!

- Practical schemes like Huffman coding, Lempel-Ziv achieve
rates close to the entropy with much lower complexity. (3F1)
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Relative entropy

The relative entropy or the Kullback-Leibler (KL) divergence
between two pmfs P and Q is

D(P||Q) =
∑

x∈X
P(x) log

P(x)

Q(x).

(Note: P and Q are defined on the same alphabet X )

Measure of distance between distributions P and Q

Not a true distance. For e.g., D(P||Q) 6= D(Q||P).

D(P||Q) ≥ 0 with equality if and only if P = Q.

Proof : First use log a = ln a
ln 2 . Then use the fact that

ln a ≤ (a− 1) with equality iff a = 1.
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Mutual Information
Consider two random variables X and Y with joint pmf PXY . The
mutual information between X and Y is defined as

I (X ;Y ) = H(X )− H(X |Y ) bits.

“Reduction in the uncertainty of X when you observe Y ”

Property 1

I (X ;Y ) = H(X ) + H(Y )− H(X ,Y )

= H(Y )− H(Y |X )

“X says as much about Y as Y says about X”

Proof : From the chain rule of entropy,

H(X ,Y ) = H(X ) + H(Y |X ) = H(Y ) + H(X |Y ).

In the definition of I (X ;Y ), use H(X |Y ) = H(X ,Y )− H(Y ).
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Venn Diagram

H(X ) H(Y )
I (X ;Y )

The two circles together represent H(X ,Y )

Questions

1 What is I (X ;Y ) when X and Y are independent? Ans: 0

2 What is I (X ;Y ) when Y = X? Ans: H(X )

3 What is I (X ;Y ) when Y = f (X )? Ans: H(Y ) = H(f (X ))
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Example
X is the event that tomorrow is cloudy; Y is the event that it will
rain tomorrow. Joint pmf PXY :

Rain No Rain

Cloudy 3/8 3/8

Not cloudy 1/16 3/16

In Handout 1, we calculated:

H(X ,Y ) = 1.764, H(X ) = 0.811, H(Y |X ) = 0.953

To compute I (X ;Y ), we need to compute H(Y ) (or H(X |Y )).

P(Y = rainy) = 3
8 + 1

16 = 7
16 , P(Y = not rainy) = 9

16

H(Y ) = 0.989

I (X ;Y ) = H(Y )− H(Y |X ) = 0.036

Verify that you get the same answer by computing H(X |Y ) and
using I (X ;Y ) = H(X )− H(X |Y ).
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Property 2 of Mutual Information

I (X ;Y ) = D (PXY ||PXPY )

“The relative entropy between the joint pmf and the product of
the marginals”

Proof:

I (X ;Y ) = H(X )− H(X |Y )

= −
∑

x

PX (x) logPX (x) +
∑

x ,y

PXY (x , y) logPX |Y (x |y)

=
∑

x ,y

PXY (x , y) log
PX |Y (x |y)

PX (x)

=
∑

x ,y

PXY (x , y) log
PX |Y (x |y)PY (y)

PX (x)PY (y)

= D (PXY ||PXPY ) .
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Property 3

I (X ;Y ) ≥ 0

Proof: Follows from Property 2 because D(P||Q) ≥ 0 for any pair
of pmfs P,Q.

Implication:

H(X |Y ) ≤ H(X ), H(Y |X ) ≤ H(Y )

“ Knowing another random variable Y can only reduce the average
uncertainty in X”

Preview:

Let X be the input to a communication channel, and Y the
output.
We will show that I (X ;Y ) is key to understanding of how
much information can be transmitted over the channel.

“Reduction in the uncertainty of the channel input X when you
observe the output Y ”
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You can now do Questions 1 – 10 on Examples Paper 1.
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