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The Typical Set

Recall the AEP:
If X1,X5,...areiid. ~ P, then forany e >0

]. n—,oo
Pr<‘——IogP(Xl,Xg,...,Xn)—H(X)‘<e> o
n

The typical set Ac, with respect to P is the set of sequences
(x1,...,%p) € X" with the property

2 nHXH) < Py, . x,) < 27HO=9)

“Sequences whose probability is concentrated around 2—"H(X)”
@ Note the dependence on n and ¢

@ A sequence belonging to the typical set is called an e-typical
sequence.
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Properties of the Typical Set

Notation: We will use X" to denote the vector X1, X5,..., X,
Property 1
If X" = (X1,...,X,) is generated i.i.d. ~ P, then

Pr(X" € A.,) =31

Proof: From the definition of Ac ,, note that

X" e Ae,n o= 2—n(H(X)+e) < P(Xn) < 2—n(H(X)—e) (1)
& H(X)—e<— LlogP(X") < H(X)+e

AEP says that

Pr(X" € Acn) = Pr(H(X) —e< — %log P(X") < H(X) —I—e) 3.

[]
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Property 2
A | < 2n(H(X)+e)
(|Ac,n| is the number of elements in the set A, )
Proof-:
1= )  P(x")
XneXn
- Y P
X"EAE,,,
(a) B
= o—n(H(X)+e)
X EAe,n
— 2~ n(HX)+) 1A,
Hence |A, | < 2"(H(X)+€) (Inequality (a) follows from the
definition of the typical set.) ]
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Property 3
For sufficiently large n, |Ac,| > (1 —¢€) 2"(H(X)=)

Proof. From Property 1, Pr(X" € Acn) = 1 as n — oo.
This means that for any € > 0, for sufficiently large n we have
Pr(X" € Acn) > 1 — €. Thus, for sufficiently large n:

1—e< Pr(X" € Acn)

Hence |An| > (1 —¢€)2"H(X)=9)  (Inequality (b) follows from the
definition of the typical set.) ]
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Properties of the Typical Set

Summary: For large n,

@ Suppose you generate Xi,..., X, i.i.d. ~ P. With high
probability, the sequence you obtain will be typical, i.e., its
probability is close to 2~ "H(X),

@ The number of typical sequences is close to 2"H(X).

How is all this relevant to communication ?

We will soon answer this. First, data compression.
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Compression

GOAL: To compress a source producing symbols X1, X, ... that
are i.iid. ~ P

@ For concreteness, consider English text:
X={ab ...z, . space; @#} |X| = 32

(English text is not really i.i.d., but for now assume it is)
@ Assume that we know the source entropy H(X).

@ H(X) can be estimated by measuring the frequency of each
symbol. E.g. by measuring the frequencies of a, b etc.
separately, the entropy estimate for English text is ~ 4 bits.

Naive Representation

@ List all the |X|" possible length n sequences.
@ Index these as {0,1,...,|X|" — 1} using [log|X|"| bits

Number of bits/ sequence = nlog|X| (5n for English)
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Compression via the Typical Set

All |X|" sequences 2n(H(X)+€) sequences
Compression scheme:

@ There are at most 2"(H(X)+€) ¢ typical sequences.
(27(4+€) for our example)

o Index each sequence in A, using [log 2"(H(X)+€)] bits. Prefix
each of these by a flag bit O.
Bits/typical seq. = [n(H(X)+€)] +1 < n(H(X)+e¢€)+2
@ Index each sequence not in A, using [log|X|"] bits . Prefix
each of these by a flag bit 1.
Bits/non-typical seq. = [nlog|X|] + 1 < nlog|X| + 2

This code assigns a unique codeword to each sequence in |X'|"
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Average code length

Let £(X") be length of the codeword assigned to sequence X".
E[(X™M)] =) P(x")(x")
= 3 PEN + Y P

X”EAQ,, X"¢Ae,n

< ) PEM(n(H(X)+e)+2) + Y P(x")(nlog|X| +2)
XnEAe,n XngAe,n

<1-n(H(X)+¢€) + €-nlog|X|+2

= n(H(X) + €) + enlog|X| + 2
= n(H(X) + ¢€)

where € = € + elog|X| + 2.
¢’ can be made arbitrarily small by picking € small enough and then
n sufficiently large.
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Fundamental Limit of Compression

We have just shown that we can represent sequences X" using
nH(X) bits on the average.

More precisely . ..

Let X" be i.i.d. ~ P. Fix any € > 0. For n sufficiently large, there
exists a code that maps sequences x" of length n into binary
strings such that the mapping is one-to-one and

E [F4(X™)] < H(X) +e.

In fact, more is true — you cannot do any better than H(X), i.e.,

The expected length of any uniquely decodable code satisfies
E [L0(X")] > H(X)
(For a proof of this, see [Cover & Thomas, Chapter 5]; also in 3F1 notes.)

Entropy is the fundamental limit of lossless compression |
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ram of English text = Norvig (2013)

TUVWXY Z

U@@[

This is a histogram of letter occurrences in English text, obtained by == Norvig (2013) using
millions of books from Google's n-gram corpus.

E
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All |X|" sequences 2n(H(X)+€) sequences

@ The typical set is very small subset of the set of all sequences,
but contains almost all the probability!

@ This is the reason that even with an i.i.d. model, English text
can be compressed to ~ 4 bits/sample.

@ Can compress even more if we consider correlations in the
text. E.g. g always followed by wu.

@ What kind of source cannot be compressed at all ?

Is this scheme practical?

- No. To find the codeword for any x", we need to go through
a table of 27" entries — computationally complex!

- Practical schemes like Huffman coding, Lempel-Ziv achieve
rates close to the entropy with much lower complexity. (3F1)
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Relative entropy

The relative entropy or the Kullback-Leibler (KL) divergence
between two pmfs P and Q is

P(x)
Q(x).

D(P||Q) = ) P(x)log

xeX

(Note: P and @ are defined on the same alphabet X))

@ Measure of distance between distributions P and @
@ Not a true distance. For e.g., D(P||Q) # D(Q||P).
e D(P||Q) > 0 with equality if and only if P = Q.

Ina

Proof : First use loga = ;5. Then use the fact that
Ina < (a— 1) with equality iff a = 1.
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Mutual Information

Consider two random variables X and Y with joint pmf Pxy. The
mutual information between X and Y is defined as

I(X;Y) = H(X) = H(X|Y) bits.

“Reduction in the uncertainty of X when you observe Y"
Property 1

I(X;Y) = H(X)+ H(Y) — H(X, Y)
= H(Y) — H(Y|X)

“X says as much about Y as Y says about X"

Proof : From the chain rule of entropy,
H(X,Y)=H(X)+ H(Y|X)=H(Y)+ H(X]|Y).
In the definition of /(X;Y), use H(X|Y)=H(X,Y)—H(Y). [T
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Venn Diagram

1(X;Y)
H(X) H(Y)

The two circles together represent H(X, Y)

Questions
@ What is /(X; Y) when X and Y are independent?  Ans: 0
@ Whatis /(X;Y) when Y = X?  Ans: H(X)
© Whatis I(X;Y) when Y = f(X)? Ans: H(Y) = H(f(X))
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Example
X is the event that tomorrow is cloudy; Y is the event that it will
rain tomorrow. Joint pmf Pxy:

Rain | No Rain
Cloudy 3/8 3/8
Not cloudy | 1/16 | 3/16

In Handout 1, we calculated:
H(X,Y)=1.764, H(X) = 0.811, H(Y|X) = 0.953

To compute /(X; Y), we need to compute H(Y) (or H(X|Y)).

P(Y = rainy):§+%:1—76, P(Y = not rainy):l%

H(Y) = 0.989
I(X;Y) = H(Y)— H(Y|X) = 0.036

Verify that you get the same answer by computing H(X|Y') and
using /(X;Y) = H(X) — H(X]|Y).
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Property 2 of Mutual Information

/(X, Y) = D(nyHP)(Py)

“The relative entropy between the joint pmf and the product of
the marginals”

Proof-
I(X;Y)=H(X)— H(X]Y)

==Y Px(x)log Px(x)+ Y Pxy(x,y)log Pxjy(x|y)
Pxiv(x1y)
Px(x)

Px |y (x]y)Py(y)
Px(x)Py(y)

— Z PXY(Xay) IOg

X,y
— Z PXY(X;)/) |Og
4
= D (Pxy||PxPy).
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Property 3
I(X;Y) >0

Proof. Follows from Property 2 because D(P||Q) > 0 for any pair
of pmfs P, Q.

Implication:
H(XIY) < H(X), H(YIX) < H(Y)

“ Knowing another random variable Y can only reduce the average
uncertainty in X"

Preview:
@ Let X be the input to a communication channel, and Y the
output.
e We will show that /(X;Y) is key to understanding of how
much information can be transmitted over the channel.
“Reduction in the uncertainty of the channel input X when you
observe the output Y"
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You can now do Questions 1 — 10 on Examples Paper 1.
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