4F5: Advanced Communications and Coding Handout 2: The Typical Set, Compression, Mutual Information

Ramji Venkataramanan

Signal Processing and Communications Lab Department of Engineering ramji.v@eng.cam.ac.uk

Michaelmas Term 2015

The Typical Set

Recall the AEP: If X_1, X_2, \ldots are i.i.d. $\sim P$, then for any $\epsilon > 0$

$$Pr\left(\left| -\frac{1}{n} \log P(X_1, X_2, \dots, X_n) - H(X) \right| < \epsilon \right) \stackrel{n \to \infty}{\longrightarrow} 1.$$

The *typical set* $A_{\epsilon,n}$ with respect to P is the set of sequences $(x_1, \ldots, x_n) \in \mathcal{X}^n$ with the property

$$2^{-n(H(X)+\epsilon)} \leq P(x_1,\ldots,x_n) \leq 2^{-n(H(X)-\epsilon)}$$

"Sequences whose probability is concentrated around $2^{-nH(X)}$ "

- Note the dependence on n and ϵ
- A sequence belonging to the typical set is called an ε-typical sequence.

Properties of the Typical Set

Notation: We will use X^n to denote the vector X_1, X_2, \ldots, X_n

Property 1
If
$$X^n = (X_1, ..., X_n)$$
 is generated i.i.d. $\sim P$, then
 $Pr(X^n \in A_{\epsilon,n}) \stackrel{n \to \infty}{\longrightarrow} 1$

Proof: From the definition of $A_{\epsilon,n}$, note that

$$X^{n} \in A_{\epsilon,n} \iff 2^{-n(H(X)+\epsilon)} \le P(X^{n}) \le 2^{-n(H(X)-\epsilon)}$$
(1)
$$\Leftrightarrow H(X) - \epsilon \le -\frac{1}{n} \log P(X^{n}) \le H(X) + \epsilon$$

AEP says that

$$Pr(X^n \in A_{\epsilon,n}) = Pr(H(X) - \epsilon \le -\frac{1}{n} \log P(X^n) \le H(X) + \epsilon) \stackrel{n \to \infty}{\longrightarrow} 1.$$

3/19

Property 2

$$|A_{\epsilon,n}| \leq 2^{n(H(X)+\epsilon)}$$

 $(|A_{\epsilon,n}|$ is the number of elements in the set $A_{\epsilon,n})$

Proof:

$$1 = \sum_{x^n \in \mathcal{X}^n} P(x^n)$$

$$\geq \sum_{x^n \in A_{\epsilon,n}} P(x^n)$$

$$\stackrel{(a)}{\geq} \sum_{x^n \in A_{\epsilon,n}} 2^{-n(H(X)+\epsilon)}$$

$$= 2^{-n(H(X)+\epsilon)} |A_{\epsilon,n}|$$

Hence $|A_{n,\epsilon}| \leq 2^{n(H(X)+\epsilon)}$. (Inequality (a) follows from the definition of the typical set.)

4/19

Property 3

For sufficiently large *n*,
$$|A_{\epsilon,n}| \geq (1-\epsilon) 2^{n(H(X)-\epsilon)}$$

Proof: From Property 1, $Pr(X^n \in A_{\epsilon,n}) \to 1$ as $n \to \infty$. This means that for any $\epsilon > 0$, for sufficiently large n we have $Pr(X^n \in A_{\epsilon,n}) > 1 - \epsilon$. Thus, for sufficiently large n:

$$1 - \epsilon < \Pr(X^{n} \in A_{\epsilon,n})$$

$$= \sum_{x^{n} \in A_{\epsilon,n}} \Pr(x^{n})$$

$$\stackrel{(b)}{\leq} \sum_{x^{n} \in A_{\epsilon,n}} 2^{-n(H(X) - \epsilon)}$$

$$= 2^{-n(H(X) - \epsilon)} |A_{\epsilon,n}|$$

Hence $|A_{n,\epsilon}| \ge (1-\epsilon)2^{n(H(X)-\epsilon)}$. (Inequality (b) follows from the definition of the typical set.)

Properties of the Typical Set

Summary: For large *n*,

- Suppose you generate X₁,..., X_n i.i.d. ∼ P. With high probability, the sequence you obtain will be typical, i.e., its probability is close to 2^{-nH(X)}.
- The number of typical sequences is close to $2^{nH(X)}$.

How is all this relevant to communication ?

We will soon answer this. First, data compression.

5/19

Compression

GOAL: To compress a source producing symbols X_1, X_2, \ldots that are i.i.d. $\sim P$

• For concreteness, consider English text:

$$\mathcal{X} = \{a \ b \ \dots \ z \ , \ \dots \ space \ ; \ \mathbf{0} \ \#\} \qquad |\mathcal{X}| = 32$$

(English text is not really i.i.d., but for now assume it is)

- Assume that we know the source entropy H(X).
- H(X) can be estimated by measuring the frequency of each symbol. E.g. by measuring the frequencies of a, b etc. separately, the entropy estimate for English text is ≈ 4 bits.

Naïve Representation List all the |X|ⁿ possible length n sequences. Index these as {0,1,...,|X|ⁿ − 1} using [log|X|ⁿ] bits Number of bits/ sequence = n log |X| (5n for English)

Compression via the Typical Set

Compression scheme:

- There are at most 2^{n(H(X)+ε)} ε-typical sequences.
 (2^{n(4+ε)} for our example)
- Index each sequence in A_{ϵ,n} using [log 2^{n(H(X)+ϵ)}] bits. Prefix each of these by a flag bit 0.

Bits/typical seq. = $\lceil n(H(X) + \epsilon) \rceil + 1 \le n(H(X) + \epsilon) + 2$

• Index each sequence *not* in $A_{\epsilon,n}$ using $\lceil \log |\mathcal{X}|^n \rceil$ bits. Prefix each of these by a flag bit 1.

Bits/non-typical seq. = $\lceil n \log |\mathcal{X}| \rceil + 1 \le n \log |\mathcal{X}| + 2$

This code assigns a *unique* codeword to each sequence in $|\mathcal{X}|^n$

Average code length

Let $\ell(X^n)$ be length of the codeword assigned to sequence X^n .

$$\mathbb{E}[\ell(X^n)] = \sum_{x^n} P(x^n)\ell(x^n)$$

= $\sum_{x^n \in A_{\epsilon,n}} P(x^n)\ell(x^n) + \sum_{x^n \notin A_{\epsilon,n}} P(x^n)\ell(x^n)$
 $\leq \sum_{x^n \in A_{\epsilon,n}} P(x^n)(n(H(X) + \epsilon) + 2) + \sum_{x^n \notin A_{\epsilon,n}} P(x^n)(n\log|\mathcal{X}| + 2)$
 $\leq 1 \cdot n(H(X) + \epsilon) + \epsilon \cdot n\log|\mathcal{X}| + 2$
= $n(H(X) + \epsilon) + \epsilon n\log|\mathcal{X}| + 2$
= $n(H(X) + \epsilon')$

where
$$\epsilon' = \epsilon + \epsilon \log |\mathcal{X}| + \frac{2}{n}$$
.

 ϵ' can be made arbitrarily small by picking ϵ small enough and then *n* sufficiently large.

9/19

Fundamental Limit of Compression

We have just shown that we can represent sequences X^n using nH(X) bits on the average.

More precisely ...

Let X^n be i.i.d. $\sim P$. Fix any $\epsilon > 0$. For *n* sufficiently large, there exists a code that maps sequences x^n of length *n* into binary strings such that the mapping is *one-to-one* and

$\mathbb{E}\left[\frac{1}{n}\ell(X^n)\right] \leq H(X) + \epsilon.$

In fact, more is true – you cannot do any better than H(X), i.e.,

The expected length of *any* uniquely decodable code satisfies

$$\mathbb{E}\left[\frac{1}{n}\ell(X^n)\right] \geq H(X)$$

(For a proof of this, see [Cover & Thomas, Chapter 5]; also in 3F1 notes.)

Entropy is the fundamental limit of lossless compression

- Can compress even more if we consider correlations in the text. E.g. *q* always followed by *u*.
- What kind of source cannot be compressed at all ?

Is this scheme practical?

- No. To find the codeword for any xⁿ, we need to go through a table of 2^{nH} entries – computationally complex!
- Practical schemes like Huffman coding, Lempel-Ziv achieve rates close to the entropy with much lower complexity. (3F1)

Relative entropy

The *relative entropy* or the Kullback-Leibler (KL) divergence between two pmfs P and Q is

$$D(P||Q) = \sum_{x \in \mathcal{X}} P(x) \log \frac{P(x)}{Q(x)}.$$

(Note: P and Q are defined on the same alphabet \mathcal{X})

- Measure of distance between distributions P and Q
- Not a true distance. For e.g., $D(P||Q) \neq D(Q||P)$.
- D(P||Q) ≥ 0 with equality if and only if P = Q.
 Proof: First use log a = ln a/ln 2. Then use the fact that ln a ≤ (a 1) with equality iff a = 1.

Mutual Information

Consider two random variables X and Y with joint pmf P_{XY} . The *mutual information* between X and Y is defined as

$$I(X; Y) = H(X) - H(X|Y)$$
 bits.

"Reduction in the uncertainty of X when you observe Y"

Property 1

$$I(X;Y) = H(X) + H(Y) - H(X,Y)$$
$$= H(Y) - H(Y|X)$$

"X says as much about Y as Y says about X"

Proof : From the chain rule of entropy,

$$H(X, Y) = H(X) + H(Y|X) = H(Y) + H(X|Y).$$

In the definition of I(X; Y), use H(X|Y) = H(X, Y) - H(Y).

14/19

Venn Diagram

The two circles together represent H(X, Y)

Questions

- What is I(X; Y) when X and Y are independent? Ans: 0
- 2 What is I(X; Y) when Y = X? Ans: H(X)
- 3 What is I(X; Y) when Y = f(X)? Ans: H(Y) = H(f(X))

15 / 19

Example

X is the event that tomorrow is cloudy; Y is the event that it will rain tomorrow. Joint pmf P_{XY} :

	Rain	No Rain
Cloudy	3/8	3/8
Not cloudy	1/16	3/16

In Handout 1, we calculated:

H(X, Y) = 1.764, H(X) = 0.811, H(Y|X) = 0.953

To compute I(X; Y), we need to compute H(Y) (or H(X|Y)).

$$P(Y = rainy) = \frac{3}{8} + \frac{1}{16} = \frac{7}{16}, P(Y = not rainy) = \frac{9}{16}$$
$$H(Y) = 0.989$$
$$I(X; Y) = H(Y) - H(Y|X) = 0.036$$

Verify that you get the same answer by computing H(X|Y) and using I(X; Y) = H(X) - H(X|Y).

Property 2 of Mutual Information

$$I(X;Y) = D(P_{XY}||P_XP_Y)$$

"The relative entropy between the joint pmf and the product of the marginals"

Proof:

$$\begin{split} I(X;Y) &= H(X) - H(X|Y) \\ &= -\sum_{x} P_X(x) \log P_X(x) + \sum_{x,y} P_{XY}(x,y) \log P_{X|Y}(x|y) \\ &= \sum_{x,y} P_{XY}(x,y) \log \frac{P_{X|Y}(x|y)}{P_X(x)} \\ &= \sum_{x,y} P_{XY}(x,y) \log \frac{P_{X|Y}(x|y)P_Y(y)}{P_X(x)P_Y(y)} \\ &= D(P_{XY}||P_XP_Y). \end{split}$$

17 / 19

Property 3

 $I(X;Y) \geq 0$

Proof: Follows from Property 2 because $D(P||Q) \ge 0$ for any pair of pmfs P, Q.

Implication:

 $H(X|Y) \leq H(X), \quad H(Y|X) \leq H(Y)$

"Knowing another random variable Y can only reduce the average uncertainty in X"

Preview:

- Let X be the input to a communication channel, and Y the output.
- We will show that I(X; Y) is key to understanding of how much information can be transmitted over the channel.

"Reduction in the uncertainty of the channel input X when you observe the output Y"

You can now do Questions 1 - 10 on Examples Paper 1.

19/19