4F5: Advanced Communications and Coding
Handout 4: The Channel Coding Theorem

Ramji Venkataramanan

Signal Processing and Communications Lab
Department of Engineering
ramji.v@eng.cam.ac.uk

Michaelmas Term 2014
Definition of a Channel Code

We use the channel n times to transmit a message $W \in \{1, \ldots, M\}$.

An (M, n) channel code for the channel $(\mathcal{X}, \mathcal{Y}, P_{Y|X})$ consists of:

1. A set of messages $\{1, \ldots, M\}$
2. An encoding function $X^n : \{1, \ldots, M\} \rightarrow \mathcal{X}^n$ that assigns a codeword to each message. The set of codewords $\{X^n(1), \ldots, X^n(M)\}$ is called the codebook
3. A decoding function $g : \mathcal{Y}^n \rightarrow \{1, \ldots, M\}$, which produces a guess of the transmitted message for each received vector

\[
M \text{ messages} \leftrightarrow \log M \text{ bits}
\]

The rate R of an (M, n) code is

\[
R = \frac{\log M}{n} \text{ bits/transmission}
\]
For intuition, let us start with the BSC(0.1):

- For input sequence X^n, the output Y^n is generated as
 \[Y_i = X_i \oplus E_i \quad \text{for } i = 1, \ldots, n \]

- E_1, \ldots, E_n i.i.d \sim Bernoulli(0.1) is the sequence of errors introduced by the channel (\oplus denotes modulo-two addition)

- For large n, the number of ones in $(E_1, \ldots, E_n) \approx 0.1n$ (AEP)

How big is the set of Y^n sequences “typical” with any given X^n?
Ans: $\approx 2^{nH_2(0.1)}$
The high-probability set of typical Y^n sequences for a given $X^n(1)$ is much smaller than 2^n.
Pick $X^n(2)$ “far enough” away from $X^n(1)$.
Then the typical set of Y^n’s for $X^n(2)$ is *non-intersecting* with the typical set for $X^n(1)$.
Number of distinct messages we can transmit $= \max$ number of non-intersecting sets. (similar to noisy keyboard channel)

$$M \approx \frac{2^n}{2^{nH_2(0.1)}} \quad \Rightarrow \quad \text{Rate} \quad R \approx 1 - H_2(0.1)$$
The idea for a general DMC . . .

Fix an input pmf P_X. Together with the channel $P_{Y|X}$, this gives

$$P_{XY} = P_X P_{Y|X}, \quad P_Y = \sum_X P_X P_{Y|X}.$$

If $X^n(1), X(2), \ldots, X^n(M)$ are generated i.i.d $\sim P_X$, then:
- When $X^n(k)$ is transmitted, the set of highly likely Y^n's has approximately $2^{nH(Y|X)}$ sequences for each $k \in \{1, \ldots, M\}$
- These sets are non-intersecting with high probability

$$\approx 2^{nH(Y)} \text{ typical } Y^n \text{ seqs.}$$

$$\approx 2^{nH(Y|X)} \text{ seqs. typical with } X^n(1)$$

Rate $\approx H(Y) - H(Y|X)$
Joint typicality – A Motivating Example

Let \((X^n, Y^n)\) be drawn i.i.d. according to the following joint pmf:

<table>
<thead>
<tr>
<th>(X)</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.4</td>
<td>0.1</td>
</tr>
<tr>
<td>1</td>
<td>0.1</td>
<td>0.4</td>
</tr>
</tbody>
</table>

\[
\Pr(X^n = x^n, Y^n = y^n) = \prod_{i=1}^{n} P_{X,Y}(x_i, y_i), \quad \text{for all } (x^n, y^n).
\]

Note that \(P_X(0) = P_X(1) = \frac{1}{2}\), \(P_Y(0) = P_Y(1) = \frac{1}{2}\).

For large \(n\), what can we say about the sequences \((X^n, Y^n)\)?

E.g. \(X^n = 0 \ 0 \ 1 \ 0 \ 1 \ 1 \ 1 \ 0 \ 1 \ 0 \ 1 \ 0 \ 0 \ 1 \ 0 \)

\(Y^n = 0 \ 1 \ 1 \ 0 \ 1 \ 1 \ 0 \ 0 \ 1 \ 0 \ 1 \ 1 \ 0 \ 1 \ 0 \)

- \(X^n\) and \(Y^n\) will each have approximately 50% ones.
- The number of \((X_i, Y_i)\) pairs that are \((0, 0), (0, 1), (1, 0), (1, 1)\) will be close to \(.4n, .1n, .1n, .4n\), respectively.
Joint Typical Set

The set $A_{\epsilon,n}$ of \textit{jointly typical} sequences $\{(x^n, y^n)\}$ with respect to a joint pmf P_{XY} is defined as

$$A_{\epsilon,n} = \left\{ (x^n, y^n) \in \mathcal{X}^n \times \mathcal{Y}^n \text{ such that } \right.$$

$$\left| -\frac{1}{n} \log P_X(x^n) - H(X) \right| < \epsilon,$$

$$\left| -\frac{1}{n} \log P_Y(y^n) - H(Y) \right| < \epsilon,$$

$$\left| -\frac{1}{n} \log P_{XY}(x^n, y^n) - H(X, Y) \right| < \epsilon \right\}$$

where $P_{XY}(x^n, y^n) = \prod_{i=1}^{n} P_{XY}(x_i, y_i)$.

The dots are $A_{\epsilon,n}(P_{XY})$, the \textit{jointly typical} (x^n, y^n).

$A_{\epsilon,n}(P_X)$, the typical X-sequences

$A_{\epsilon,n}(P_Y)$, the typical Y-sequences

The dots are $A_{\epsilon,n}(P_{XY})$, the \textit{jointly typical} (x^n, y^n)
The Joint AEP

Let \((X^n, Y^n)\) be a pair of sequences drawn i.i.d. according to \(P_{XY}\), i.e.,

\[
Pr(X^n = x^n, Y^n = y^n) = \prod_{i=1}^{n} P_{XY}(x_i, y_i), \quad \text{for all } (x^n, y^n)
\]

Then for any \(\epsilon > 0\):

1. \(Pr((X^n, Y^n) \in A_{\epsilon,n}) \to 1 \text{ as } n \to \infty\)

2. \(|A_{\epsilon,n}| \leq 2^n(H(X,Y) + \epsilon)\)

3. If \((\tilde{X}^n, \tilde{Y}^n)\) are a pair of sequences drawn i.i.d. according to \(P_{\tilde{X}}P_{\tilde{Y}}\) [i.e., \(\tilde{X}^n\) and \(\tilde{Y}^n\) are independent with the same marginals as \(P_{XY}\)], then

\[
Pr((X^n, Y^n) \in A_{\epsilon,n}) \leq 2^{-n(I(X;Y) - 3\epsilon)}
\]
Proof of Joint AEP

Claim 1:
When \((X^n, Y^n)\) are generated i.i.d. according to \(P_{XY}\),

\[
\Pr \left(\left| -\frac{1}{n} \log P_X(x^n) - H(X) \right| < \epsilon \right) \to 1 \text{ as } n \to \infty,
\]

\[
\Pr \left(\left| -\frac{1}{n} \log P_Y(y^n) - H(Y) \right| < \epsilon \right) \to 1 \text{ as } n \to \infty,
\]

\[
\Pr \left(\left| -\frac{1}{n} \log P_{XY}(x^n, y^n) - H(X, Y) \right| < \epsilon \right) \to 1 \text{ as } n \to \infty.
\]

The proof of the above is very similar to that of the AEP in Handout 1 and follows from the WLLN. Thus

\[Pr((X^n, Y^n) \in A_{\epsilon, n}) \to 1 \text{ as } n \to \infty.\]
Claim 2:
We have

\[1 = \sum_{x^n, y^n} P_{XY}(x^n, y^n) \]
\[\geq \sum_{(x^n, y^n) \in A_{\epsilon, n}} P_{XY}(x^n, y^n) \]
\[\geq \sum_{(x^n, y^n) \in A_{\epsilon, n}} 2^{-n(H(X, Y) + \epsilon)} \]
\[= 2^{-n(H(X, Y) + \epsilon)} |A_{\epsilon, n}| \]

Hence \(|A_{n, \epsilon}| \leq 2^n (H(X, Y) + \epsilon) \). (Inequality (a) follows from the definition of the typical set.)
Proof of Joint AEP contd.

Claim 3:
If \tilde{X}^n and \tilde{Y}^n are independent but have the same *marginals* as X^n and Y^n, respectively, then

\[
\Pr((\tilde{X}^n, \tilde{Y}^n) \in A_{\epsilon,n}) = \sum_{(x^n, y^n) \in A_{\epsilon,n}} P_X(x^n)P_Y(y^n) \\
\leq 2^{n(H(X,Y)+\epsilon)} \cdot 2^{-n(H(X)-\epsilon)} \cdot 2^{-n(H(Y)-\epsilon)} \\
= 2^{-n(I(X;Y)-3\epsilon)}.
\]

\[
|A_{\epsilon,n}(P_Y)| \approx 2^{nH(Y)}
\]

\[
|A_{\epsilon,n}(P_X)| \approx 2^{nH(X)}
\]

\[
|A_{\epsilon,n}(P_{XY})| \approx 2^{nH(X,Y)}
\]
The Probability of Error of a Code

Rate R code

Recall that a $(2^{nR}, n)$ code for the channel $(\mathcal{X}, \mathcal{Y}, P_{Y|X})$ consists of a set of messages $\{1, \ldots, 2^{nR}\}$, an encoding function, and a decoding function.

The **maximal** probability of error of a $(2^{nR}, n)$ code is defined as

$$\max_{k \in \{1, \ldots, 2^{nR}\}} \Pr(\hat{W} \neq k \mid W = k)$$

The **average** probability of error of a $(2^{nR}, n)$ code is

$$\frac{1}{2^{nR}} \sum_{k=1}^{2^{nR}} \Pr(\hat{W} \neq k \mid W = k)$$

W and \hat{W} denote the transmitted, and decoded messages respectively.
The Channel Coding Theorem

“Theorem

“For a DMC with capacity C, all rates less than C are achievable.”

Specifically,

1. Fix $R < C$ and pick any $\epsilon > 0$. Then, for all sufficiently large n there exists an $(2^{nR}, n)$ code with maximal probability of error less than ϵ.

2. Conversely, any sequence of $(2^{nR}, n)$ codes with maximal probability of error $P_e^{(n)} \to 0$ as $n \to \infty$ must have $R \leq C$.

Diagram:

$W \xrightarrow{} \text{Encoder} \xrightarrow{X^n} \text{DMC } P_{Y|X} \xrightarrow{Y^n} \text{Decoder} \xrightarrow{} \hat{W}$
Proof of the Coding Theorem

We will first prove *achievability* of all rates \(R < C \) (the first part).

Codebook Generation:

- Fix rate \(R < C \) and input pmf \(P_X \). We generate each of the \(2^{nR} \) codewords independently according to the distribution

\[
Pr(X^n(k) = (x_1, \ldots, x_n)) = \prod_{i=1}^{n} P_X(x_i) \quad \text{for } k = 1, \ldots, 2^{nR}.
\]

- We can think of the codebook \(\mathcal{B} \) as a \(2^{nR} \times n \) matrix:

\[
\mathcal{B} = \begin{bmatrix}
X_1(1) & X_2(1) & \ldots & X_n(1) \\
X_1(2) & X_2(2) & \ldots & X_n(2) \\
\vdots & \vdots & \ddots & \vdots \\
X_1(2^{nR}) & X_2(2^{nR}) & \ldots & X_n(2^{nR})
\end{bmatrix}
\]

- Each entry in the matrix is chosen i.i.d according to \(P_X \). The probability that we generate a particular codebook \(\{x^n(1), \ldots, x^n(2^{nR})\} \) is

\[
\prod_{w=1}^{2^{nR}} \prod_{i=1}^{n} P_X(x_i(w))
\]
A code \mathcal{B} is generated as described previously. The code is revealed to both sender and receiver, who also know the channel transition matrix $P_{Y|X}$.

To transmit message W, the encoder sends $X^n(W)$ over the channel.

The receiver receives a sequence Y^n generated according to

$$
\prod_{i=1}^{n} P_{Y|X}(Y_i \mid X_i(W)) \tag{1}
$$

From Y^n, the receiver has to guess which message was sent. How?

- Assuming a uniform prior on the messages, the optimal decoding rule is *max-likelihood* decoding: decode the message \hat{W} that maximises (1).

- But we’ll use *joint typical* decoding, which is easier to analyse
Joint Typicality Decoder

The decoder declares that the message \hat{W} was sent if both the following conditions are satisfied:

- $(X^n(\hat{W}), Y^n)$ is jointly typical with respect to $P_X P_{Y|X}$.
- There exists no other message $W' \neq \hat{W}$ such that $(X^n(W'), Y^n)$ is jointly typical.

If no such \hat{W} is found or there is more than one such, an error is declared.
Analysing the probability of error

Averages, and more averages . . .

- The average probability of error for a given codebook \mathcal{B} is
 \[
 \frac{1}{2^{nR}} \sum_{w=1}^{2^{nR}} \Pr(\hat{W} \neq w \mid \mathcal{B}, W = w) \quad (2)
 \]

- Analysing this for a specific codebook is hard. So we will calculate the average of (2) over all codebooks, i.e.,
 \[
 \overline{P_e} = \frac{1}{2^{nR}} \sum_{\mathcal{B}} \sum_{w=1}^{2^{nR}} \Pr(\hat{W} \neq w \mid \mathcal{B}, W = w) \Pr(\mathcal{B}). \quad (3)
 \]

- Recall that $\Pr(\mathcal{B})$ is the probability corresponding to picking each symbol of \mathcal{B} i.i.d. $\sim P_X$.

- Since all the messages are equally likely, we can assume that the first message is the transmitted one. Thus
 \[
 \overline{P_e} = \sum_{\mathcal{B}} \Pr(\hat{W} \neq 1 \mid \mathcal{B}, W = 1) \Pr(\mathcal{B}). \quad (4)
 \]
Error Analysis

Assuming $W = 1$ was transmitted, there are two sources of error:

1. $X^n(1)$ is not jointly typical with the output Y^n
2. $X^n(w)$ is jointly typical with Y^n for some $w \neq 1$.

(Note: The joint typicality is with respect to P_{XY})

- Let E_k be the event that $X^n(k)$ and Y^n are jointly typical.
- Then:

$$\bar{P}_e = P(E_1^c \cup E_2 \cup \ldots \cup E_{2nR})$$

$$\leq P(E_1^c) + P(E_2) + \ldots + P(E_{2nR})$$

1) Showing $P(E_1^c)$ is small:

- Recall $X^n(1)$ i.i.d. $\sim P_X$.
- The channel generates Y^n symbol by symbol according to $P_{Y|X}(Y_i \mid X_i(1))$ for $i = 1, \ldots, n$.
- Therefore $(X^n(1), Y^n)$ is generated i.i.d $\sim P_X P_{Y|X}$
- Joint AEP implies that $P(E_1^c) \leq \epsilon$ for sufficiently large n
2) Showing \(P(E_2) + \ldots + P(E_{2n^R}) \) is small:

For \(k \neq 1 \):
- \(X^n(k) \) was generated \textit{independently} from \(X^n(1) \), and \(Y^n \) is obtained by passing \(X^n(1) \) through the channel.
- Hence \(X^n(k) \) and \(Y^n \) are independent for \(k \neq 1 \).
- Further, \(X^n(k) \) is i.i.d. \(\sim P_X \), and \(Y^n \) is i.i.d. \(\sim P_Y \).
- From the \textit{Joint AEP}, the probability that \(X^n(k) \) and \(Y^n \) are jointly typical according to \(P_{XY} \) is \(\leq 2^{-n(I(X;Y)-3\epsilon)} \).

\[\Rightarrow P(E_2) + \ldots + P(E_{2n^R}) \leq (2^{nR} - 1) 2^{-n(I(X;Y)-3\epsilon)} \]

Putting the two parts together:

\[
\bar{P}_e \leq P(E_1^c) + P(E_2) + \ldots + P(E_{2n^R}) \\
\leq \epsilon + 2^{nR}2^{-n(I(X;Y)-3\epsilon)} \\
(\text{a}) \leq \epsilon + \epsilon
\]

(\text{a}) is true when \(R < I(X;Y) - 3\epsilon \) and \(n \) is sufficiently large.
So far, we have shown that:
For any $\epsilon > 0$, when $R < I(X; Y) - 3\epsilon$, the probability of error averaged over all messages and all codebooks is small, i.e.,

$$\bar{P}_e = \frac{1}{2^{nR}} \sum_{w=1}^{2^nR} \sum_{B} \Pr(\hat{W} \neq w \mid B, W = w) \Pr(B) \leq 2\epsilon$$

Final Steps:

1. Choose P_X to be one that maximises $I(X; Y)$.
2. Get rid of average over codebooks: As $\bar{P}_e \leq 2\epsilon$, there exists at least one codebook $B^* \leq 2\epsilon$ with

$$P_e(B^*) = \frac{1}{2^{nR}} \sum_{w=1}^{2^nR} \Pr(\hat{W} \neq w \mid B^*, W = w) \leq 2\epsilon$$

3. Throw away the worst half of the codewords in B^*: For B^*, the probability of error averaged over all messages is $\leq 2\epsilon$. Thus the probability of error must be $\leq 4\epsilon$ for at least half the messages.
The Final Code

- The number of codewords in this improved version of B^* is $2^{nR}/2$. Its rate is
 \[
 \frac{\log(2^{nR}/2)}{n} = R - \frac{1}{n}.
 \]

- Since R is any rate less than $C - 3\epsilon$, we have shown the existence of a code with rate
 \[
 C - 4\epsilon - \frac{1}{n}
 \]
 whose maximal probability of error satisfies
 \[
 \max_w \Pr(\hat{W} \neq w \mid W = w) \leq 4\epsilon
 \]

- Since $\epsilon > 0$ is an arbitrary constant, we have shown that for any $R < C$, for sufficiently large n there exists a code with arbitrarily small maximal error probability.

This proves the first part of the channel coding theorem.
Summary

Key ideas in the proof of achievability:

- Allow an arbitrarily small but non-zero probability of error
- Use the channel many times in succession, so that the law of large numbers comes into effect (large n)
- **Random Coding**: Calculate the average probability of error over a random choice of codebooks, which can then be used to show the existence of at least one good code

Proof of converse (next handout)

To show that we cannot achieve rates $> C$, need two new tools:

- Data Processing Inequality
- Fano's Inequality