#### 4F5: Advanced Communications and Coding Handout 7: Demodulation & Detection in AWGN noise

Ramji Venkataramanan

Signal Processing and Communications Lab Department of Engineering ramji.v@eng.cam.ac.uk

#### Michaelmas Term 2015



• Having fixed the modulation scheme, we know the *K*-dim. orthogonal basis for the signal space of transmitted waveform

n(t)

Modulator converts:

Bits  $\longrightarrow$  K-dim. vector  $\longrightarrow$  Transmitted waveform

• Demodulator converts:

Received waveform  $\longrightarrow$  *K*-dim. vector  $\longrightarrow$  Bits

• In this handout, we'll study QAM and FSK demodulation in the presence of AWGN noise.

# **QAM** Modulation

- In each time period of length *T*, we transmit one QAM symbol drawn from a QAM constellation. A mapping from bits to complex points. E.g.
  - BPSK: $0 \rightarrow A, \quad 1 \rightarrow -A$ QPSK: $00 \rightarrow \frac{A}{\sqrt{2}}(1+j), \quad 01 \rightarrow \frac{A}{\sqrt{2}}(1-j),$  $10 \rightarrow \frac{A}{\sqrt{2}}(-1+j), \quad 11 \rightarrow \frac{A}{\sqrt{2}}(-1-j)$

(2) To transmit symbol  $X_k$  (k = 0, 1, ...), the QAM waveform is:

$$\operatorname{Re}(X_k)p(t-kT)\sqrt{2}\cos(2\pi f_c t) + \operatorname{Im}(X_k)p(t-kT)\sqrt{2}\sin(2\pi f_c t)$$

(3) The final QAM waveform is

$$X(t) = \sum_{k} \left[ \operatorname{Re}(X_{k})p(t-kT)\sqrt{2}\cos(2\pi f_{c}t) + \operatorname{Im}(X_{k})p(t-kT)\sqrt{2}\sin(2\pi f_{c}t) \right]$$

Some Common Signal Constellations



In "Phase Shift Keying" (PSK), the magnitude of  $X_k$  is constant, and the information is contained in the phase of the symbol.

In an *M*-symbol constellation, each symbol corresponds to  $\log_2 M$  bits

# Average Energy per Symbol



For all the PSK constellations, average symbol energy  $E_s = A^2$ 



# How to choose the Pulse p(t)?

p(t) is chosen to satisfy the following important objectives:

- We want p(t) to decay quickly in time, i.e., the effect of symbol  $X_k$  should not start much before t = kT or last much beyond t = (k+1)T
- We want p(t) to be approximately band-limited to [-W, W]. For a fixed sequence of symbols {X<sub>k</sub>}, the QAM waveform X(t) will then be band-limited to [f<sub>c</sub> + W, f<sub>c</sub> W]. E.g., f<sub>c</sub> = 2.4GHz , W = 1 MHz
- Solution The retrieval of the information sequence from the noisy received waveform should be simple and relatively reliable. In the absence of noise, the symbols {X<sub>k</sub>}<sub>k∈Z</sub> should be recovered perfectly at the receiver.

# Orthonormality of pulse shifts

Consider the third objective, namely, simple and reliable detection. To achieve this, the pulse is chosen to have the following "orthonormal shift" property:

$$\int_{-\infty}^{\infty} p(t - kT) p(t - mT) dt = \begin{cases} 1 & \text{if } k = m \\ 0 & \text{if } k \neq m \end{cases}$$
(1)

We'll later see how this property helps demodulation at the Rx.

Let's first look at some candidates for p(t) ...

## Time Decay vs. Bandwidth Trade-off

The first two objectives say that we want p(t) to:

- Decay quickly in time
- 2 Be approximately band-limited
- But . . . faster decay in time  $\Leftrightarrow$  larger bandwidth
- (1) Consider the rectangular pulse  $p(t) = \begin{cases} \frac{1}{\sqrt{T}} & \text{for } t \in (0, T] \\ 0 & \text{otherwise} \end{cases}$



The rect. is perfectly time-limited with the symbol interval [0, T)But decays slowly in freq.  $|P(f)| \sim \frac{1}{|f|}$ ; main-lobe bandwidth  $= \frac{1}{T}$ 

(2) Next consider the pulse  $p(t) = \frac{1}{\sqrt{T}} \operatorname{sinc} \left(\frac{\pi t}{T}\right)$ 



The sinc is perfectly band-limited to  $W = \frac{1}{2T}$ But decays slowly in time  $|p(t)| \sim \frac{1}{|t|}$ 

9 / 35

(3) In practice, the pulse shape is often chosen to have a *raised cosine* spectrum:



Bandwidth slightly larger than  $\frac{1}{2T}$ ; decay in time  $|p(t)| \sim \frac{1}{|t|^3}$ 

A happy compromise!

The rect, sinc, and raised cosine all satisfy the orthogonal shifts property:

$$\int p(t-kT)p(t-mT) dt = \begin{cases} 1 & \text{if } k = m \\ 0 & \text{if } k \neq m \end{cases}$$

# The Received Waveform Y(t)

Recall that the transmitted QAM waveform is

$$X(t) = \sum_{k} p(t - kT) \left[ \frac{X_{k}^{r} \sqrt{2} \cos(2\pi f_{c} t) + \frac{X_{k}^{i} \sqrt{2} \sin(2\pi f_{c} t)}{2} \right]$$

where  $X^r = \operatorname{Re}(X_k)$ , and  $X^i = \operatorname{Im}(X_k)$ 

The *transmission rate* is  $\frac{1}{T}$  symbols/sec or  $\frac{\log_2 M}{T}$  bits/second



• The receiver gets 
$$Y(t) = X(t) + N(t)$$
  
•  $N(t)$  is a white Gaussian process with  
 $\mathbb{E}[N(t)] = 0, \quad \mathbb{E}[N(t)N(s)] = \frac{N_0}{2}\delta(t-s)$ 

11/35



The received waveform is

$$Y(t) = X(t) + N(t)$$
  
=  $\sum_{k} X_{k}^{r} f_{k}(t) \sqrt{2} \cos(2\pi f_{c} t) + X_{k}^{i} f_{k}(t) \sqrt{2} \sin(2\pi f_{c} t) + N(t)$ 

where  $f_k(t) = p(t - kT)$ 

#### Key Fact

The functions  $\{f_{\ell}(t)\sqrt{2}\cos(2\pi f_c t), f_{\ell}(t)\sqrt{2}\sin(2\pi f_c t)\}, \ell \in \mathbb{Z}$ form an *orthonormal* set. *Proof of Key Fact*:

$$\int_{-\infty}^{\infty} f_{\ell}(t) f_{m}(t) 2\cos^{2}(2\pi f_{c}t) dt = \int f_{\ell}(t) f_{m}(t) (1 + \cos(4\pi f_{c}t)) dt$$

$$\stackrel{(a)}{\approx} 1 \text{ if } \ell = m, \quad 0 \text{ if } l \neq m$$

(a) holds because  $f_c \gg W \geq \frac{1}{2T}$ , i.e.,  $\cos(4\pi f_c t)$  completes many, many cycles in the time taken for  $f_\ell(t), f_m(t)$  to change appreciably. (This is similar to the proof in Handout 6, p.18)

Similarly  

$$\int_{-\infty}^{\infty} f_{\ell}(t) f_{m}(t) 2 \sin^{2}(2\pi f_{c}t) dt = \int f_{\ell}(t) f_{m}(t) (1 - \cos(4\pi f_{c}t)) dt$$

$$\approx 1 \text{ if } I = m, \quad 0 \text{ if } \ell \neq m$$

$$\int_{-\infty}^{\infty} f_{\ell}(t) f_{m}(t) 2 \sin(2\pi f_{c}t) \cos(2\pi f_{c}t) dt = \int f_{\ell}(t) f_{m}(t) \sin(4\pi f_{c}t)) dt$$

$$\approx 0 \text{ for all } \ell, m \quad \Box$$

13/35

At the Receiver



The receiver performs three steps:

- Demodulation: Convert the received waveform Y(t) into a discrete-time sequence Y<sub>1</sub>, Y<sub>2</sub>,... by projecting Y(t) onto the elements of the orthonormal set {f<sub>k</sub>(t) √2 cos(2πf<sub>c</sub>t), f<sub>k</sub>(t) √2 sin(2πf<sub>c</sub>t)}, k ∈ Z
- 2 Detection: Recover  $\hat{X}_1, \hat{X}_2, \ldots$  from  $Y_1, Y_2, \ldots$  $(\hat{X}_1, \hat{X}_2, \ldots$  are points in the constellation)
- Convert  $\hat{X}_1, \hat{X}_2, \ldots$  to bits using the assignment of bits to constellation points (easy)

### Step 1: QAM Demodulation

$$Y(t) = \sum_{k} X_{k}^{r} \sqrt{2} f_{k}(t) \cos(2\pi f_{c} t) + X_{k}^{i} \sqrt{2} f_{k}(t) \sin(2\pi f_{c} t) + N(t)$$

We generate for each  $\ell$ :  $Y_{\ell}^{r} = \langle Y(t), f_{\ell}(t)\sqrt{2}\cos(2\pi f_{c}t) \rangle$  $Y_{\ell}^{i} = \langle Y(t), f_{\ell}(t)\sqrt{2}\sin(2\pi f_{c}t) \rangle$ 

Implemented via a bank of correlators (or using "matched filters")



15 / 35



Since the functions  $\{f_k(t)\sqrt{2}\cos(2\pi f_c t), f_k(t)\sqrt{2}\sin(2\pi f_c t)\}$  are orthonormal, the outputs of the demodulator (the bank of correlators) for  $k \in \mathbb{Z}$  are:

$$egin{aligned} Y_k^r &= < Y(t), \ \sqrt{2} f_k(t) \cos(2\pi f_c t) > = X_k^r + N_k^r \ Y_k^i &= < Y(t), \ \sqrt{2} f_k(t) \sin(2\pi f_c t) > = X_k^i + N_k^i \end{aligned}$$

where

 $N_k^r = \langle N(t), \sqrt{2}f_k(t)\cos(2\pi f_c t) \rangle, \ N_k^i = \langle N(t), \sqrt{2}f_k(t)\sin(2\pi f_c t) \rangle$ 

- The next step is *detection*: how to recover to the information symbols  $\{X_k^r, X_k^i\}$  from  $\{Y_k^r, Y_k^i\}$ ?
- For this we first need to understand the statistics of  $\{N_k^r, N_k^i\}$

For any orthonormal set of functions  $\{\phi_k(t)\}_{k\in\mathbb{Z}}$ , let us compute the joint distribution of  $\{N_k\}$ , where  $N_k = \int_{-\infty}^{\infty} N(t)\phi_k(t)dt$ 

For each k,  $N_k$  is a linear combination of *jointly* Gaussian rvs  $\{N(t), t \in \mathbb{R}\} \Rightarrow$  The rvs  $\{N_k\}$ , for  $k \in \mathbb{Z}$  are jointly Gaussian

For each integer k:

$$\mathbb{E}[N_k] = \mathbb{E}\Big[\int_{-\infty}^{\infty} N(t)\phi_k(t)dt\Big] = \int_{-\infty}^{\infty} \mathbb{E}[N(t)]\phi_k(t)dt = 0$$

2 For each pair of integers  $k, \ell$ :

$$\mathbb{E}[N_k N_\ell] = \mathbb{E}\left[\int_{-\infty}^{\infty} N(t)\phi_k(t)dt \int_{-\infty}^{\infty} N(s)\phi_\ell(s)dt\right]$$
$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \mathbb{E}[N(t)N(s)] \phi_k(t)\phi_\ell(s)dt ds$$
$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{N_0}{2}\delta(t-s) \phi_k(t)\phi_\ell(s)dt ds$$
$$= \frac{N_0}{2} \int_{-\infty}^{\infty} \phi_k(s)\phi_\ell(s)ds = \frac{N_0}{2} \text{ if } k = \ell \text{ and } 0 \text{ otherwise}$$

We apply this result to the orthonormal set

 $\{\sqrt{2}f_k(t)\cos(2\pi f_c t), \sqrt{2}f_k(t)\sin(2\pi f_c t)\}_{k\in\mathbb{Z}}$ 

$$N_k^r = \int_{-\infty}^{\infty} N(t) \sqrt{2} f_k(t) \cos(2\pi f_c t) dt$$
$$N_k^i = \int_{-\infty}^{\infty} N(t) \sqrt{2} f_k(t) \sin(2\pi f_c t) dt$$

The rvs  $\{N_k^r, N_k^i\}, k \in \mathbb{Z}$  are jointly Gaussian with:  $\mathbb{E}[N_k^r] = \mathbb{E}[N_k^i] = 0$   $\mathbb{E}[N_k^r N_\ell^r] = \frac{N_0}{2}$  if  $k = \ell$  and 0 otherwise  $\mathbb{E}[N_k^i N_\ell^i] = \frac{N_0}{2}$  if  $k = \ell$  and 0 otherwise  $\mathbb{E}[N_k^i N_\ell^r] = 0$  for all  $k, \ell$ 

Therefore the collection of rvs  $\{N_k^r\}$  and  $\{N_k^i\}$  for  $k \in \mathbb{Z}$  are i.i.d Gaussian with each distributed as  $\mathcal{N}(0, \frac{N_0}{2})$ 

#### Step 2: QAM Detection

The receiver gets  $\mathbf{Y}_k = \mathbf{X}_k + \mathbf{N}_k$ , for each k = 1, 2, ...

[**Y** denotes  $(Y^r, Y^i)$ , **X** =  $(X^r, X^i)$  and **N** =  $(N^r, N^i)$ ]

#### Detection

For each k, how to recover  $\mathbf{X}_k$  from  $\mathbf{Y}_k$ ?

Recall that  $N_k^r$ ,  $N_k^i$  are i.i.d  $\mathcal{N}(0, \frac{N_0}{2})$  for all k. Hence

$$P(\mathbf{Y} = (y^{r}, y^{i}) | \mathbf{X} = (x^{r}, x^{i})) = \frac{1}{\sqrt{\pi N_{0}}} e^{-\frac{(y^{r} - x^{r})^{2}}{N_{0}}} \frac{1}{\sqrt{\pi N_{0}}} e^{-\frac{(y^{i} - x^{i})^{2}}{N_{0}}}$$

The Maximum A Posteriori (MAP) Decoder

The decoding rule that minimises the probability of error is

$$\hat{\mathbf{X}} = rg\max_{\mathbf{x}} P(\mathbf{X} = \mathbf{x} | \mathbf{Y} = \mathbf{y})$$

where the arg max is over all  $\mathbf{x}$  in the *constellation* 

#### The MAP Decoding Rule

$$\hat{\mathbf{X}} = \underset{\mathbf{x}}{\arg \max} P(\mathbf{Y} = \mathbf{y} | \mathbf{X} = \mathbf{x}) P(\mathbf{X} = \mathbf{x})$$

If all the symbols in the constellation are equally likely, i.e.,  $P(\mathbf{x})$  is the same for all symbols), then

$$\hat{\mathbf{X}} = \arg \max_{\mathbf{x}} P(\mathbf{Y} = \mathbf{y} | \mathbf{X} = \mathbf{x})$$

$$= \arg \max_{\mathbf{x}} \frac{1}{\pi N_0} e^{-\frac{(y^r - x^r)^2}{N_0}} e^{-\frac{(y^i - x^i)^2}{N_0}}$$

$$= \arg \max_{\mathbf{x}} e^{-\frac{1}{N_0} ||\mathbf{y} - \mathbf{x}||^2}$$

$$= \arg \min_{\mathbf{x}} ||\mathbf{y} - \mathbf{x}||^2$$

If all the constellation symbols are equally likely, the optimum detector simply chooses the symbol *closest* to the output. (Also called 'nearest-neighbour' or 'maximum-likelihood' decoding)

20 / 35

## MAP Decoding Examples

Note that

$$\|\mathbf{y} - \mathbf{x}\|^2 = \|\mathbf{y}\|^2 + \|\mathbf{x}\|^2 - 2\mathbf{x}\mathbf{y}^T = \|\mathbf{y}\|^2 + \|\mathbf{x}\|^2 - 2(x^r y^r + x^i y^i)$$

The term  $\|\mathbf{y}\|^2$  does not affect detection. Therefore, the MAP decoding rule for equally likely symbols becomes

$$\hat{\mathbf{X}} = \underset{\mathbf{x}}{\arg\min} \|\mathbf{x}\|^2 - 2\mathbf{x}\mathbf{y}^T$$
1) BPSK:  $\mathbf{X} \in \{A, -A\}$   
 $\hat{\mathbf{X}} = \arg\min \|\mathbf{y} - \mathbf{x}\|^2 = \arg\max x^r y$   
where the arg max is over  $x^r \in \{A, -A\}$ .  
The MAP *decision regions* are  
 $\hat{\mathbf{X}} = A$  if  $y > 0$ ,  $\hat{\mathbf{X}} = -A$  if  $y < 0$ 



21/35

## MAP Decoding Examples ctd.

2) 8-PSK: Let  $\theta(\mathbf{x}, \mathbf{y})$  be the angle between vectors  $(\mathbf{x}, \mathbf{y})$ .

$$\|\mathbf{y} - \mathbf{x}\|^2 = \|\mathbf{x}\|^2 + \|\mathbf{y}\|^2 - 2\|\mathbf{x}\|\|\mathbf{y}\|\cos(\theta(\mathbf{x}, \mathbf{y}))$$

As  $\|\mathbf{x}\| = A$  for all symbols in 8-PSK, the MAP decoding rule is:

$$\hat{\mathbf{X}} = \operatorname*{arg\,min}_{\mathbf{x}} \ \theta(\mathbf{x}, \mathbf{y})$$



3) QPSK: Similar min-angle decoding as 8 - PSK.







#### Error Probability for BPSK

Recall the decision regions for BPSK:



Probability of detection error is

 $P_e = P(\hat{X} \neq X) = \frac{1}{2}P(\hat{X} = A \mid X = -A) + \frac{1}{2}P(\hat{X} = -A \mid X = A)$ 



$$P(\hat{X} = A \mid X = -A) = P(Y > 0 \mid X = -A)$$
  
=  $P(-A + N > 0 \mid X = -A)$   
=  $P(N > A \mid X = -A) = P(N > A)$ 

#### Error Probability for BPSK ctd.

$$P(N > A) = P\left(\frac{N}{\sqrt{N_0/2}} > \frac{A}{\sqrt{N_0/2}}\right) = \mathcal{Q}\left(\frac{A}{\sqrt{N_0/2}}\right)$$

where

$$\mathcal{Q}(y) = \int_{y}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-x^2/2} dx$$

(Note that  $\frac{N}{\sqrt{N_0/2}}$  is a  $\mathcal{N}(0,1)$  random variable.) Similarly,

$$P(\hat{X} = -A \mid X = A) = P(A + N < 0 \mid X = A)$$
  
=  $P(N < -A)$   
=  $P\left(\frac{N}{\sqrt{N_0/2}} < \frac{-A}{\sqrt{N_0/2}}\right)$   
=  $Q\left(\frac{A}{\sqrt{N_0/2}}\right)$  (symmetry of the Gaussian pdf)

25 / 35

Hence the probability of detection error for BPSK is

$$P_e = \frac{1}{2}P(\hat{X} = A \mid X = -A) + \frac{1}{2}P(\hat{X} = -A \mid X = A)$$
$$= \mathcal{Q}\left(\frac{A}{\sqrt{N_0/2}}\right)$$
$$\stackrel{(a)}{=} \mathcal{Q}\left(\sqrt{\frac{2E_b}{N_0}}\right)$$

To obtain (a), observe that:

- Energy/symbol  $E_s = E_b \log M$ , where  $E_b = \text{energy/bit}$ , M = size of constellation
- For BPSK,  $E_s = E_b = A^2$

# BPSK Error Probability vs $E_b/N_0$



27 / 35

**QPSK Error Probability** 



You will show in Examples Paper 3 that:

$$P(\hat{X} \neq p_1 \mid X = p_1) = P(\{A/\sqrt{2} + N^r < 0\} \cup \{A/\sqrt{2} + N^i < 0\})$$
  
$$\leq Q(\sqrt{A^2/N_0}) + Q(\sqrt{A^2/N_0})$$
  
$$= 2Q(\sqrt{E_s/N_0})$$

Demodulation and Detection for *M*-ary FSK

To transmit message  $i \in \{1, ..., M\}$  in any symbol period [kT, (k+1)T), the FSK waveform is

 $X(t) = \sqrt{E_s} f_i(t),$ where  $f_i(t) = \sqrt{\frac{2}{T}} \cos\left(2\pi \left(f_c + (2i - (M+1))\frac{\Delta_f}{2}\right)t\right).$ Recall:  $\Delta_f = \frac{1}{2T}$ , and the  $\{f_i(t)\}_{i=1,...,M}$  form an orthonormal set. At the receiver, we have

$$Y(t) = X(t) + N(t)$$

**Demodulator** produces a vector  $[Y_1, \ldots, Y_M]$  as

$$Y_{1} = \langle Y(t), f_{1}(t) \rangle = \int_{t \in \text{symbol period}} Y(t)f_{1}(t)dt$$
$$Y_{2} = \langle Y(t), f_{2}(t) \rangle$$
$$\vdots$$
$$Y_{M} = \langle Y(t), f_{M}(t) \rangle$$

| 29 / 35 | 29 | / | 35 |
|---------|----|---|----|
|---------|----|---|----|

We have:

$$Y_{1} = \langle X(t), f_{1}(t) \rangle + \langle N(t), f_{1}(t) \rangle = X_{1} + N_{1}$$
  

$$Y_{2} = \langle X(t), f_{2}(t) \rangle + \langle N(t), f_{2}(t) \rangle = X_{2} + N_{2}$$
  

$$\vdots$$
  

$$Y_{M} = \langle X(t), f_{M}(t) \rangle + \langle N(t), f_{M}(t) \rangle = X_{M} + N_{M}$$

- As before, the noise variables  $N_j \sim \mathcal{N}(0, \frac{N_0}{2})$  are i.i.d.
- If message  $i \in \{1, \ldots, M\}$  is transmitted:

$$X_i = \sqrt{E_s}, \qquad X_j = 0, \ j \neq i$$

Hence  $[Y_1, \ldots, Y_i, \ldots, Y_M] = [N_1, \ldots, \sqrt{E_s} + N_i, \ldots, N_M]$ 

What is the optimal detection rule?

## M-ary FSK Detection

Assuming all the messages are equally likely, the optimal rule is to pick the message  $\hat{m}$  such that:

$$\hat{m} = \underset{1 \leq i \leq M}{\operatorname{arg max}} P(\mathbf{Y} = \mathbf{y} \mid \mathbf{X} = \mathbf{x}(i))$$

- **1**  $\mathbf{x}(i)$  is the input vector corresponding to message *i*, i.e., it is the length-*M* vector with  $\sqrt{E_s}$  in position *i* and 0 elsewhere
- 2 Conditioned on the input being  $\mathbf{x}(i)$ , the received vector  $\mathbf{y} = [n_1, \dots, \sqrt{E_s} + n_i, \dots, n_M]$

$$P(\mathbf{y} \mid \mathbf{x}(i)) = P(y_1 \mid x_1 = 0) \dots P(y_i \mid x_i = \sqrt{E_s}) \dots P(y_M \mid x_M = 0)$$
  
=  $\frac{1}{(\sqrt{\pi N_0})^M} e^{-y_1^2/N_0} \dots e^{-(y_i - \sqrt{E_s})^2/N_0} \dots e^{-y_M^2/N_0}$   
=  $\frac{1}{(\sqrt{\pi N_0})^M} e^{-(y_1^2 + \dots + y_M^2)/N_0} e^{-E_s/N_0} e^{2E_s y_i/N_0}$ 

The optimal detection rule is thus  $\hat{m} = \arg \max_{1 \le i \le M} y_i$ 

31 / 35

#### Probability of Detection Error

Due to symmetry, the probability of error is the same regardless of which message  $i \in \{1, \ldots, M\}$  was transmitted. So, without loss of generality, assume message 1 was transmitted.

An error occurs if  $y_1$  is *not* the maximum among  $[y_1, \ldots, y_K] \Rightarrow$ 

$$P_{e} = P(\{y_{1} \le y_{2}\} \cup \{y_{1} \le y_{3}\} \cup \ldots \cup \{y_{1} \le y_{M}\})$$
  
=  $P(\{\sqrt{E_{s}} + n_{1} \le n_{2}\} \cup \{\sqrt{E_{s}} + n_{1} \le n_{3}\} \ldots \cup \{\sqrt{E_{s}} + n_{1} \le n_{M}\})$   
 $\le P(\{\sqrt{E_{s}} + n_{1} \le n_{2}\}) + \ldots + P(\{\sqrt{E_{s}} + n_{1} \le n_{M}\})$   
 $= (M - 1)P(n_{2} - n_{1} \ge \sqrt{E_{s}})$ 

The last line holds because  $(n_2 - n_1)$ ,  $(n_3 - n_1)$ , ...,  $(n_M - n_1)$  are each  $\mathcal{N}(0, N_0)$  rvs. In Examples Paper 3, you will simplify the above expression and show that

$$P_e \leq e^{-(\log_2 M)(rac{E_b}{N_0}-2\ln 2)}, \quad ext{where } E_s = E_b \log_2 M$$

Thus if  $\frac{E_b}{N_0} > 2 \ln 2$ , the probability of detection error  $\downarrow$  as  $M \uparrow$ 

## Rate and Bandwidth

*Rate*: Both *M*-ary QAM and *M*-ary FSK have rate  $\frac{\log_2 M}{T}$  bits/s *Bandwidth*:

- **QAM**, the bandwidth is determined by the baseband pulse p(t). If p(t) is band-limited to [-W, W], then x(t) is bandlimited to  $[f_c W, f_c + W]$ , and so has bandwidth **2W**. If p(t) is a sinc pulse,  $W = \frac{1}{2T}$ . For a raised cosine pulse, W is slightly bigger than  $\frac{1}{2T}$
- *M*-**FSK**: For message  $i \in \{1, ..., M\}$ , the signal x(t) is a cosine with frequency  $f_c + (i \frac{(M+1)}{2})\Delta_f$ . Hence the total bandwidth required for *M*-ary FSK is  $(M-1)\Delta_f = \frac{(M-1)}{2T}$ .

The *bandwidth efficiency*  $\eta$  is defined as rate/bandwidth:

 $\eta_{QAM} \approx 2 \log_2 M \text{ bits/s/Hz}, \qquad \eta_{MFSK} = \frac{2 \log_2 M}{M - 1} \text{ bits/s/Hz}$ 

As *M* increases,  $\eta_{QAM} \uparrow$  but  $\eta_{MFSK} \downarrow$ . But how does  $P_e$  change with *M*? (Examples Paper 3)

33 / 35

## Summary

#### Modulation:

Bits  $\longrightarrow$  K-dim. vector  $\stackrel{\text{ortho-basis}}{\longrightarrow}$  Transmitted waveform X(t)

**Demodulation**: Project Y(t) onto each basis function to produce  $\mathbf{Y} = [Y_1, \dots, Y_K]$ 

**Detection**: Apply MAP rule to determine the transmitted vector (symbol) from  $\mathbf{Y} = [Y_1, \dots, Y_K]$ 

— When all messages are equally likely, MAP rule becomes a "min-distance" decoding.

*Error Analysis*: Bounds on probability of detection error for various modulation schemes can be obtained using the Gaussian Q function and union bounds

You can now do Questions 1–6 in Examples Paper 3.