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Modulator

010110100

+
x(t)

Demodulator
y(t)

010010110

n(t)

Having fixed the modulation scheme, we know the K -dim.
orthogonal basis for the signal space of transmitted waveform
Modulator converts:

Bits −→ K -dim. vector −→ Transmitted waveform

Demodulator converts:

Received waveform −→ K -dim. vector −→ Bits

In this handout, we’ll study QAM and FSK demodulation in
the presence of AWGN noise.
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QAM Modulation

(1) In each time period of length T , we transmit one QAM
symbol drawn from a QAM constellation. A mapping from bits
to complex points. E.g.
BPSK: 0→ A, 1→ −A
QPSK:

00→ A√
2

(1 + j), 01→ A√
2

(1− j),

10→ A√
2

(−1 + j), 11→ A√
2

(−1− j)

(2) To transmit symbol Xk (k = 0, 1, . . .), the QAM waveform is:

Re(Xk)p(t−kT )
√

2 cos(2πfct) + Im(Xk)p(t−kT )
√

2 sin(2πfct)

(3) The final QAM waveform is

X (t) =
∑

k

[
Re(Xk)p(t − kT )

√
2 cos(2πfct)

+ Im(Xk)p(t − kT )
√

2 sin(2πfct)
]
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Some Common Signal Constellations

−A A −A A

−A A

QPSKBPSK

8-PSK 16-QAM

Re(Xk)

Im(Xk)Im(Xk)

Re(Xk)

In “Phase Shift Keying” (PSK), the magnitude of Xk is constant,
and the information is contained in the phase of the symbol.

In an M-symbol constellation, each symbol corresponds to log2 M bits
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Average Energy per Symbol

−A A −A A

QPSKBPSK

−A A

8-PSK

Im(Xk)

Re(Xk)

For all the PSK constellations, average symbol energy Es = A2

16-QAM

d

Im(Xk)

Re(Xk)
Average energy per symbol for 16-QAM

Es = 40d2

16 = 2.5d2

Average energy per bit Eb = Es/log M
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How to choose the Pulse p(t)?

p(t) is chosen to satisfy the following important objectives:

1 We want p(t) to decay quickly in time, i.e., the effect of
symbol Xk should not start much before t = kT or last much
beyond t = (k + 1)T

2 We want p(t) to be approximately band-limited to [−W ,W ].
For a fixed sequence of symbols {Xk}, the QAM waveform
X (t) will then be band-limited to [fc + W , fc −W ].
E.g., fc = 2.4GHz ,W = 1 MHz

3 The retrieval of the information sequence from the noisy
received waveform should be simple and relatively reliable. In
the absence of noise, the symbols {Xk}k∈Z should be
recovered perfectly at the receiver.
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Orthonormality of pulse shifts

Consider the third objective, namely, simple and reliable detection.

To achieve this, the pulse is chosen to have the following
“orthonormal shift” property:

∫ ∞

−∞
p(t − kT )p(t −mT ) dt =

{
1 if k = m
0 if k 6= m

(1)

We’ll later see how this property helps demodulation at the Rx.

Let’s first look at some candidates for p(t) . . .
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Time Decay vs. Bandwidth Trade-off
The first two objectives say that we want p(t) to:

1 Decay quickly in time

2 Be approximately band-limited

But . . . faster decay in time ⇔ larger bandwidth

(1) Consider the rectangular pulse p(t) =

{
1√
T

for t ∈ (0,T ]

0 otherwise

1
p(t) |P(f)|

The rect. is perfectly time-limited with the symbol interval [0,T )

But decays slowly in freq. |P(f )| ∼ 1
|f | ; main-lobe bandwidth = 1

T
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(2) Next consider the pulse p(t) = 1√
T

sinc
(
πt
T

)

p(t)

0

P(f)

The sinc is perfectly band-limited to W = 1
2T

But decays slowly in time |p(t)| ∼ 1
|t|
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(3) In practice, the pulse shape is often chosen to have a raised
cosine spectrum:

0 1
2T

−1
2T

P (f)

Bandwidth slightly larger than 1
2T ; decay in time |p(t)| ∼ 1

|t|3

A happy compromise!

The rect, sinc, and raised cosine all satisfy the orthogonal shifts
property:

∫
p(t − kT )p(t −mT ) dt =

{
1 if k = m
0 if k 6= m
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The Received Waveform Y (t)
Recall that the transmitted QAM waveform is

X (t) =
∑

k

p(t − kT )
[
X r
k

√
2 cos(2πfct) + X i

k

√
2 sin(2πfct)

]

where X r = Re(Xk), and X i = Im(Xk)

The transmission rate is 1
T symbols/sec or log2 M

T bits/second

X (t) Y (t)

N(t)

The receiver gets Y (t) = X (t) + N(t)

N(t) is a white Gaussian process with

E[N(t)] = 0, E[N(t)N(s)] =
N0

2
δ(t − s)
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X (t) Y (t)

N(t)

The received waveform is

Y (t) = X (t) + N(t)

=
∑

k

X r
k fk(t)

√
2 cos(2πfct) + X i

k fk(t)
√

2 sin(2πfct) + N(t)

where fk(t) = p(t − kT )

Key Fact

The functions
{

f`(t)
√

2 cos(2πfct), f`(t)
√

2 sin(2πfct)
}
, ` ∈ Z

form an orthonormal set.

12 / 35



Proof of Key Fact:

∫ ∞

−∞
f`(t)fm(t)2 cos2(2πfct)dt =

∫
f`(t)fm(t)(1 + cos(4πfct))dt

(a)
≈ 1 if ` = m, 0 if l 6= m

(a) holds because fc �W ≥ 1
2T , i.e., cos(4πfct) completes many,

many cycles in the time taken for f`(t), fm(t) to change
appreciably. (This is similar to the proof in Handout 6, p.18)

Similarly∫ ∞

−∞
f`(t)fm(t)2 sin2(2πfct)dt =

∫
f`(t)fm(t)(1− cos(4πfct))dt

≈ 1 if l = m, 0 if ` 6= m

∫ ∞

−∞
f`(t)fm(t)2 sin(2πfct) cos(2πfct)dt =

∫
f`(t)fm(t) sin(4πfct))dt

≈ 0 for all `,m
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At the Receiver

X (t) Y (t)

N(t)

The receiver performs three steps:

1 Demodulation: Convert the received waveform Y (t) into a
discrete-time sequence Y1,Y2, . . . by projecting Y (t) onto the
elements of the orthonormal set
{fk(t)

√
2 cos(2πfct), fk(t)

√
2 sin(2πfct)}, k ∈ Z

2 Detection: Recover X̂1, X̂2, . . . from Y1,Y2, . . .

(X̂1, X̂2, . . . are points in the constellation)

3 Convert X̂1, X̂2, . . . to bits using the assignment of bits to
constellation points (easy)
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Step 1: QAM Demodulation

Y (t) =
∑

k

X r
k

√
2fk(t) cos(2πfct) + X i

k

√
2fk(t) sin(2πfct) + N(t)

We generate for each `: Y r
` = < Y (t), f`(t)

√
2 cos(2πfct) >

Y i
` = < Y (t), f`(t)

√
2 sin(2πfct) >

Implemented via a bank of correlators (or using “matched filters”)

∫
(.)dt

√
2f1(t) cos(2πfct)

∫
(.)dt

√
2f2(t) cos(2πfct)

Y (t)

Y r
1

Y r
2

∫
(.)dt

√
2f1(t) sin(2πfct)

∫
(.)dt

√
2f2(t) sin(2πfct)

Y (t)

Y i
1

Y i
2
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∫
(.)dt

√
2f1(t) cos(2πfct)

∫
(.)dt

√
2f2(t) cos(2πfct)

Y (t)

Y r
1

Y r
2

∫
(.)dt

√
2f1(t) sin(2πfct)

∫
(.)dt

√
2f2(t) sin(2πfct)

Y (t)

Y i
1

Y i
2

Since the functions
{

fk(t)
√

2 cos(2πfct), fk(t)
√

2 sin(2πfct)
}

are
orthonormal, the outputs of the demodulator (the bank of
correlators) for k ∈ Z are:

Y r
k = < Y (t),

√
2fk(t) cos(2πfct) > = X r

k + N r
k

Y i
k = < Y (t),

√
2fk(t) sin(2πfct) > = X i

k + N i
k

where

N r
k = < N(t),

√
2fk(t) cos(2πfct) >, N i

k = < N(t),
√

2fk(t) sin(2πfct) >

The next step is detection: how to recover to the information
symbols {X r

k ,X
i
k} from {Y r

k ,Y
i
k}?

For this we first need to understand the statistics of {N r
k ,N

i
k}
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For any orthonormal set of functions {φk(t)}k∈Z, let us compute
the joint distribution of {Nk}, where Nk =

∫∞
−∞N(t)φk(t)dt

For each k, Nk is a linear combination of jointly Gaussian rvs
{N(t), t ∈ R} ⇒ The rvs {Nk}, for k ∈ Z are jointly Gaussian

1 For each integer k :

E[Nk ] = E
[ ∫ ∞

−∞
N(t)φk(t)dt

]
=

∫ ∞

−∞
E[N(t)]φk(t)dt = 0

2 For each pair of integers k, `:

E[NkN`] = E
[ ∫ ∞

−∞
N(t)φk(t)dt

∫ ∞

−∞
N(s)φ`(s)dt

]

=

∫ ∞

−∞

∫ ∞

−∞
E[N(t)N(s)] φk(t)φ`(s)dt ds

=

∫ ∞

−∞

∫ ∞

−∞

N0

2
δ(t − s) φk(t)φ`(s)dt ds

=
N0

2

∫ ∞

−∞
φk(s)φ`(s)ds =

N0

2
if k = ` and 0 otherwise
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We apply this result to the orthonormal set

{
√

2fk(t) cos(2πfct),
√

2fk(t) sin(2πfct)}k∈Z

N r
k =

∫ ∞

−∞
N(t)

√
2fk(t) cos(2πfct)dt

N i
k =

∫ ∞

−∞
N(t)

√
2fk(t) sin(2πfct)dt

The rvs {N r
k ,N

i
k}, k ∈ Z are jointly Gaussian with:

E[N r
k ] = E[N i

k ] = 0

E[N r
kN r

` ] =
N0

2
if k = ` and 0 otherwise

E[N i
kN i

`] =
N0

2
if k = ` and 0 otherwise

E[N i
kN r

` ] = 0 for all k , `

Therefore the collection of rvs {N r
k} and {N i

k} for k ∈ Z are i.i.d
Gaussian with each distributed as N (0, N0

2 )
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Step 2: QAM Detection

The receiver gets Yk = Xk + Nk , for each k = 1, 2, . . .

[ Y denotes (Y r ,Y i ), X = (X r ,X i ) and N = (N r ,N i ) ]

Detection

For each k, how to recover Xk from Yk?

Recall that N r
k ,N

i
k are i.i.d N (0, N0

2 ) for all k . Hence

P(Y = (y r , y i )|X = (x r , x i )) = 1√
πN0

e
− (y r−x r )2

N0
1√
πN0

e
− (y i−x i )2

N0

The Maximum A Posteriori (MAP) Decoder

The decoding rule that minimises the probability of error is

X̂ = arg max
x

P(X = x|Y = y)

where the arg max is over all x in the constellation
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The MAP Decoding Rule

X̂ = arg max
x

P(Y = y|X = x) P(X = x)

If all the symbols in the constellation are equally likely, i.e., P(x) is
the same for all symbols), then

X̂ = arg max
x

P(Y = y|X = x)

= arg max
x

1
πN0

e
− (y r−x r )2

N0 e
− (y i−x i )2

N0

= arg max
x

e
− 1
N0
‖y−x‖2

= arg min
x

‖y − x‖2

If all the constellation symbols are equally likely, the optimum
detector simply chooses the symbol closest to the output.
(Also called ‘nearest-neighbour’ or ‘maximum-likelihood’ decoding)
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MAP Decoding Examples
Note that

‖y − x‖2 = ‖y‖2 + ‖x‖2 − 2xyT = ‖y‖2 + ‖x‖2 − 2(x ry r + x iy i )

The term ‖y‖2 does not affect detection. Therefore, the MAP
decoding rule for equally likely symbols becomes

X̂ = arg min
x

‖x‖2 − 2xyT

1) BPSK: X ∈ {A,−A}

X̂ = arg min ‖y − x‖2 = arg max x ry

where the arg max is over x r ∈ {A,−A}.
The MAP decision regions are

X̂ = A if y > 0, X̂ = −A if y < 0

−A A

X̂ = AX̂ = −A

Y
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MAP Decoding Examples ctd.

2) 8-PSK: Let θ(x, y) be the angle between vectors (x, y).

‖y − x‖2 = ‖x‖2 + ‖y‖2 − 2‖x‖‖y‖ cos(θ(x, y))

As ‖x‖ = A for all symbols in 8-PSK, the MAP decoding rule is:

X̂ = arg min
x

θ(x, y)

−A A

8-PSK

Im(Xk)

Re(Xk) A

p1

p2
p3

p4

p5

p6

p7
p8

X̂ = p1

Im(Y )

Re(Y )
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3) QPSK: Similar min-angle decoding as 8− PSK .

X̂ = arg min
x

θ(x, y)

A

p2p3

p4 p1

X̂ = p1

Im(Y )

Re(Y )

4) 16-QAM: What are the decision regions?

d
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Error Probability for BPSK
Recall the decision regions for BPSK:

−A A

X̂ = AX̂ = −A

Y

Probability of detection error is

Pe = P(X̂ 6= X ) = 1
2 P(X̂ = A | X = −A) + 1

2 P(X̂ = −A | X = A)

−A A

f (Y |X = −A) f (Y |X = A)

Y

P(X̂ = A | X = −A) = P(Y > 0 | X = −A)

= P(−A + N > 0 | X = −A)

= P(N > A | X = −A) = P(N > A)
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Error Probability for BPSK ctd.

P(N > A) = P

(
N√
N0/2

>
A√
N0/2

)
= Q

(
A√
N0/2

)

where

Q(y) =

∫ ∞

y

1√
2π

e−x
2/2dx

(Note that N√
N0/2

is a N (0, 1) random variable.)

Similarly,

P(X̂ = −A | X = A) = P(A + N < 0 | X = A)

= P(N < −A)

= P

(
N√
N0/2

<
−A√
N0/2

)

= Q
( A√

N0/2

)
(symmetry of the Gaussian pdf)
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Hence the probability of detection error for BPSK is

Pe = 1
2 P(X̂ = A | X = −A) + 1

2 P(X̂ = −A | X = A)

= Q
( A√

N0/2

)

(a)
= Q

(√2Eb

N0

)

To obtain (a), observe that:

Energy/symbol Es = Eb log M, where Eb = energy/bit, M =
size of constellation

For BPSK, Es = Eb = A2
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BPSK Error Probability vs Eb/N0

−2 0 2 4 6 8 10 12 14
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

E
b
/N

0
 (dB)

P
e
  

  
fo

r 
B

P
S

K

To get Pe of 10−3, need snr Eb/N0 ≈ 7 dB
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QPSK Error Probability

A

p1 = (A/
√
2, A/

√
2)

You will show in Examples Paper 3 that:

P(X̂ 6= p1 | X = p1) = P({A/
√

2 + N r < 0} ∪ {A/
√

2 + N i < 0})

≤ Q(
√

A2/N0) + Q(
√

A2/N0)

= 2Q(
√

Es/N0)
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Demodulation and Detection for M-ary FSK
To transmit message i ∈ {1, . . . ,M} in any symbol period
[kT , (k + 1)T ), the FSK waveform is

X (t) =
√

Es fi (t),

where fi (t) =
√

2
T cos

(
2π
(

fc + (2i − (M + 1)) ∆f
2

)
t
)

.

Recall: ∆f = 1
2T , and the {fi (t)}i=1,...,M form an orthonormal set.

At the receiver, we have

Y (t) = X (t) + N(t)

Demodulator produces a vector [Y1, . . . ,YM ] as

Y1 =< Y (t), f1(t) >=

∫

t∈symbol period
Y (t)f1(t)dt

Y2 =< Y (t), f2(t) >

...

YM =< Y (t), fM(t) >
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We have:

Y1 =< X (t), f1(t) > + < N(t), f1(t) >= X1 + N1

Y2 =< X (t), f2(t) > + < N(t), f2(t) >= X2 + N2

...

YM =< X (t), fM(t) > + < N(t), fM(t) >= XM + NM

As before, the noise variables Nj ∼ N (0, N0
2 ) are i.i.d.

If message i ∈ {1, . . . ,M} is transmitted:

Xi =
√

Es , Xj = 0, j 6= i

Hence [Y1, . . . ,Yi , . . . ,YM ] = [N1, . . . ,
√

Es + Ni , . . . ,NM ]

What is the optimal detection rule?
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M-ary FSK Detection
Assuming all the messages are equally likely, the optimal rule is to
pick the message m̂ such that:

m̂ = arg max
1≤i≤M

P(Y = y | X = x(i))

1 x(i) is the input vector corresponding to message i , i.e., it is
the length-M vector with

√
Es in position i and 0 elsewhere

2 Conditioned on the input being x(i), the received vector
y = [n1, . . . ,

√
Es + ni , . . . , nM ]

P(y | x(i)) = P(y1 | x1 = 0) . . .P(yi | xi =
√

Es) . . .P(yM | xM = 0)

=
1

(
√
πN0)M

e−y
2
1 /N0 . . . e−(yi−

√
Es)2/N0 . . . e−y

2
M/N0

=
1

(
√
πN0)M

e−(y2
1 +...+y2

M)/N0 e−Es/N0 e2Esyi/N0

The optimal detection rule is thus m̂ = arg max1≤i≤M yi
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Probability of Detection Error
Due to symmetry, the probability of error is the same regardless of
which message i ∈ {1, . . . ,M} was transmitted. So, without loss
of generality, assume message 1 was transmitted.

An error occurs if y1 is not the maximum among [y1, . . . , yK ] ⇒
Pe = P ({y1 ≤ y2} ∪ {y1 ≤ y3} ∪ . . . ∪ {y1 ≤ yM})
= P

(
{
√

Es + n1 ≤ n2} ∪ {
√

Es + n1 ≤ n3} . . . ∪ {
√

Es + n1 ≤ nM}
)

≤ P
(
{
√

Es + n1 ≤ n2}
)

+ . . .+ P
(
{
√

Es + n1 ≤ nM}
)

= (M − 1)P
(

n2 − n1 ≥
√

Es

)

The last line holds because (n2 − n1), (n3 − n1), . . . ,(nM − n1) are
each N (0,N0) rvs. In Examples Paper 3, you will simplify the
above expression and show that

Pe ≤ e
−(log2 M)(

Eb
N0
−2 ln 2)

, where Es = Eb log2 M

Thus if Eb
N0
> 2 ln 2, the probability of detection error ↓ as M ↑
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Rate and Bandwidth
Rate: Both M-ary QAM and M-ary FSK have rate log2 M

T bits/s

Bandwidth:

QAM, the bandwidth is determined by the baseband pulse
p(t). If p(t) is band-limited to [−W ,W ], then x(t) is
bandlimited to [fc −W , fc + W ], and so has bandwidth 2W.
If p(t) is a sinc pulse, W = 1

2T . For a raised cosine pulse, W
is slightly bigger than 1

2T

M-FSK: For message i ∈ {1, . . . ,M}, the signal x(t) is a

cosine with frequency fc + (i − (M+1)
2 )∆f . Hence the total

bandwidth required for M-ary FSK is (M − 1)∆f = (M−1)
2T .

The bandwidth efficiency η is defined as rate/bandwidth:

ηQAM ≈ 2 log2 M bits/s/Hz, ηMFSK =
2 log2 M

M − 1
bits/s/Hz

As M increases, ηQAM ↑ but ηMFSK ↓. But how does Pe change
with M? (Examples Paper 3)
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Summary

Modulation:

Bits −→ K -dim. vector
ortho-basis−→ Transmitted waveform X (t)

Demodulation: Project Y (t) onto each basis function to produce
Y = [Y1, . . . ,YK ]

Detection: Apply MAP rule to determine the transmitted vector
(symbol) from Y = [Y1, . . . ,YK ]

— When all messages are equally likely, MAP rule becomes a
“min-distance” decoding.

Error Analysis: Bounds on probability of detection error for various
modulation schemes can be obtained using the Gaussian Q
function and union bounds
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You can now do Questions 1–6 in Examples Paper 3.
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