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@ Having fixed the modulation scheme, we know the K-dim.
orthogonal basis for the signal space of transmitted waveform
@ Modulator converts:

Bits — K-dim. vector — Transmitted waveform
@ Demodulator converts:
Received waveform — K-dim. vector — Bits

@ In this handout, we'll study QAM and FSK demodulation in
the presence of AWGN noise.
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QAM Modulation

(1) In each time period of length T, we transmit one QAM
symbol drawn from a QAM constellation. A mapping from bits
to complex points. E.g.
BPSK: 0—-A 1—-A

QPSK: , .
00 = Z(1+)), 01— Z(1-)),

10 — \%(—1 +j), 11— %(—1 — /)
(2) To transmit symbol Xy (k =0,1,...), the QAM waveform is:
Re(Xi)p(t—kT)V?2 cos(2nf.t) + Im(Xi)p(t—kT)V2sin(2rf. t)
(3) The final QAM waveform is

X()=3" [Re(xk)p(t — kT)V2cos(2rf.t)

k
+ Im(X)p(t — kT)V2sin(2rft)
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Some Common Signal Constellations
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In “Phase Shift Keying” (PSK), the magnitude of X is constant,
and the information is contained in the phase of the symbol.

In an M-symbol constellation, each symbol corresponds to log, M bits J
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Average Energy per Symbol

A

BPSK QPSK 8-PSK
For all the PSK constellations, average symbol energy E; = A?

Im(X%)
d A
* ] Average energy per symbol for 16-QAM
> Re(Xk)
. o] . E, = 9 — 2542
16-QAM
Average energy per bit E, = Eg/log M | -

How to choose the Pulse p(t)?

p(t) is chosen to satisfy the following important objectives:

© We want p(t) to decay quickly in time, i.e., the effect of
symbol X should not start much before t = kT or last much
beyond t = (k+1)T

@ We want p(t) to be approximately band-limited to [— W, W].
For a fixed sequence of symbols { Xy}, the QAM waveform
X(t) will then be band-limited to [f. + W, f. — W].

Eg., fe =24GHz ,W =1 MHz

© The retrieval of the information sequence from the noisy
received waveform should be simple and relatively reliable. In
the absence of noise, the symbols { X} xc7 should be
recovered perfectly at the receiver.
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Orthonormality of pulse shifts

Consider the third objective, namely, simple and reliable detection.

To achieve this, the pulse is chosen to have the following
“orthonormal shift” property:

/oop(t—kT)p(t—mT)dt—{(l) :ii;: (1)

— 00

We'll later see how this property helps demodulation at the Rx.

Let's first look at some candidates for p(t) ...
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Time Decay vs. Bandwidth Trade-off
The first two objectives say that we want p(t) to:
© Decay quickly in time
© Be approximately band-limited
But ... faster decay in time < larger bandwidth

1
— forte (0, T
(1) Consider the rectangular pulse p(t) =< VT o ( |
0 otherwise

p(t) [P(D)] "

sk

f=-1/T f=1/T

0

The rect. is perfectly time-limited with the symbol interval [0, T)
But decays slowly in freq. |P(f)| ~ ﬁ; main-lobe bandwidth = +
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(2) Next consider the pulse p(t) = % sinc (ZF)

1/VT

p(t) P(f)

VT

t=T

f=-1/(2T) f=1/(2T)

v/‘\\//\ 5 /\\//\\/
\VARV/

The sinc is perfectly band-limited to W %

But decays slowly in time |p(t)| ~ ﬁ
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(3) In practice, the pulse shape is often chosen to have a raised
cosine spectrum:

A

P(f)

) ) 0 E g
2T 2T

Bandwidth slightly larger than 5-; decay in time |p(t)| ~ — J

A happy compromise!

The rect, sinc, and raised cosine all satisfy the orthogonal shifts
property:

1 ifk=m
/p(t—kT)p(t—mT)dt— { 0 ifk#m
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The Received Waveform Y(t)

Recall that the transmitted QAM waveform is

X(t) =" p(t - kT) [x,:ﬁ cos(2nf.t) + Xiv/2 sin(zwfct)}
k

where X" = Re(X), and X' = Im(Xy)

- - - I M L
The transmission rate is + symbols/sec or <82~ bits/second J

X(t) %r} Y (t)

N(t)

@ The receiver gets Y(t) = X(t) + N(t)

@ N(t) is a white Gaussian process with

EIN()] =0, EN(N(S)] = “26(t - 5)
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The received waveform is
Y(t) = X(t) + N(t)

— ZX,C fi(t)V2 cos(2rfet) + XL fi(t)V2sin(2rf.t) + N(t)
k

where fi(t) = p(t — kT)

Key Fact

The functions {f(t)v2cos(2rf.t), fi(t)V2sin(2rft)}, L€ Z
form an orthonormal set.
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Proof of Key Fact:

/OO fo(t)fm(t)2 cos®(2rf,t)dt = /@(t)fm(t)(l + cos(4rf.t))dt

—00

(a) . .

~1lifl=m, Oifl#m
(a) holds because fo > W > % i.e., cos(4mf.t) completes many,
many cycles in the time taken for f;(t), f(t) to change
appreciably. (This is similar to the proof in Handout 6, p.18)

Similarly

/OO fo(t)fm(t)2sin?(2rf t)dt = / fo(t)fm(t)(1 — cos(4rf.t))dt

— 00

~1ifl=m, 0ifl#*m

/ () ()2 in(2n ) cos(2nft)dt — / fi(t)fm(t) sin(4rfct))dt

— 00

~ 0 forall {,m [
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At the Receiver

The receiver performs three steps:

@ Demodulation: Convert the received waveform Y(t) into a
discrete-time sequence Y1, Y2, ... by projecting Y(t) onto the
elements of the orthonormal set

{f(t) V2 cos(2rfet), Fi(t)V2sin(2rft)}, k€ Z

@ Detection: Recover X1, X, ... from Y1, Ya,..
(X1, Xa, ... are points in the constellation)

© Convert Xi, Xo, ... to bits using the assignment of bits to
constellation points (easy)
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Step 1: QAM Demodulation

Y(t) = X[ V2fi(t) cos(2mfet) + XiV2f(t)sin(2rfet) + N(t)
k

We generate for each ¢: Y/ = < Y(t), f(t)V2cos(2nf.t) >
Y, = < Y(t), f(t)V2sin(2nf.t) >

Implemented via a bank of correlators (or using “matched filters™)

V2f1(t) cos(2m f.t) V2f1(t) sin(27 f.t)
[()dt | [(de L
V2fo(t) cos(2m f.t) V2[5(t) sin(27 f.t)
ol a2 YO J(dt |2
15 /35
V2 £ (t) cos(2m fet) ﬂfl(t) sin(27 ft)
C— J()de @ Jar P2
ﬂfi(f) cos(2m f.t) ﬁff(t) sin(27 f.t)

YOL o joa 2 YLy I

Since the functions {f(t)v2cos(2nf.t), fi(t)V2sin(2rf.t)} are
orthonormal, the outputs of the demodulator (the bank of
correlators) for k € Z are:

Y = < Y(t), V2fi(t)cos(2nft) > = X[ + N
Y] = < Y(t), V2f(t)sin(2nf.t) > = X} + N
where
NI = < N(t), V2fi(t) cos(2rf.t) >, Ni = < N(t), V2fi(t)sin(2rf.t) >
@ The next step is detection: how to recover to the information
symbols {X/, X/} from {Y/, Y/}?
o For this we first need to understand the statistics of {N], N} }
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For any orthonormal set of functions {¢x(t)}kez, let us compute
the joint distribution of {Ny}, where Ny = 7 N(t)dx(t)dt

For each k, Ny is a linear combination of jointly Gaussian rvs
{N(t), t € R} = The rvs {Ny}, for k € Z are jointly Gaussian J

© For each integer k:

E[N,] = E[/_Oo N(t)gbk(t)dt} - /_OO E[N(t)]¢x(t)dt = 0
@ For each pair of integers k, ¢:
Bl = B[ [ N@oode [ N(s)ous)de

B /_OO /_OO E[N(t)N(s)] ¢x(t)pe(s)dt ds
B /_OO /_OO %‘5“ — 5) ¢k (t)pe(s)dt ds

No [ N,
= 70/ Ok (s)pe(s)ds = 70 if k = ¢ and 0 otherwise
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We apply this result to the orthonormal set
{V2f,(t) cos(2mfot), V2fi(t)sin(2mfet)}uez

N[ = / B N(t) /21 (t) cos(2nf.t)dt

N = /OO N(t)V2f(t) sin(2rf.t)dt

The rvs {NI, N/}, k € Z are jointly Gaussian with:
E[N{] = E[N}] = 0

N
E[NNJ] = 70 if k = ¢ and 0 otherwise

. N,
E[N]N]] = 70 if k = ¢ and 0 otherwise
E[N.N}] = 0 for all k, ¢

Therefore the collection of rvs {N}} and {N.} for k € Z are i.i.d
Gaussian with each distributed as N (0, %)
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Step 2: QAM Detection
The receiver gets Y, = X, + N,, foreach k=1,2,...

[ 'Y denotes (YY", Y'), X = (X", X") and N = (N",N') ]

Detection
For each k, how to recover X, from Y ?

Recall that Nf, N are i.i.d N'(0, 22) for all k. Hence

_(yr_Xr)2 . _(yi_xi)2

P(Y = (" y)X=(x'x) = Age M o

The Maximum A Posteriori (MAP) Decoder

The decoding rule that minimises the probability of error is

ey

X =argmax P(X=x|Y =y)

where the arg max is over all x in the constellation

A\
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The MAP Decoding Rule

N

X =argmax P(Y =y|X =x) P(X =x)
X

If all the symbols in the constellation are equally likely, i.e., P(x) is
the same for all symbols), then

X = argmax P(Y =y|X =x)

X

(yr_Xr)Z (yi_Xi)2
= arg max %No e M e N
X

1
= argmaxe Mo
X

ly—x|1?

— argmin [ly — x|
X

If all the constellation symbols are equally likely, the optimum
detector simply chooses the symbol closest to the output.

(Also called ‘nearest-neighbour’ or ‘maximum-likelihood’ decoding) .




MAP Decoding Examples
Note that
ly = xII” = [lylI* + [Ix]I* = 2xy " = [lylI* + [|Ix[|* = 2(x"y" + x'y")

The term ||y||? does not affect detection. Therefore, the MAP
decoding rule for equally likely symbols becomes
X = argmin ||x|?> — 2xy "
1) BPSK: X € {A, —A} '
X = argmin ||y — x||> = argmax x"y

where the arg max is over x" € {A, —A}.
The MAP decision regions are

X=Aify>0 X=—-Aify<0

X=_A ‘ X-4
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MAP Decoding Examples ctd.
2) 8-PSK: Let 0(x,y) be the angle between vectors (x,y).

ly = x| = [Ix]|* + llyll* = 2l1x]|[lyll cos(6(x, y))
As ||x|| = A for all symbols in 8-PSK, the MAP decoding rule is:
X = argmin 0(x,y)
X

Im(Xk)
s e,
/ \
// \\ ]9/6/‘/
® > —> Re(X}) S
— A / ./
\\ // D5 v
. o .
N \\.
Ps-




3) QPSK: Similar min-angle decoding as 8 — PSK.

X = arg min 6(x,y)

Im(Y)
X =N
P4/./ .pl
// A
> Re(Y)
p; ’./172
«d o
4) 16-QAM: What are the decision regions? * .
Error Probability for BPSK
Recall the decision regions for BPSK:
X=-A ‘ X=A
Y

_A A

Probability of detection error is

Pe=PX#X)=3IP(X=A|X=-A)+iPX=-A|X=A)

FY|X =—A) fY|X = A)
N

PX=A|X=—-A)=P(Y >0|X =—A)
=P(-A+N>0|X=—A)
=P(N>A|X=-A)=P(N>A)
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Error Probability for BPSK ctd.

N A A
PIN>A) =P (x//\/o/2 g \//Vo/2> - Q( /V0/2>

1 ,—x?/2
A(y) = /y ordd /2 dx
(Note that \//I\\IIT/2 is a M(0,1) random variable.)
Similarly,
PX=-A|X=A)=PA+N<0|X=A)
= P(N < —A)

where

B P( N A )
N2 Ng/2
A

— Q( ) symmetry of the Gaussian pdf
No T2 ( )
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Hence the probability of detection error for BPSK is

A
- Q( /\/0/2)

o

To obtain (a), observe that:

@ Energy/symbol Es = E,log M, where E, = energy/bit, M =
size of constellation

e For BPSK, E; = E, = A?
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BPSK Error Probability vs Ej/ Ny

10°

for BPSK

P

-10 I I I I I

6
E/N, (dB)

To get P, of 103, need snr Ep/No ~ 7 dB

8 10 12 14
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QPSK Error Probability

A

T = (A/V2, A1)

v

You will show in Examples Paper 3 that:

P(X #p1 | X =p1) = P({A/V2+N <0} U {A/V2+ N <0})

< Q(y/A?/No) + Q(1/ A%/ No)
:::2(2( V lfg//Vb)
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Demodulation and Detection for M-ary FSK
To transmit message i € {1,..., M} in any symbol period
[kT,(k +1)T), the FSK waveform is

X(t) = VEsfi(t),
where fi(t) = /% cos (2 (£ +@i—(M+1)5) o).

Recall: Af = 5, and the {fi(t)}i=1,..m form an orthonormal set.

At the receiver, we have
Y(t) = X(t) + N(t)

Demodulator produces a vector [Yi,..., Yy] as
Yi =< Y(£), i) > = / Y ()R (t)dt
tesymbol period

Yo =< Y(t), (t) >

YM.: < Y(t), f/\/](t) >
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We have:

Y1 =< X(t), i(t) >+ < N(t),(t) >= X1+ M
Yo =< X(t), h(t) >+ < N(t), h(t) >= Xo+ Ny

Yv =< X(t), fm(t) >+ < N(t), fpm(t) >= Xy + Ny

o As before, the noise variables N; ~ N/(0, %) are i.i.d.

o If message i € {1,..., M} is transmitted:

Xi=+E, X =0,j%i
Hence [Yl,...,Y,',...,YM]:[Nl,...,\/ES+N;,...,NM]

What is the optimal detection rule?
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M-ary FSK Detection

Assuming all the messages are equally likely, the optimal rule is to
pick the message m such that:

m=argmax P(Y =y | X =x(i))
1<i<M
@ x(/) is the input vector corresponding to message i/, i.e., it is
the length-M vector with v/E; in position i and 0 elsewhere
@ Conditioned on the input being x(i), the received vector

y=[n,....,vVEs+ nj, ..., nyl

P(y | (1)) =P(y1 | x1 =0)...P(y; | x; = VE) ... P(ym | xm = 0)

LM i VE N RN
(\/7TN0)M
L R N g Es/No 2Eeyi/No
(v/7Ng)M
The optimal detection rule is thus m = arg max; ;< yi J
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Probability of Detection Error

Due to symmetry, the probability of error is the same regardless of
which message / € {1,..., M} was transmitted. So, without loss
of generality, assume message 1 was transmitted.

An error occurs if y; is not the maximum among [y, ..., yk] =
Pe=P{{y1 <y2}U{y1 <y} U...U{y1 < ym})

—P ({\/Es < mYULVE +m <ns}.. U{VEs +nm < nM})
< P({\/Es—i—nl < n2}) —|—...—|—P({\/Es—|—n1 < nM})

:(M—l)P(nz—nlz\/E)

The last line holds because (n, — n1), (n3 — n1), ...,(npy — n1) are
each N(0, Np) rvs. In Examples Paper 3, you will simplify the
above expression and show that

E
P, < e M2\ here £ = Ey log, M

Thus if ,’f_,—g > 21In 2, the probability of detection error | as M ¢
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Rate and Bandwidth

Rate: Both M-ary QAM and M-ary FSK have rate 282M blts/s
Bandwidth:

@ QAM, the bandwidth is determined by the baseband pulse
p(t). If p(t) is band-limited to [— W, W], then x(t) is
bandlimited to [f. — W, f. + W] and so has bandwidth 2W.
If p(t) is a sinc pulse, W —T For a raised cosine pulse, W
is slightly bigger than >+

@ M-FSK: For message i € {1,..., M}, the signal x(t) is a

cosine with frequency fo + (i — (MH))A Hence the total
bandwidth required for M-ary FSK is (M — 1)Af = (N;TI).

The bandwidth efficiency 7 is defined as rate/bandwidth:

2log
noam ~ 2log, M bits/s/Hz, NMFSK = /\; bits/s/Hz

As M increases, ngam T but nvesk . But how does P, change
with M? (Examples Paper 3)
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Summary

Modulation:

: : ho-basi :
Bits — K-dim. vector """ Transmitted waveform X(t)

Demodulation: Project Y (t) onto each basis function to produce
=[Y1,..., YK]

Detection: Apply MAP rule to determine the transmitted vector

(symbol) from Y =[Y1,..., Yk]

— When all messages are equally likely, MAP rule becomes a
“min-distance” decoding.

: Bounds on probability of detection error for various
modulation schemes can be obtained using the Gaussian Q
function and union bounds
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You can now do Questions 1-6 in Examples Paper 3.
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