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The Wireless Channel

Two fundamental aspects of wireless communication:

1 Fading: Time variation of channel strengths

2 Interference between various users. For example,

- Between several transmitters communicating with a common
receiver (e.g. mobiles to base-station)

- Between single transmitter and multiple receivers

Here we’ll only consider fading and study how it affects system
design 2 / 19



Channel Quality

Time

From “Fundamentals of Wireless Communication”, Tse and Viswanath, CUP 2005

The channel quality varies over two time-scales:
1 Large-scale fading: Occurs at a slow time scale

Path loss of signal as function of distance and shadowing by
large objects such as buildings, hills
Time constants associated with variations are of the order of
many seconds or minutes
More important for cell site planning, less for Tx/Rx design

2 Small-scale fading: Occurs at a fast time scale
Due to constructive and destructive interference of the
multiple signal paths between the Tx and Rx
Occurs as mobile moves at the spatial scale of order of carrier
wavelength, and is frequency dependent
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Small-scale Multipath Fading

From “Fundamentals of Wireless Communication”, Tse and Viswanath, CUP 2005

Multipath fading due to constructive and destructive
interference of transmitted waves
Carrier frequency fc for wireless communication is of the order
of GHz. E.g. For cellular, fc = 0.9 GHz or 1.9 GHz
Channel varies when mobile moves a distance of the order of
the carrier wavelength λc = c/fc (about 0.3m for cellular)
For vehicular speeds, this translates to channel variation of
the order of ∼ 100 Hz

How do parameters such as fc , bandwidth, mobile speed, delay
spread affect communication system design
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Physical Model

From “Fundamentals of Wireless Communication”, Tse and Viswanath, CUP 2005

The wireless channel can be modelled as

Y (t) =
∑

i

ai (t) X (t − τi (t)) + N(t)

On path i from the transmitter to receiver:
ai (t) is the attenuation at time t

τi (t) is the propagation delay at time t

The sum is over all paths i

This is a linear, time-varying system

Consider first the special case where the channel is time-invariant,
i.e., ai (t) = ai and τi (t) = τi for all i
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Time-invariant Fading Channel

Y (t) =
∑

i

aiX (t − τi ) + N(t) (1)

For concreteness, assume that X (t) is the foll. QAM signal:

X (t) =
∑

k

p(t − kT ) [Re(Xk) cos(2πfct) − Im(Xk) sin(2πfct)]

Let us write (1) in terms of the baseband equivalent: we want
XB(T ) such that

X (t) = Re
[

XB(t)e j2πfc t
]

XB(t) is seen to be

XB(t) =
∑

k

p(t−kT )[Re(X [k])+ j Im(X [k])] =
∑

k

p(t−kT )X [k]

where the symbol time T ≈ 1
2W . Note that XB(t) is bandlimited

to [−W ,W ].
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We have written

X (t) = Re
[

XB(t)e j2πfc t
]

Hence X (t − τi ) = Re
[

XB(t − τi )e−j2πfcτi e j2πfc t
]

Let Ñ(t) = N(t)e−j2πfc t be the baseband equivalent of the noise
so that

N(t) = Re[Ñ(t)e j2πfc t ]

and

Y (t) =
∑

i

aiX (t − τi ) + N(t)

= Re
[ (∑

i

aie
−j2πfcτi XB(t − τi ) + Ñ(t)

)
· e j2πfc t

]

Let’s define aB,i = aie
−j2πfcτi . Then . . .
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Towards a Discrete-Time Representation

The equivalent baseband channel is:

YB(t) =
∑

i

aB,i XB(t − τi ) + Ñ(t)

where aB,i = aie
−j2πfcτi .

Recall XB(t) =
∑

k X [k] p(t − kT ) with

p(mT ) = 1 for m = 0, and 0 for m 6= 0

This sampling property of p(t) is clearly true for sinc or rect.
In fact, it also holds for the raised cosine pulse, and more
generally whenever p(t) satisfies something called the
“Nyquist criterion”. (3F4 talks about this in detail.)
For such p(t), symbols can be recovered from XB(t) can be
done by just sampling the output at instants {T , 2T , . . .}

Key Q: What do you get by sampling YB(t) at t = T , 2T , . . .

Which X [k]’s contribute to YB(mT ) for m = 1, 2, . . .?
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A Two-delay example

For intuition, first consider an multi path fading channel where

Each path has delay either τ0 = 0 or τ1 = T

Then the baseband output YB(t) is

YB(t) =
∑

i

aB,i XB(t − τi ) + Ñ(t)

=
∑

i : delay τ0

ai XB(t) +
∑

i : delay τ1

aie
−j2πfcT XB(t − T ) + Ñ(t)

YB(mT ) =
∑

i : delay τ0

ai X [m] +
∑

i : delay τ1

aie
−j2πfcτ1 X [m−1] + Ñ(mT )
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We’ll denote YB(mT ) by Y [m], and Ñ(mT ) by N[m].

Then for m = 1, 2, . . .

Y [m] =
∑

i : delay τ0

ai X [m] +
∑

i : delay τ1

ai e−j2πfcτ1 X [m − 1] + N[m]

= h0 X [m] + h1 X [m − 1] + N[m]

where
h` =

∑

i : delay τ`

ai e−j2πfcτ` for ` = 0, 1

Unlike the simple AWGN channel, a fading channel may have
Inter-Symbol Interference (ISI) due to multiple paths

The amount of ISI depends on the fading coefficients. E.g.

- If |h1| ≥ |h0|, then significant ISI

- If |h1| � |h0|, then ISI is not a problem
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Mutipath Resolution

In general, if we have paths with time-invariant delays which are
close to one of K values

τ0 = 0, τ1 = T , τ2 = 2T , . . . , τK = KT

then

Y [m] = h0X [m] + h1X [m − 1] + . . .+ hKX [m − K ] + N[m]

=
K∑

`=0

h` X [m − `] + N[m]

where
h` =

∑

i : delay ≈τ`
ai e−j2πfcτ` for ` = 0, 1, . . . ,K

h` is called the `th complex filter tap

h` is the sum over all paths that have delay in
[`T − T

2 , `T + T
2 ]

X [.] filtered with {h`}; Y [.] is a noisy version of filter output. 11 / 19

Y [m] =
K∑

`=0

h` X [m − `] + N[m]

How many taps K does a mutipath fading channel have?

Delay spread Td is the maximum difference between path delays:

Td = max
all paths i ,j

|τi − τj |

where τi denotes the delay of path i

Recall that symbol time T ≈ 1
2W , W is the baseband bandwidth.

If Td � T ≈ 1
2W , channel has only a single channel tap The

channel is said to have flat fading (no ISI)

If Td > T ≈ 1
2W , channel has multiple taps and is said to be

frequency selective

The coherence bandwidth of the channel is Wc = 1
2Td

For bandwidths W �Wc the channel is flat, for W > Wc it
frequency-selective and has ≈W /Wc taps
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Time Variations

From “Fundamentals of Wireless Communication”, Tse and Viswanath, CUP 2005

So far we assumed that the channel was time invariant

But the propagation delays and attenuations of the paths change
as the mobile moves

Time-varying discrete channel model:

Y [m] =
∑

`

h`[m] X [m − `] + N[m]

13 / 19

Doppler Spread

Y [m] =
∑

`

h`[m] X [m − `] + N[m]

The `th channel filter tap is now

h`[m] =
∑

i :τi (t) near `T

ai (t)e−j2πfcτi (t), at t = mT

Paths i whose delay is closest to `T contribute to tap `

If τi varies by ± 1
4fc

, causes significant change in h`. Why?

The Doppler shift of ith path = fcτ
′
i (t)

The Doppler spread Ds = maxi ,j |fcτ ′i (t)− fcτ
′
j (t)|

The Coherence time Tc = 1
Ds

Tc ≈ the time over which h`[m] changes significantly
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Typical Values for Channel Parameters

From “Fundamentals of Wireless Communication”, Tse and Viswanath, CUP 2005
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Underspread Channels

From “Fundamentals of Wireless Communication”, Tse and Viswanath, CUP 2005

Coherence time Tc depends on carrier frequency fc and
vehicular speed, of the order of milliseconds

Delay Spread Td depends on distance to scatterers, of the
order of nanoseconds (indoor) or microseconds (outdoor)

Hence Td � Tc (usually) and such a channel is said to be
underspread
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Types of Channels

From “Fundamentals of Wireless Communication”, Tse and Viswanath, CUP 2005

If we can tolerate a delay of N symbols, i.e., N
2W seconds, then:

If Tc � N
2W , then channel changes significantly over the

duration of N symbols (Fast Fading)

We can transmit coded symbols over many “independent”
channel realisations
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Statistical Models of Fading

Y [m] =
∑

`

h`[m] X [m − `] + N[m]

The channel filter taps h`[m] need to be measured – typically
done using pilot symbols

But probabilistic models for the fading channel are important
to get insight into designing and analysing wireless systems

Noise is AWGN

N[m] = N r [m] + j N i [m]

where N r [m] and N i [m] are i.i.d. ∼ N (0, N0
2 ) for all m

Next, we have to model the filter taps h`[m] . . .
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Recall that
h` =

∑

i :τi near `T

ai e−j2πfcτi

Rayleigh fading model:

h` is the sum of contributions from many small scattered
paths with delay near `T .
We model this as a complex Gaussian random variable, with

Re(h`) ∼ N (0,
σ2
`
2 ), and Im(h`) ∼ N (0,

σ2
`
2 )

The real and imaginary parts are assumed to be independent.

The squared magnitude |h`|2 is then exponentially distributed:

f|h`|2(x) =
1

σ2`
exp

(−x

σ2`

)
, x ≥ 0

Notation

CN (0, σ2) denotes a complex Gaussian random variable with

Its real and imaginary parts are i.i.d, and

They each have distribution N (0, σ
2

2 )

Thus N[m] ∼ CN (0,N0) and h`[m] ∼ CN (0, σ2` )
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