4F5: Advanced Communications and Coding Handout 8: Modelling the Wireless Channel

Ramji Venkataramanan

Signal Processing and Communications Lab Department of Engineering ramji.v@eng.cam.ac.uk

Michaelmas Term 2015

The Wireless Channel

Two fundamental aspects of wireless communication:

- **1** *Fading*: Time variation of channel strengths
- 2 Interference between various users. For example,
 - Between several transmitters communicating with a common receiver (e.g. mobiles to base-station)
 - Between single transmitter and multiple receivers

Here we'll only consider *fading* and study how it affects system design

The channel quality varies over two time-scales:

Large-scale fading: Occurs at a slow time scale

- Path loss of signal as function of distance and shadowing by large objects such as buildings, hills
- Time constants associated with variations are of the order of many seconds or minutes
- $\bullet\,$ More important for cell site planning, less for Tx/Rx design
- Small-scale fading: Occurs at a fast time scale
 - Due to constructive and destructive interference of the multiple signal paths between the Tx and Rx
 - Occurs as mobile moves at the spatial scale of order of carrier wavelength, and is frequency dependent

Small-scale Multipath Fading

- Multipath fading due to *constructive* and *destructive* interference of transmitted waves
- Carrier frequency f_c for wireless communication is of the order of GHz. E.g. For cellular, $f_c = 0.9$ GHz or 1.9 GHz
- Channel varies when mobile moves a distance of the order of the carrier wavelength $\lambda_c = c/f_c$ (about 0.3m for cellular)
- $\bullet\,$ For vehicular speeds, this translates to channel variation of the order of $\sim 100\,$ Hz $\,$

How do parameters such as f_c , bandwidth, mobile speed, delay spread affect communication system design

Physical Model

The wireless channel can be modelled as

$$Y(t) = \sum_i a_i(t) X(t - \tau_i(t)) + N(t)$$

- On path *i* from the transmitter to receiver: $a_i(t)$ is the attenuation *at time t* $\tau_i(t)$ is the propagation delay *at time t*
- The sum is over all *paths i*
- This is a linear, time-varying system

Consider first the special case where the channel is time-invariant, i.e., $a_i(t) = a_i$ and $\tau_i(t) = \tau_i$ for all *i*

Time-invariant Fading Channel

$$Y(t) = \sum_{i} a_i X(t - \tau_i) + N(t)$$
(1)

For concreteness, assume that X(t) is the foll. QAM signal:

$$X(t) = \sum_{k} p(t - kT) \left[\operatorname{Re}(X_k) \cos(2\pi f_c t) - \operatorname{Im}(X_k) \sin(2\pi f_c t) \right]$$

Let us write (1) in terms of the *baseband* equivalent: we want $X_B(T)$ such that

$$X(t) = \operatorname{Re}\left[X_B(t)e^{j2\pi f_c t}
ight]$$

 $X_B(t)$ is seen to be $X_B(t) = \sum_k p(t-kT)[\operatorname{Re}(X[k])+j\operatorname{Im}(X[k])] = \sum_k p(t-kT)X[k]$

where the symbol time $T \approx \frac{1}{2W}$. Note that $X_B(t)$ is bandlimited to [-W, W].

5/19

We have written

$$X(t) = \operatorname{Re}\left[X_B(t)e^{j2\pi f_c t}\right]$$

Hence $X(t - \tau_i) = \operatorname{Re}\left[X_B(t - \tau_i)e^{-j2\pi f_c \tau_i}e^{j2\pi f_c t}\right]$

Let $\tilde{N}(t) = N(t)e^{-j2\pi f_c t}$ be the baseband equivalent of the noise so that

$$N(t) = \operatorname{Re}[\tilde{N}(t)e^{j2\pi f_c t}]$$

and

$$Y(t) = \sum_{i} a_{i}X(t - \tau_{i}) + N(t)$$

= Re $\Big[\left(\sum_{i} a_{i}e^{-j2\pi f_{c}\tau_{i}}X_{B}(t - \tau_{i}) + \tilde{N}(t)\right) \cdot e^{j2\pi f_{c}t}\Big]$

Let's define $a_{B,i} = a_i e^{-j2\pi f_c \tau_i}$. Then ...

7	/	1	0
1	/	_	Э

Towards a Discrete-Time Representation

The equivalent baseband channel is:

$$Y_B(t) = \sum_i a_{B,i} X_B(t- au_i) + \tilde{N}(t)$$

where $a_{B,i} = a_i e^{-j2\pi f_c \tau_i}$. Recall $X_B(t) = \sum_k X[k] p(t - kT)$ with p(mT) = 1 for m = 0, and 0 for $m \neq 0$

- This sampling property of p(t) is clearly true for sinc or rect.
- In fact, it also holds for the raised cosine pulse, and more generally whenever p(t) satisfies something called the "Nyquist criterion". (3F4 talks about this in detail.)
- For such p(t), symbols can be recovered from X_B(t) can be done by just sampling the output at instants {T, 2T, ...}
- Key Q: What do you get by sampling $Y_B(t)$ at t = T, 2T, ...
- Which X[k]'s contribute to $Y_B(mT)$ for m = 1, 2, ...?

A Two-delay example

For intuition, first consider an multi path fading channel where

Each path has delay either $\tau_0 = 0$ or $\tau_1 = T$

Then the baseband output $Y_B(t)$ is

$$egin{aligned} Y_B(t) &= \sum_i a_{B,i} \, X_B(t- au_i) + ilde{N}(t) \ &= \sum_{i: \; ext{delay} \; au_0} a_i \, X_B(t) \; + \sum_{i: \; ext{delay} \; au_1} a_i e^{-j2\pi f_c \, T} \, X_B(t- au) + ilde{N}(t) \end{aligned}$$

$$Y_B(mT) = \sum_{i: \text{ delay } \tau_0} a_i X[m] + \sum_{i: \text{ delay } \tau_1} a_i e^{-j2\pi f_c \tau_1} X[m-1] + \tilde{N}(mT)$$

9/19

We'll denote $Y_B(mT)$ by Y[m], and $\tilde{N}(mT)$ by N[m].

Then for $m = 1, 2, \ldots$

$$Y[m] = \sum_{i: \text{ delay } \tau_0} a_i X[m] + \sum_{i: \text{ delay } \tau_1} a_i e^{-j2\pi f_c \tau_1} X[m-1] + N[m]$$

= $h_0 X[m] + h_1 X[m-1] + N[m]$

where

$$h_\ell = \sum_{i: ext{ delay } au_\ell} a_i \, e^{-j2\pi f_c au_\ell} \quad ext{ for } \ell = 0,1$$

- Unlike the simple AWGN channel, a fading channel may have Inter-Symbol Interference (ISI) due to multiple paths
- The amount of ISI depends on the fading coefficients. E.g.
 - If $|h_1| \ge |h_0|$, then significant ISI
 - If $|h_1| \ll |h_0|$, then ISI is not a problem

Mutipath Resolution

In general, if we have paths with time-invariant delays which are close to one of K values

$$\tau_0 = 0, \ \tau_1 = T, \ \tau_2 = 2T, \ \ldots, \tau_K = KT$$

then

$$Y[m] = h_0 X[m] + h_1 X[m-1] + \ldots + h_K X[m-K] + N[m]$$

= $\sum_{\ell=0}^{K} h_\ell X[m-\ell] + N[m]$

where

$$h_\ell = \sum_{i: \text{ delay } pprox au_\ell} a_i \, e^{-j2\pi f_c au_\ell} \quad ext{ for } \ell = 0, 1, \dots, K$$

- h_{ℓ} is called the ℓ th complex *filter tap*
- h_{ℓ} is the sum over all paths that have delay in $[\ell T \frac{T}{2}, \ell T + \frac{T}{2}]$
- X[.] filtered with $\{h_{\ell}\}$; Y[.] is a noisy version of filter output.

$$Y[m] = \sum_{\ell=0}^{K} h_{\ell} X[m-\ell] + N[m]$$

How many taps K does a mutipath fading channel have?

Delay spread T_d is the maximum difference between path delays:

$$T_d = \max_{\textit{all paths } i, j} | au_i - au_j|$$

where τ_i denotes the delay of path *i*

Recall that symbol time $T \approx \frac{1}{2W}$, W is the baseband bandwidth.

- If $T_d \ll T \approx \frac{1}{2W}$, channel has only a single channel tap The channel is said to have **flat fading** (no ISI)
- If $T_d > T \approx \frac{1}{2W}$, channel has multiple taps and is said to be frequency selective
- The coherence bandwidth of the channel is $W_c = \frac{1}{2T_d}$
- For bandwidths $W \ll W_c$ the channel is flat, for $\bar{W} > W_c$ it frequency-selective and has $\approx W/W_c$ taps

Time Variations

So far we assumed that the channel was time invariant

But the propagation delays and attenuations of the paths change as the mobile moves

Time-varying discrete channel model:

$$Y[m] = \sum_{\ell} h_{\ell}[m] X[m-\ell] + N[m]$$

13/19

Doppler Spread

$$Y[m] = \sum_{\ell} h_{\ell}[m] X[m-\ell] + N[m]$$

The ℓ th channel filter tap is now

$$h_\ell[m] = \sum_{i: au_i(t) ext{ near } \ell T} a_i(t) e^{-j2\pi f_c au_i(t)}, \quad ext{ at } t = m T$$

• Paths *i* whose delay is closest to ℓT contribute to tap ℓ

• If τ_i varies by $\pm \frac{1}{4f_c}$, causes significant change in h_{ℓ} . Why?

The Doppler shift of ith path $= f_c \tau'_i(t)$ The Doppler spread $D_s = \max_{i,j} |f_c \tau'_i(t) - f_c \tau'_j(t)|$ The Coherence time $T_c = \frac{1}{D_s}$ $T_c \approx$ the time over which $h_\ell[m]$ changes significantly

Typical Values for Channel Parameters

Key channel parameters and time-scales	Symbol	Representative values
Carrier frequency	$f_{\rm c}$	1 GHz
Communication bandwidth	W	1 MHz
Distance between transmitter and receiver	d	1 km
Velocity of mobile	v	64 km/h
Doppler shift for a path	$D = f_c v/c$	50 Hz
Doppler spread of paths corresponding to		
a tap	D_{s}	100 Hz
Time-scale for change of path amplitude	d/v	1 minute
Time-scale for change of path phase	1/(4D)	5 ms
Time-scale for a path to move over a tap	c/(vW)	20 s
Coherence time	$T_{\rm c} = 1/(4D_{\rm s})$	2.5 ms
Delay spread	$T_{\rm d}$	1 μs
Coherence bandwidth	$W_{\rm c} = 1/(2T_{\rm d})$	500 kHz

From "Fundamentals of Wireless Communication", Tse and Viswanath, CUP 2005

Underspread Channels

- Coherence time T_c depends on carrier frequency f_c and vehicular speed, of the order of milliseconds
- Delay Spread T_d depends on distance to scatterers, of the order of nanoseconds (indoor) or microseconds (outdoor)
- Hence $T_d \ll T_c$ (usually) and such a channel is said to be underspread

Types of Channels

Types of channel	Defining characteristic
Fast fading	$T_{\rm c} \ll$ delay requirement
Slow fading	$T_{\rm c} \gg$ delay requirement
Flat fading	$W \ll W_{\rm c}$
Frequency-selective fading	$W \gg W_{\rm c}$
Underspread	$T_{\rm d} \ll T_{\rm c}$

From "Fundamentals of Wireless Communication", Tse and Viswanath, CUP 2005

If we can tolerate a delay of N symbols, i.e., $\frac{N}{2W}$ seconds, then:

- If $T_c \ll \frac{N}{2W}$, then channel changes significantly over the duration of N symbols (Fast Fading)
- We can transmit coded symbols over many "independent" channel realisations

Statistical Models of Fading

$$Y[m] = \sum_{\ell} h_{\ell}[m] X[m-\ell] + N[m]$$

- The channel filter taps $h_{\ell}[m]$ need to be measured typically done using pilot symbols
- But probabilistic models for the fading channel are important to get insight into designing and analysing wireless systems

Noise is AWGN

 $N[m] = N^r[m] + j N^i[m]$

where $N^{r}[m]$ and $N^{i}[m]$ are i.i.d. $\sim \mathcal{N}(0, \frac{N_{0}}{2})$ for all m

Next, we have to model the filter taps $h_{\ell}[m]$...

Recall that

$$h_\ell = \sum_{i: au_i ext{ near } \ell extsf{T}} a_i \, e^{-j2\pi f_c au_i}$$

Rayleigh fading model:

- h_{ℓ} is the sum of contributions from many small scattered paths with delay near ℓT .
- We model this as a *complex* Gaussian random variable, with $\operatorname{Re}(h_{\ell}) \sim \mathcal{N}(0, \frac{\sigma_{\ell}^2}{2})$, and $\operatorname{Im}(h_{\ell}) \sim \mathcal{N}(0, \frac{\sigma_{\ell}^2}{2})$
- The real and imaginary parts are assumed to be independent.

The squared magnitude $|h_{\ell}|^2$ is then *exponentially* distributed:

$$f_{|h_{\ell}|^2}(x) = rac{1}{\sigma_{\ell}^2} \exp\left(rac{-x}{\sigma_{\ell}^2}
ight), \quad x \ge 0$$

Notation

 $\mathcal{CN}(0,\sigma^2)$ denotes a *complex* Gaussian random variable with

- Its real and imaginary parts are i.i.d, and
- They each have distribution $\mathcal{N}(0, \frac{\sigma^2}{2})$

Thus $N[m] \sim \mathcal{CN}(0, N_0)$ and $h_\ell[m] \sim \mathcal{CN}(0, \sigma_\ell^2)$

9 / 19