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BPSK on the AWGN channel

Y = X + N

BPSK: X ∈ {A,−A}
AWGN N ∼ N (0, N0

2 )

Probability of detection error Pe = Q
( A√

N0/2

)
= Q(

√
2 snr)

snr =
Eb

N0
=

A2

N0

Q(x) ≤ 1
2e
−x2/2 for x > 0⇒ Pe decays exponentially with snr
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BPSK on a Rayleigh Flat Fading Channel

Y = h X + N

h ∼ CN (0, 1), N ∼ CN (0,N0)

Coherent detection: The complex fading coefficient h can be
estimated at the receiver by transmitting a known sequence
(called a pilot or training sequence)

The receiver multiplies Y by h∗
|h| to obtain Ȳ :

Ȳ = |h|X + N̄ (1)

where N̄ = h∗
|h|N is a CN (0,N0) random variable (why?)

When h is known, BPSK with X ∈ ±A on the channel (1) is
equivalent to a no-fading AWGN channel with BPSK ±|h|A
As signal is real, only real part of Ȳ matters for detection.

⇒ Scalar BPSK detection with noise Re[N̄] ∼ N (0, N0
2 )

3 / 1

Probability of Error for BPSK
Thus the probability of error conditioned on h is

Pe|h = Q
( |h|A√

N0/2

)
= Q

(√
2|h|2snr

)

The average probability of error with coherent detection is

Pe = E
[
Q
(√

2|h|2snr
)]

where the expectation is over |h|2.

h ∼ CN (0, 1) ⇒ |h|2 has an exponential density (Handout 8):

f|h|2(x) = exp (−x) , x ≥ 0

Therefore

Pe =

∫ ∞

0
exp(−x)Q

(√
2x snr

)
dx

(a)
=

1

2

(
1−

√
snr

1 + snr

)

You will show (a) in Examples Paper 3, Q.7
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Error Performance on AWGN vs Flat Fading
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For Pe = 10−3, there is a 17dB difference in required snr between
AWGN and Rayleigh fading !
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For large snr, we can approximate

√
snr

1 + snr
=

(
1 +

1

snr

)−1/2
≈ 1− 1

2 snr
+ O

( 1

snr2

)

Thus the average probability of error for BPSK is

Pe =
1

2

(
1−

√
snr

1 + snr

)
≈ 1

4 snr
for large snr

Pe decays inversely proportional to snr

This decay is much slower than exponential decay of Pe

without fading
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Deep Fades

Pe ≈
1

4 snr
for large snr

Why does BPSK perform so poorly over a fading channel even
with coherent detection (i.e., we know h at the receiver) ?

Can answer this by looking at the high snr regime:

Error probability conditioned on h is Pe|h = Q
(√

2|h|2snr
)

When |h|2 � 1
snr , Pe|h is very small (the good case)

When |h|2 < 1
snr , Pe|h is large (bad!)

P

(
|h|2 < 1

snr

)
=

∫ 1/snr

0
e−xdx =

1

snr
+ O

( 1

snr

)2

The dominant source of error is the channel being in deep fade :

Deep fade is defined as the event that |h|2 < 1
snr

P(deep fade) ≈ 1
snr
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Diversity

Deep fades are inevitable in wireless channels.

Main idea to combat deep fades and improve Pe : Diversity

Transmit information symbols through multiple independently
faded signal paths

Reliable communication possible as long as one of the paths is
strong

Ways to obtain diversity:

1 Time diversity via coding and interleaving

2 Frequency diversity if channel is frequency-selective (multiple
channel taps)

3 Space diversity with multiple transmit/receive antennas
spaced sufficiently apart

We now discuss a simple time diversity scheme
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Time Diversity

From “Fundamentals of Wireless Communication”, Tse and Viswanath, CUP 2005

Interleaving ensures that each symbol of every codeword
experiences an independent fade.
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Time Diversity via Repetition
Consider a flat fading channel used L times after interleaving over
L coherence time periods:

Y [m] = h[m]X [m] + N[m], for m = 1, . . . , L

Interleaving ensures that that h[1], . . . , h[m] are i.i.d ∼ CN (0, 1)

Repetition Coding:

X [m] = x for m = 1, . . . , L

In vector form, the output Y = (Y [1], . . . ,Y [L])T is

Y = hx + N

h = (h[1], . . . , h[L])T are i.i.d. ∼ CN (0, 1)

N = (N[1], . . . ,N[L])T are i.i.d ∼ CN (0,N0)

For x ∈ {+A,−A} (BPSK):
What is the optimum detector? Average Pe?
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Vector Detection in Gaussian Noise

−A A

Decode A

hA

−hA

Re[Ȳ ]

Y

Project the output Y in the direction of h:

Ȳ =
h∗

‖h‖Y = ‖h‖x + N̄ where ‖h‖2 =
L∑

m=1

|h[m]|2

N̄ is CN (0,N0) (linear combination of L i.i.d CN (0,N0) rvs)

The signal is real: either +‖h‖A or −‖h‖A
⇒ Scalar BPSK detection from Re[Ȳ ] 11 / 1

Probability of Detection Error

Pe|h = Q
( ‖h‖A√

N0/2

)
= Q

(√
2‖h‖2snr

)

The rv ‖h‖2 =
∑L

m=1|h[m]|2 is:

The sum of squared-magnitudes of L i.i.d. complex rvs, each
CN (0, 1)

Chi-squared distributed with 2L degrees of freedom. The
density f of ‖h‖2 is

f (x) =
1

(L− 1)!
xL−1e−x , x ≥ 0

Average Pe = E
[
Q
(√

2‖h‖2snr
) ]

where the E is w.r.t ‖h‖2
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Average Pe with Repetition Coding

Eb / N0  (dB)

From “Fundamentals of Wireless Communication”, Tse and Viswanath, CUP 2005

Diversity gain with L = 4 or 5 is significant!
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Pr(deep fade)

The probability of deep fade for large snr is

Pr(‖h‖2 < 1/snr) =

∫ 1/snr

0

1
(L−1)!x

L−1e−x dx

(a)
≈
∫ 1/snr

0

1
(L−1)!x

L−1 dx =
1

L!

1

snrL

(a) holds because for small x , e−x ≈ 1

Pr(deep fade) falls as Lth power of snr

Can show that the average probability of error is

Pe =

∫ ∞

0
Q(
√

2 x snr)f (x)dx ≈
(

2L− 1

L

)
1

(4 snr)L
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Beyond Repetition Coding

Repeating each symbol L times reduces rate by factor of 1/L

Can use a more sophisticated block code than repetition

Can get diversity gain with much better rates

From “Fundamentals of Wireless Communication”, Tse and Viswanath, CUP 2005
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Example: GSM

From “Fundamentals of Wireless Communication”, Tse and Viswanath, CUP 2005

Amount of time diversity limited by two things:

- How fast channel varies (coherence time Tc)

- Delay constraint of the application

In GSM (voice), delay constraint is 40ms.
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Other kinds of Diversity

Key Q: How to get multiple signal paths that fade independently?

Antenna Diversity: Multiple antennas spaced sufficiently apart
give independent signal paths

From “Fundamentals of Wireless Communication”, Tse and Viswanath, CUP 2005

Receive Diversity Transmit Both

Cheap to have multiple antennas at the base station, more
challenging in a handset

We’ll now look at some signalling schemes with two Tx
antennas and 1 Rx antenna
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Transmit Antenna Diversity

Xa

Xb

haXa + hbXb +N

With two Tx and one Rx antenna, the channel is

Y = haXa + hbXb + N.

ha, hb are the channel fading coefficients from antennas 1 and
2, respectively. ha, hb are iid ∼ CN (0, 1).

Xa,Xb are the symbols transmitted from antennas 1 and 2,
respectively.

The additive noise N ∼ CN (0,N0).
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Repetition coding with antennas
In the first time period, antenna 1 transmits symbol x , and
antenna 2 remains silent.
In the next time period, antenna 2 transmits the same symbol
x , and antenna 1 remains silent.

So we have
Y = hx + N

Y = [Y [1],Y [2]]T , h = [ha, hb]T ∼ iid CN (0, 1)
N = [N[1],N[2]]T ∼ iid CN (0,N0)

Multiply Y by h∗
|h| to get Ȳ = ‖h‖x + N̄ . . . this is exactly the same

as the time-diversity scheme with repetition coding (see p.11)
We get diversity gain of L = 2 ⇒ Pe ∼ 1

snr2

Rate: 1 constellation symbol every two time periods. It seems
wasteful for one antenna to stay silent while the other is active.

Can we do better? Can we transmit two constellation symbols in
two periods, and still get Pe ∼ 1

snr2
?
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The Alamouti Scheme
Transmit two symbols u and v in two periods as follows.
Symbol time 1: Antenna 1 transmits u, antenna 2 transmits v
Symbol time 2: Antenna 1 transmits −v∗, antenna 2 transmits u∗

Y [1] = hau + hbv + N[1]

Y [2] = −hav∗ + hbu
∗ + N[2]

At the Rx, conjugate the second output and rewrite as:

Y [1] = hau + hbv + N[1]

Y [2]∗ = h∗bu − h∗av + N[2]∗
(2)

Key observation: The channel coefficient vector [ha[1], h∗b[2]]
multiplying u is orthogonal to the vector [h∗b,−h∗a] multiplying v :

[ ha, h
∗
b]∗
[
h∗b
−h∗a

]
= 0

This gives us a nice way to detect u and v separately from (2).
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Let ‖h‖ =
√
|ha|2 + |hb|2. At the Rx:

1) Take inner product of the vector [Y [1],Y [2]∗] with the vector
1
‖h‖ [h∗a, hb] to get:

Ȳ = ‖h‖u + N̄ (3)

2) Take inner product of the vector [Y [1],Y [2]∗] with the vector
1
‖h‖ [h∗b,−ha] to get:

Ȳ ′ = ‖h‖v + N̄ ′ (4)

Can now detect u from Ȳ and v from Ȳ ′ separately, without
interference from the other symbol.
The noise rvs N̄ and N̄ ′ are each CN (0,N0)

Note that detecting u from (3), and v from (4) gives the
same diversity gain as repetition coding with L = 2.

But we have transmitted two symbols in two time periods —
double the rate!

The Alamouti scheme is a simple example of a “space-time”
code, where the information is coded across both space
(antennas) and time (symbol periods).
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Frequency Diversity
If we have a large bandwidth W , you get multiple channel taps

Y [m] =
∑

`

h`X [m − `] + N[m], m = 1, 2, . . .

The h`’s are independent; but we have to deal with ISI

Main challenge: How to mitigate ISI while exploiting the diversity
in the frequency-selective channel?

Direct-sequence spread spectrum (e.g. IS-95 CDMA)

Orthogonal frequency-division multiplexing (OFDM):

Channel acts like a filter with impulse response {h`}
In freq. domain, signal DFT x̃ [m] gets multiplied with h̃m:

ỹ [k] = h̃k x̃ [k] + ñ[k]

No ISI in freq. domain! Code information as DFT symbols,
transmit Inverse DFT over the channel

OFDM with QPSK/QAM constellation used in 3G/LTE as well
as Wi-Fi 802.11n
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Wireless Channels: A Summary

Fading makes wireless channels unreliable

Diversity increases reliability and makes the channel more
consistent

Good codes in conjunction with diversity techniques
(time/space/frequency) yield a coding gain in addition to
diversity gain

For more on diversity techniques and wireless system design, see

Fundamentals of Wireless Communication, Tse & Viswanath, CUP 2005.
Available at: http://www.eecs.berkeley.edu/∼dtse/book.html
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Review: End-to-End Communication System

Compressor

Encoder Mod.

110 001 100 . . .

Channel
waveform

input
DecoderDemod

waveform

output

Decompressor

110 001 100 . . .

Compression

Transmission
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Course summary
1 Information Representation, Compression:

- Sources and channels are modelled using probability

- Entropy, Conditional Entropy, Typical Sequences; how is all
this relevant to compression?

- Mutual Information; Capacity, the fundamental limit of data
transmission

2 Channel Coding: Next we studied how to design practical
encoders and decoders:
- How to achieve channel capacity with low-complexity codes?

- Reed-Solomon, LDPC codes (almost every communication
or storage device has one of these)

3 Modulation Techniques and Wireless Channels:

We looked at the inner “physical” part of the Tx/Rx system:
Modelling real-world channels; how to effectively transmit
bits/symbols using waveforms

26 / 1



Exam Information

1.5 hours, 4 questions out of which you do 3.

One question from each of the three parts of the course; the
fourth may be a combination or from one of the parts.

There will be a data sheet attached to the exam. This sheet
will be available on Moodle in early January.

A list of relevant past Tripos questions will also be available
on Moodle.

We will have an examples class early in Lent Term
— on 15 January at 4pm
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