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Question 1

Consider the four waveforms xm(·),m = 1, . . . , 4 shown in Figure 1.
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Figure 1: Signal set for Question 1.

(a) Determine the dimensionality of the waveforms and a set of orthonormal basis functions.

(b) Use the basis functions to represent the four waveforms by vectors x1,x2,x3,x4.

(c) Determine the minimum distance between any pair of vectors.

Question 2

Determine the signal space representation of the four signals xm(·),m = 1, . . . , 4 shown in Figure
2 using as basis functions f1(·) and f2(·). Plot the signal space diagram and show that it is
equivalent to that of QPSK modulation.
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Figure 2: Signal set for Question 2.
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Question 3

A binary digital communications system employs the signals

x0(t) = 0, t ∈ R

x1(t) =

{
A, 0 ≤ t ≤ T
0, otherwise

for transmission of information. This is called on-off signalling.

(a) What are optimum receiver structures?

(b) Determine the optimum detector for the AWGN channel, assuming that the signals are
equiprobable.

(c) Determine the probability of error as a function of SNR.

(d) How does on-off signalling compare with antipodal signalling, i.e., x0(t) = −A, x1(t) = A for
0 ≤ t ≤ T and x0(t) = x1(t) = 0 otherwise?

Question 4

Suppose the energy limited signal x(·) is corrupted by the AWGN n(·). Hence, the observed
signal is

y(t) = x(t) + n(t), t ∈ R.

The received signal is passed through a filter whose impulse response is t 7→ h(t). Find the filter
h(·) that maximises the SNR at its output at t = 0.

Question 5

Suppose a signal set xm(·),m = 1, . . . ,M is transmitted over an AWGN channel with noise
variance σ2 = N0

2
. Hence, the received signal is

y(t) = xm(t) + n(t), t ∈ R.

A correlator receiver using the K signal-space basis functions fk(·), k = 1, . . . , K is employed,
producing

yk = 〈y(t), fk(t)〉 = xm,k + nk, k = 1, . . . , K.

Show that

(a) E[nk] = 0.

(b) E[nknl] = N0

2
δk,l, where δk,l = 1 for k = l and δk,l = 0 otherwise.

(c) E[n′(t)yk] = 0, where n′(t) = n(t)−∑K
k=1 nkfk(t) is the AWGN component that does not lie

within the signal space.

(d) Show that the optimum demodulator/detector can be obtained as shown in Figure 3, where
Em = ‖xm(t)‖2, m = 1, . . . ,M .
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Figure 3: Detector for Question 5.

Question 6

Show the following results:

(a) Chain rule for entropy:
H(X, Y ) = H(X) +H(Y |X).

(b) Positiveness:
I(X;Y ) ≥ 0.

(c) Conditioning reduces entropy:
H(X) ≥ H(X|Y ).

(d) Chain rule for mutual information:

I(X1, X2;Y ) = I(X1;Y ) + I(X2;Y |X1).

(e) Data Processing Inequality: Let X → Y → Z form a Markov chain. Show that

I(X;Z) ≤ I(X;Y ).

(f) Let X,Y be n-dimensional random vectors over X n,Yn. Assume that

PY |X(y|x) =
n∏

i=1

PY |X(yi|xi).

Show that, for any distribution on X,

I(X; Y ) ≤
n∑

i=1

I(Xi;Yi).

Question 7

Consider the cascade of channels shown in Figure 4. Show that the channel capacity of the
cascade of channels cannot be larger than the channel capacity of the individual binary symmetric
channels. Determine the channel capacity of the cascade of channels.
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Figure 4: BSC channel cascade for Question 7.

Question 8

What is the channel capacity and the capacity achieving input distribution of the ternary-input
binary-output channel given in Figure 5(a)? Compare this capacity to the channel capacity of
the binary symmetric channel depicted in Figure 5(b). (Recall that the channel capacity of the
binary symmetric channel with cross-over probability p is given by C = 1−Hb(p), where Hb(·) is
the binary entropy function.)
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Figure 5: BSC and ternary-input binary-output channel for Question 8.

Question 9

Consider the three channels that are depicted in Figure 6.

(a) Find the capacity of channel 1. What input distribution achieves the capacity?

(b) Find the capacity of channel 2. What input distribution achieves the capacity?

(c) Let C3 denote the capacity of the third channel, and let C1 and C2 denote the capacities of
the first and second channel. Which of the following relations holds true and why?

(i) C < 1
2
(C1 + C2)

(ii) C = 1
2
(C1 + C2)

(iii) C > 1
2
(C1 + C2)

Hint: Use that

I
(
Q, λW1 + (1− λ)W2

)
≥ λI(Q,W1) + (1− λ)W2, 0 < λ < 1

with equality if, and only if, W1 = W2. Here I(Q,W ) denotes the mutual information between
X and Y if X is distributed according to Q and PY |X = W .
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Figure 6: Channels for Question 9.

Question 10

Let C denote the capacity of a discrete memoryless channel with input alphabet X = {x1, . . . , xM}
and output alphabet Y = {y1, . . . , yN}. Show that C ≤ min{log2M, log2N}.

Question 11

(Converse to Fano’s inequality). Suppose we want to estimate X ∈ X from the observation
Y ∈ Y , where X and Y are some finite sets. Fano’s inequality states that, for any estimator
X̂ = g(Y ) such that X → Y → X̂ forms a Markov chain, we have that

H(X|Y ) ≤ Hb(Pe) + Pe log2(|X | − 1)

where Pe = Pr(X̂ 6= X), and where Hb(·) is the binary entropy function. Using the graphical
approach presented in the lecture notes, can you state a lower bound on H(X|Y ) in function of Pe

to complement Fano’s inequality? Try to provide a lower bound for the conditional entropy given
a specific observation H(X|Y = y) first, assuming Pe(y) < 0.5. Then consider what happens
when 0.5 ≤ Pe(y) < 2/3, and generalise to 1 − 1

k
≤ Pe(y) < 1 − 1

k+1
. Finally, note that if your

bound on H(X|Y = y) is not convex in Pe(y), then you cannot use Jensen’s inequality directly
as was done in the lecture notes for the upper bound, and hence need to take a convex envelope
of your bound to make the step from H(X|Y = y) to H(X|Y ).

Question 12

(a) Suppose that X is a discrete random variable taking only nonnegative values. Show that for
every δ > 0

Pr (X ≥ δ) ≤ E[X]

δ
.

This is called Markov’s inequality.

(b) Use Markov’s inequality to show that for any discrete random variable Y of variance σ2
Y we

have for every δ > 0

Pr
((
Y − E[Y ]

)2 ≥ δ
)
≤ σ2

Y

δ
.

This is called Chebyshev’s inequality.
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(c) Use Markov’s inequality to show that for every β > 0

Pr
(
i(X̄; Y ) > log2 β

)
≤ 1

β

where i(x; y) , log2
PX,Y (x,y)

PX(x)PY (y)
, and where PX̄,Y (x,y) = PX(x)PY (y).

(d) Use Chebyshev’s inequality to prove the weak law of large numbers. Thus, show that for
every ε > 0

lim
n→∞

Pr

(∣∣∣∣
Z1 + . . .+ Zn

n
− µ

∣∣∣∣ ≥ ε

)
= 0

where Z1, . . . , Zn is a sequence of i.i.d. random variables of mean µ and variance σ2:

(i) Compute the mean and variance of the random variable

Xn ,
1

n

n∑

k=1

Zk.

(ii) For every n = 1, 2, . . . , upper-bound the probability

Pr

(∣∣∣∣
Z1 + . . .+ Zn

n
− µ

∣∣∣∣ ≥ ε

)
, ε > 0

using Chebyshev’s inequality. Show that the weak law of large numbers follows from
this upper bound by letting n tend to infinity.

Question 13

Consider the parallel discrete memoryless channels shown in Figure 7. Show that the capacity of
the parallel channels is equal to the sum of the capacities of the individual channels. Thus, show
that

C1,...,K = max
PX1,...,XK

I(X1, . . . , XK ;Y1, . . . , YK) =
K∑

k=1

Ck

where Ck = max
PXk

I(Xk;Yk).
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Figure 7: Channels for Question 13.
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