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Course Organisation

Course Structure
9 chapters (some spanning multiple lectures)

2 examples papers

Possibly one guest lecture (to be confirmed)

Slide printouts handed out at the beginning of each chapter

Contact
Questions, interruptions, or other active participation in class is encouraged!

Website: http://www-sigproc.eng.cam.ac.uk/∼js851/teaching.html
All slides are on the website, but warning: slides may change based on feedback
and other inputs from the class. Consult the latest version when revising.

Email for questions or feedback: jossy.sayir@eng.cam.ac.uk

Acknowledgment
The slides are largely based on the course by Dr. Albert Guillén i Fàbregas given in
previous years, with some inputs by Dr. Tobias Koch and by myself
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Course Contents

Topics
Digital Modulation

I Signal Space
I Optimum Signal Detection
I Error Probability

Error-Control Coding
I Review of Channel Capacity
I Block Codes
I Error Probability
I Convolutional Codes
I Turbo-Codes
I Low-Density Parity-Check Codes
I Coded Modulation

Wireless Channels
I Multipath Propagation and Statistical Models
I Equalisation and OFDM
I Channel Capacity and Outage Probability
I Diversity techniques
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Recommended Books

T. M. Cover and J. A. Thomas,
Elements of Information Theory,
Wiley Series in Telecommunications, 2nd Edition, 2006.
D. J. C. MacKay,
Information theory, inference, and learning algorithms,
Cambridge University Press, 2003. (free online version)
R. G. Gallager,
Principles of Digital Communications,
Cambridge University Press, 2008.
A. Lapidoth,
A Foundation in Digital Communication,
Cambridge University Press, 2009.
A. Goldsmith,
Wireless Communications,
Cambridge University Press 2005. (free online version)
D. Tse and P. Vishwanath,
Fundamentals of Wireless Communication,
Cambridge University Press, 2005. (free online version)
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Basic Concepts
Definition and Fundamental Problem

Definition: Communication
The process of delivering information from an information source to a destination
(through a communications channel).

Quoting Shannon’s 1948 Paper:
“The fundamental problem of communication is that of reproducing at one point exactly
or approximately a message selected at another point.”
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Basic Block Diagram

Source Transmitter

ReceiverDestination

Channel

transmitted
message

transmitted
signal

waveform

received
signal

waveform

received
message
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Basic Block Diagram

Component Description
Source: voice, music, video (analogue), e-mail, file transfer (digital). Has an
information message to transmit.

Transmitter: translates the information message into a signal suitable for
transmission over the channel.

Channel: medium used to transmit the signal to the receiver: optical fibre, mobile
wireless radio channel... Might add noise or interference.

Receiver: reconstructs the message from the signal (inverse operation)

Destination: to whom the message is intended.
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Basic Block Diagram
...with some more detail (digital communications)

Source Source
Encoder

Source
DecoderDestination

Channel

transmitted
message transmitted

signal
waveform

received
signal

waveformreceived
message

ModulatorChannel
Encoder

Channel
Decoder Demodulator

Transmitter

Receiver
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Basic Block Diagram

Definition
Source Encoder: lossless or lossy. Compresses the source message such that
redundancy is removed. MP3, JPEG, MPEG are compression standards. (3F1)

Channel Encoder: introduces smart redundancy suited to the channel
characteristics (noise, interference...). (a bit in 3F4 and more in 4F5)

Modulator: maps output of channel encoder to signal waveforms (electrical/optical
signal), matched to the channel characteristics. (1B P6, 3F4 and 4F5)
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Basic Block Diagram
...modulation part
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The Signal Space

Signal Space Concepts
Let L2 be the set of complex-valued signals (functions) x(.) with finite energy, i.e.,

Ex =

Z ∞
−∞
|x(t)|2dt <∞.

It can be shown that L2 is a vector space.

The inner product between x1(.) and x2(.) in L2 is defined as

〈x1(.), x2(.)〉 ∆
=

Z ∞
−∞

x1(t)x∗2 (t)dt

The norm of a signal x(.) ∈ L2 is

‖x(.)‖ =
p
〈x(t), x(t)〉 =

sZ ∞
−∞
|x(t)|2dt

Triangle inequality: ‖x1(.) + x2(.)‖ ≤ ‖x1(.)‖+ ‖x2(.)‖
Cauchy-Schwarz inequality:

|〈x1(.), x2(.)〉| ≤ ‖x1(.)‖ ‖x2(.)‖

with equality when x2(t) = ax1(t), t ∈ R for a ∈ C.
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The Signal Space
Orthogonal Expansions of Signals

The set of K signals fk (.), k = 1, . . . ,K is said to be orthonormal if

〈fn(.), fm(.)〉 =

(
1 m = n
0 m 6= n

Let U be a sub-space of L2. If U is of dimension K , then we can find an
orthonormal basis fk (.), k = 1, . . . ,K such that for any x(.) ∈ U , the signal

x̂(.) =
KX

k=1

ck fk (.), ck = 〈x(.), fk (.)〉 for k = 1, . . . ,K (1)

satisfies

‖x(.)− x̂(.)‖ = 0 and ‖x(.)‖2 = ‖x̂(.)‖2 =
KX

k=1

c2
k .

If U has dimension larger than K , then we can approximate any x(.) ∈ U by x̂(.)
defined as in (1) with error e(.) = x(.)− x̂(.) and error energy Ee = ‖e(.)‖2

Since 〈e(.), fk (.)〉 = 0 for k = 1, . . . ,K , the orthogonality principle of Minimum
Mean Squared Error (MMSE) estimation guarantees that x̂(.) is the approximation
of x(.) minimising Ee among all signals in the sub-space of U spanned by the
basis fk (.), k = 1, . . . ,K .
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The Signal Space

Orthogonal Expansions of Signals
For any M signals xm(.),m = 1, . . . ,M, we can construct a set of K ≤ M
orthonormal signals using the Gram-Schmidt procedure, for m = 1, . . . ,M:

f ′m(.) = xm(.)−
m−1X
i=1

〈xm(.), fi (.)〉fi (.),

and
fm(.) =

f ′m(.)

‖f ′m(.)‖ if ‖f ′m(.)‖ > 0,

discarding all f ′m(.) such that ‖f ′m(.)‖ = 0.

K = M iff all original M signals are linearly independent.

Once we have constructed the orthonormal signal set fk (.), k = 1, . . . ,K , we can
express the set of original signals as vectors

xm = (xm,1, . . . , xm,K )

where xm,k = 〈xm(.), fk (.)〉 and

‖xm(.)−
KX

k=1

xm,k fk (.)‖ = 0 and ‖xm(.)‖2 =
KX

k=1

x2
m,k = ‖xm‖2.
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The Signal Space
Example
Consider the set of M = 4 signals given below and its corresponding orthonormal
basis obtained with Gram-Schmidt: the dimension of the signal set is K = 3, and the
vector representation is

x1 = (
√

2, 0, 0), x2 = (0,
√

2, 0), x3 = (
√

2, 0, 1), x4 = (−
√

2, 0, 1).

Note, that there is more than one orthonormal basis. Hence, there is more than one
vector representation.

2

1

-1

2 3
_

1

-1

1 2

1

-1

3

1

-1

x1(t)

x2(t)

x3(t)

x4(t)

2 2 3
_

1

-1

1 2

1√
2

− 1√
2

1√
2

f1(t)

f2(t)

f3(t)

c©Jossy Sayir (CUED) Advanced Wireless Communications Lent Term 2012 18 / 35



The Signal Space
Example
Consider the set of M = 4 signals given below and its corresponding orthonormal
basis obtained with Gram-Schmidt: the dimension of the signal set is K = 3, and the
vector representation is

x1 = (
√

2, 0, 0), x2 = (0,
√

2, 0), x3 = (
√

2, 0, 1), x4 = (−
√

2, 0, 1).

Note, that there is more than one orthonormal basis. Hence, there is more than one
vector representation.

2

1

-1

2 3
_

1

-1

1 2

1

-1

3

1

-1

x1(t)

x2(t)

x3(t)

x4(t)

2 2 3
_

1

-1

1 2

1√
2

− 1√
2

1√
2

f1(t)

f2(t)

f3(t)

c©Jossy Sayir (CUED) Advanced Wireless Communications Lent Term 2012 18 / 35



Outline

1 Course Organisation

2 Basic Concepts
Definition and Fundamental Problem
Basic Block Diagram

3 The Signal Space
Basic Principles
Digital Modulation
Optimum Demodulation and Detection
Error Probability

c©Jossy Sayir (CUED) Advanced Wireless Communications Lent Term 2012 19 / 35



The Signal Space

Digital Modulation: Phase-Shift Keying (PSK)
For any real-valued pulse shape g(.), the M signals can be expressed as

xm(t) = g(t) cos
„

2πfc t + 2π
m − 1

M

«
= Re

n
g(t)ej2π(m−1)/M ej2πfc t

o
= g(t) cos

„
2π

m − 1
M

«
cos (2πfc t)− g(t) sin

„
2π

m − 1
M

«
sin (2πfc t)

For all m, the signal xm(.) has energy ‖xm(.)‖2 =
‖g(.)‖2

2
=

Eg

2

Basis functions f1(t) =

s
2

Eg
g(t) cos (2πfc t) and f2(t) = −

s
2

Eg
g(t) sin (2πfc t)

(Note that if fc > bandwidth of g(.), then f1(.) and f2(.) are orthonormal.)

Vector representation xm =

 r
Eg

2
cos

„
2π

m − 1
M

«
,

r
Eg

2
sin
„

2π
m − 1

M

«!
Euclidean distance dm,n = ‖xm − xn‖. The minimum Euclidean distance

dmin =
q

Eg
`
1− cos 2π

M

´
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The Signal Space

Digital Modulation: Quadrature-Amplitude Modulation (QAM)

For any real-valued pulse shape g(.), the M signals can be expressed as

xm(t) = A(I)
m g(t) cos (2πfc t)− A(Q)

m g(t) sin (2πfc t)

= Re
n“

A(I)
m + jA(Q)

m

”
g(t)ej2πfc t

o
where A(I)

m ,A
(Q)
m are the information-bearing signal amplitudes of the quadrature

carriers. When log2 M is even, it can be seen as 2 orthogonal PAM signals.

Energy of xm(.) depends on m.

Basis functions same as for PSK:

f1(t) =

s
2

Eg
g(t) cos (2πfc t) and f2(t) = −

s
2

Eg
g(t) sin (2πfc t)

Vector representation xm =

 r
Eg

2
Ac,m,

r
Eg

2
As,m

!
For rectangular QAM with amplitudes {(2m − 1−M)d ,m = 1, . . . ,M} the
minimum Euclidean distance is dmin = d

p
2Eg
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The Signal Space

BPSK QPSK 8-PSK

f1(t)

f2(t) f2(t) f2(t)

f1(t) f1(t)

√
Eg

2

f2(t)

f1(t)

4-QAM

f2(t)

f1(t)

16-QAM

f2(t)

f1(t)

64-QAM
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The Signal Space

Digital Modulation: Transmitting a Sequence of Symbols
Transmitting only M signals with a signal xm(.) of infinite duration is not efficient.

Transmit time-shifts of the same signal:

xPSK(t) =
X
`

g(t − `T )

»
cos

„
2π

m` − 1
M

«
cos(2πfc t)− sin

„
m` − 1

M

«
sin(2πfc t)

–
xQAM(t) =

X
`

g(t − `T )
h
A(I)

m`
cos(2πfc t)− A(Q)

m`
sin(2πfc t)

i
where {m`} is the sequence of symbols we would like to transmit.

c©Jossy Sayir (CUED) Advanced Wireless Communications Lent Term 2012 23 / 35



Basic Block Diagram
...modulation part
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The Signal Space
Optimum Demodulation and Detection

M signals xm(.),m = 1, . . . ,M, contain log2 M information bits if picked uniformly.
Transmission over Additive White Gaussian Noise (AWGN) channel, i.e., the
received signal is given by

y(.) = xm(.) + n(.)

where n(.) is AWGN of power spectral density Φnn(f ) = N0
2 W/Hz.

Optimum receiver (in the sense that it minimises the probability of making an
error) consists of two parts: a demodulator and a detector.
Demodulator projects received signal onto the signal space basis. Two
implementations

I correlation
I matched filter

Detector: makes a decision on the transmitted signal based on a given metric

+xm(t)

n(t)

y(t)

AWGN Channel

Demodulator Detector
Output

decision
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The Signal Space
Optimum Demodulation

Let xm(.) =
KX

k=1

xm,k fk (.) where fk (.), k = 1, . . . ,K forms an orthonormal basis.

If there were no noise, we could recover xm,k directly by computing

〈y(.), fk (.)〉 =

*
KX

k′=1

xm,k′ fk′(.), fk (.)

+
=

KX
k′=1

xm,k′〈fk′(.), fk (.)〉 = xm,k

With noise:

〈y(.), fk (.)〉 =

*
KX

k′=1

xm,k′ fk′(.) + n(.), fk (.)

+
= xk,m + nk , k = 1, . . . ,K

where xk,m = 〈xm(.), fk (.)〉 is known and nk = 〈n(.), fk (.)〉 is Gaussian noise.
Bank of K cross-correlators: projects y(.) onto the signal space

yk ,
Z ∞
−∞

y(t)fk (t)dt = 〈y(.), fk (.)〉, k = 1, . . . ,K

Bank of K matched filters with responses hk (t) = fk (−t)

zk (t) ,
Z ∞
−∞

y(τ)hk (t − τ)dτ =

Z t

0
y(τ)fk (τ − t)dτ, k = 1, . . . ,K

Sampling at t = 0 yields zk (0) = 〈y(.), fk (.)〉.
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The Signal Space
...bank of correlators or matched filters

×

×

�
(.) dt

�
(.) dt

×
�

(.) dt

...

Bank of correlators

y1

y2

yK

f1(t)

f2(t)

fK(t)

y(t)

...

Bank of matched filters

y(t)

f1(−t)

f2(−t)

fK(−t)

sample at
t = 0

z1(0)

z2(0)

zK(0)
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The Signal Space

Optimum Demodulation: Noise Properties
Approximating y(.) as a linear combination of fk (.), k = 1, . . . ,K yields

y(.) =
KX

k=1

yk fk (.) + n′(.) =
KX

k=1

xm,k fk (.) +
KX

k=1

nk fk (.) + n′(.)

where n′(.) = n(.)−
PK

k=1 nk fk (.) is the part of the AWGN that is not projected
onto the signal space.

nk , k = 1, . . . ,K are uncorrelated Gaussian RVs of mean 0 and variance σ2 = N0
2

E[nk ] =

Z ∞
−∞

E[n(t)]fk (t)dt = 0

E[nk nl ] =

Z ∞
−∞

Z ∞
−∞

E[n(t)n(τ)]fk (t)fl (τ)dt dτ =
N0

2

Z ∞
−∞

fk (t)fl (t)dt =
N0

2
δ[k − l]

Conditioned on xm,k , the noise term n′(.) and the observations yk , k = 1, . . . ,K
are uncorrelated.

Since, conditioned on xm = (xm,1, . . . , xm,K ), y = (y1, . . . , yK ) and n′(.) are
uncorrelated Gaussians (and are therefore independent), and since n′(.) does not
depend on xm,k , it follows that n′(.) is irrelevant for making decisions. Thus, only
the noise projected onto the signal space is relevant for making decisions.
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The Signal Space

Optimum Detection
Decisions are made based on

yk = xm,k + nk , k = 1, . . . ,K

Since nk ∼ N (0, N0
2 ), we have p(yk |xm,k ) = 1√

πN0
e−

1
N0

(yk−xm,k )2

Since the noise components are independent, we have that for m = 1, . . . ,M

p(y |xm) =
1

(πN0)K/2 e−
1

N0

PK
k=1(yk−xm,k )2

=
1

(πN0)K/2 e−
1

N0
‖y−xm‖2

Given y , the optimum detector decides on the xm that maximises the probability of
a correct decision.
Let p(xm|y) , Pr{signal xm was transmitted | y was received}. The optimum
detector selects the xm that maximizes the a posteriori probability (MAP)

x̂ = arg max
m=1,...,M

p(xm|y) = arg max
m=1,...,M

p(y |xm)p(xm)

p(y)
= arg max

m=1,...,M
p(y |xm)p(xm)

If all signals are equally likely, i.e., p(xm) = 1/M, for m = 1, . . . ,M, then

x̂ = arg max
m=1,...,M

p(y |xm) = arg max
m=1,...,M

log p(y |xm) = arg min
m=1,...,M

‖y − xm‖2
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The Signal Space

y1

y2

yK

y(t)

Calculate

for all M 
signals      

p(y|xm)

�y − x1�2

�y − x2�2

�y − xM�2

Select
smallest      x̂

Bank of
correlators

or
matched 

fliters
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The Signal Space
Error Probability

BPSK: K = 1 and x ∈ {−
√

Es,+
√

Es}, with Es = ‖g(.)‖2 the symbol energy.
Let Eb denote the energy per bit. For BPSK we have Eb = Es. In general,
Es = R Eb, where R is the rate in bits/symbol.
The error probability is given by

Pe =
1
2

Pr
˘

error|x = +
p

Es
¯

+
1
2

Pr
˘

error|x = −
p

Es
¯

= Pr
˘

error|x = +
p

Es
¯

=

Z 0

−∞
p
`
y |x = +

p
Es
´
dy =

Z 0

−∞

1√
πN0

e−
1

N0
(y−
√

Es)2

dy = Q

 r
2

Es

N0

!

+
√

Es−
√

Es

p
(
y|x = +

√
Es

)
p
(
y|x = −

√
Es

)

0 2 4 6 8 10 12
10

−8

10
−6

10
−4

10
−2

10
0

Eb
N0

(dB)

P
e
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The Signal Space

Error Probability
PSK: in general, for M > 4 we need numerical integration. When M = 4 we have 2
orthogonal BPSK in phase and quadrature,

Pe = 1− Pc = 1−
“

1− Pbpsk
e

”2
= 1−

 
1−Q

 r
2

Eb

N0

!!2

QAM: when M = M ′2, we have 2 orthogonal M ′-PAM in phase and quadrature,

Pe = 1− Pc = 1−
`
1− Ppam

e
´2

Ppam
e = 2

„
1− 1

M ′

«
Q

 r
3

M − 1
Es

N0

!
Union bound: simple and accurate (at large SNR) bound to the error probability

Pe =
1
M

MX
m=1

Pr{error|xm was transmitted} =
1
M

MX
m=1

Pr

8<: [
m′ 6=m

{x̂ = xm′}

˛̨̨̨
˛̨ xm

9=;
≤ 1

M

MX
m=1

X
m′ 6=m

Pr{x̂ = xm′ |xm} =
1
M

MX
m=1

X
m′ 6=m

Q

0@s‖xm − xm′‖2

2N0

1A
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The Signal Space

Computer Exercise
Simulate the error probability vs SNR curve of BPSK and compare to theory

Simulate the error probability of 16-QAM and compare to theory and union bound
for each SNR value

I Generate at random symbols from the constellation
I Generate and add noise with given noise variance according to SNR
I Calculate metrics given the received signal
I Decide in favour of the largest
I Check with transmitted symbol and count errors Pe ≈ number of errors counted

number of transmitted symbols

end for
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