4F5: Advanced Wireless Communications
Handout 2: Review of Channel Capacity

Jossy Sayir

Signal Processing and Communications Lab
Department of Engineering
University of Cambridge
jossy.sayir@eng.cam.ac.uk

Lent 2012

ossy Sayir (CUED) Advanced Wireless Communications Lent 2012 1/32



Reminder: Basic Block Diagram
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Information Theoretic Channel

Definition (Kelly)

A channelis that part of the communication system that one is either unwilling or
unable to change.
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Outline

o Definitions and Properties

e Channel Coding

© Converse Proof: R> C, P, -+ 0
@ Achievability Proof: R < C, Pe — 0

e Summary
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Definitions

Entropy, Divergence
Let the random variables X, Y take value in the sets X, Y. We define (in bits)
@ Entropy / Uncertainty

H(X) = H(Px) £ = Px(x)log, Px(x) = —E[log, Px(X)]

XEX
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Definitions

Entropy, Divergence
Let the random variables X, Y take value in the sets X, Y. We define (in bits)
@ Entropy / Uncertainty

H(X) = H(Px) & = 3 Px(x)log, Px(x) = —E[log, Px(X)]
xXeX
@ Divergence / Relative Entropy / Kullback-Leibler “Distance”

oo i 53l )
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Definitions

Joint Entropy, Conditional Entropy and Mutual Information
Let the random variables X, Y take value in the sets X', ). We define (in bits)

@ Joint Entropy
H(X, Y) < H(Pxy) = —E[log, Px.v(X, Y)]

©dJossy Sayir (CUED) Advanced Wireless Communications Lent 2012 6/32



Definitions

Joint Entropy, Conditional Entropy and Mutual Information
Let the random variables X, Y take value in the sets X', ). We define (in bits)
@ Joint Entropy
H(X,Y) ¥ H(Pxy) = —E[log, Px.v(X, Y)]
@ Conditional Entropy (conditioned on an event)

HX|Y = y) ¥ H(Px)v—y) = —E [log, Py (X|y)]

v
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Definitions

Joint Entropy, Conditional Entropy and Mutual Information
Let the random variables X, Y take value in the sets X', ). We define (in bits)
@ Joint Entropy
H(X,Y) ¥ H(Pxy) = —E[log, Px.v(X, Y)]
@ Conditional Entropy (conditioned on an event)
H(X|Y = y) < H(Pxjv=y) = —E [log, Pxv(X]y)]

@ Conditional Entropy/Equivocation

HXIY) E " Py(y)H(X|Y = y) = —E[log, Px;y(X|Y)]
y
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Definitions

Joint Entropy, Conditional Entropy and Mutual Information
Let the random variables X, Y take value in the sets X', ). We define (in bits)
@ Joint Entropy
H(X,Y) ¥ H(Pxy) = —E[log, Px.v(X, Y)]

@ Conditional Entropy (conditioned on an event)
H(X|Y = y) € H(Pxjv=,) = —E [log, Pxv(X|y)]

@ Conditional Entropy/Equivocation

HXIY) E " Py(y)H(X|Y = y) = —E[log, Px;y(X|Y)]
y

@ Mutual Information

I(X; Y) & H(X) — H(X|Y) = H(Y) — H(Y|X)
Pxv(X,Y)

= D(Pxy||PxPy) =E |log, W
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Properties
Properties of Entropy, Mutual Information and Relative Entropy
@ Chain rules
H(X, Y) = H(X) + H(Y|X)
1(X1, X0 Y) = 1(X1; Y) + I(Xz; Y X1)

where I(X2; Y1X) & HOXGIX) — HOXGIX Y).
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Properties

Properties of Entropy, Mutual Information and Relative Entropy
@ Chain rules

H(X, Y) = H(X) + H(Y|X)
I(X1,X2; Y) = /(X1; Y) + /(Xg; Y|X1)

where I(Xz; Y|X1) & H(Xo| X1) — H(Xz| X Y).
@ Positiveness
entropy: H(X) >0, with equality iff X is deterministic
implies positiveness of conditional entropy.
relative entropy:  D(Px||Qx) >0, with equality iff Px = Qx
implies /(X; Y) > 0 (equality iff X and Y are independent).

©Jossy Sayir (CUED) Advanced Wireless Communications Lent 2012 7132



Properties
Properties of Entropy, Mutual Information and Relative Entropy
@ Chain rules
H(X,Y) = H(X) + H(Y|X)
(X1, Xo; Y) = I(X1; Y) + I(Xa; Y| X1)
where I(Xz; Y|X1) & H(Xo| X1) — H(Xz| X Y).
@ Positiveness
entropy: H(X) >0, with equality iff X is deterministic
implies positiveness of conditional entropy.
relative entropy:  D(Px||Qx) >0, with equality iff Px = Qx

implies /(X; Y) > 0 (equality iff X and Y are independent).
© Conditioning reduces entropy
H(X|Y) < H(X)
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Properties
Properties of Entropy, Mutual Information and Relative Entropy
@ Chain rules
H(X,Y) = H(X) + H(Y|X)
1(X1, X0 Y) = 1(X1; Y) + I(Xz; Y X1)

where I(Xz; Y|X1) & H(Xo| X1) — H(Xz| X Y).
@ Positiveness
entropy: H(X) >0, with equality iff X is deterministic
implies positiveness of conditional entropy.
relative entropy:  D(Px||Qx) >0, with equality iff Px = Qx

implies /(X; Y) > 0 (equality iff X and Y are independent).
© Conditioning reduces entropy
H(X|Y) < H(X)
© Maximum entropy

H(X) <log|X|, with equality iff X is uniform




Properties

Data Processing Inequality
Let X — Y — Z form a Markov chain (i.e., Pxzjy = Px|yPzy). Then

I(X;Z) < I(X;Y)
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Channel Coding

Channel Definitions

@ Channel input X over alphabet X'.
@ Channel output Y over alphabet ).
@ Sequence of transition probabilities

{Pyix(y1,- ., yalX1, ..., %) : n=1,2,...}
@ Memoryless channel: for x € X",y € )"

Pyix(y1x) = [ | Pyix(vilx)
i=1
@ Discrete Memoryless Channel (|X|, |V| < oo) defined by transition matrix P
[PLij = Pr(Y =X =)

1-p 1-p
0 ® 0 0 ® o
p P ?
1 .1 1 .1

. p . p
Binary Symmetric Channel (BSC) Binary Erasure Channel (BEC)



Channel Coding

Channel Coding Definitions

A channel coding scheme, or block code, is defined by

@ A codebook C C X";

corresponding to message m € M;

a uniformly distributed message m € M = {1,..., | M|} (note that |C| < |M|);
the sequences x € C are called codewords;
the coding rate R = %Iog2 |M| (bits/channel use);

an encoding function ¢ : M — C such that ¢(m) = xn, is the codeword

a decoding function ¢ : )" — M such that ¢(y) = m maps the received
sequence to an estimated information message.

Lm
-

> Enc;der
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Channel Coding

Example
Consider a binary (X = {0, 1}) code C of length n = 4 defined as
¢ ={(0,0,0,0),(0,0,1,1),(1,1,0,0),(1,1,1,1)}

The rate of the code is R = } log, | M| = 1 log, 4 = }. The message set
M ={1,2,3,4} can be represented by 2 bits. Hence the encoder has as input 2 bits
and outputs 4 bits (adds redundancy).

©Jossy Sayir (CUED) Advanced Wireless Communications Lent 2012 11/32



Channel Coding

Example
Consider a binary (X = {0, 1}) code C of length n = 4 defined as
¢ ={(0,0,0,0),(0,0,1,1),(1,1,0,0),(1,1,1,1)}

The rate of the code is R = } log, | M| = 1 log, 4 = }. The message set
M ={1,2,3,4} can be represented by 2 bits. Hence the encoder has as input 2 bits
and outputs 4 bits (adds redundancy).

Error Probability
The average message (or codeword) error probability of the code C is defined as

M| 1 | M|

P £ ﬁ > Pe(m) = ™| Yo > Prx(yxm = ¢(m))

m=1y:p(y)#m

©Jossy Sayir (CUED) Advanced Wireless Communications Lent 2012 11/32



Channel Coding

Achievable Rates and Capacity

@ Arate R is said to be achievable if there exist codes C of length n equipped with
encoding and decoding functions ¢, ¢ such that, for every € > 0 and every n > n.
(for some n.),

%Iogz\/\/ﬂ >R and Pe<e

@ The channel capacity C is defined as the supremum of all achievable rates.

@ Thus, for transmission rates R < C there exist coding schemes with arbitrarily
small error probability (for sufficiently large block length), while for R > C there
exist no such schemes.

Theorem (Shannon’s noisy channel coding theorem)
The channel capacity for a memoryless channel Py x(-) is given by

C=maxI(X;Y)
Px(+)

where the maximisation is over all probability distributions on the channel input X.
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Channel Capacity

Example
@ BSC 1
C=1-Hp(p), PX(0)=Pk(1) =3
@ BEC ;
C=1-p. PUO)=Pi(1) =3
1 1
0.9r 4 0.9
0.8f 4 0.8
0.7r 4 0.7
0.6f 4 0.6f
0 0.5] 0.5
0.4F Bl 0.4F
0.3f Bl 0.3
0.2 4 0.2
0.1r 1 0.1f
00 0‘.1 0‘.2 0‘.3 014 05 GO 012 0‘.4 0‘.6 018 1
P P
BSC BEC
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Channel Capacity

Example (AWGN Channel)
@ AWGN channel with noise power o2 and input power constraint P, i.e.,

ly—x|2

Pyix(y|x) = #e‘T , x,yeC and E[XP?]<P
@ Capacity is

P " 1 Ix?
C=log, (1+SNR), SNR= 7 Pi(x)= —ze *

@ Gaussian inputs are not practical; we commonly resort to modulations such as
PSK/QAM, assuming Px(x) = 7, X € X

1 Py‘x(Y|X)
I(X;Y)= = E |log
¢ ,;Y 2 Svex Prix(YIX)
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Channel Capacity
AWGN Channel
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Channel Capacity

Computer Exercise
@ Simulate the mutual information curves for BPSK, QPSK, 8-PSK and 16-QAM.

1 2
— s |ly—x
52 ly—x|

Let Pyx(y|x) = e
@ For each SNR value

i 1
calculate the expectation over X as ; >, c »

calculate the expectation over Y|X by randomly generating noise samples ~ AN¢(0, o2)
and average Montecarlo

, X,y € C.

end for

. ; ; i ; 1 2
@ TIP: Normalise your constellations in energy, i.e., 7 >_ycx X7 =1
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Converse: R> C,Py, + 0

Converse part of Shannon’s Noisy Coding Theorem

@ We will show that rates R > C are not achievable, i.e., if R > C then P, does not
tend to zero as n — oo.

@ In other words, in order to have P. — 0 we must have that R < C.
@ The proof is based on Fano’s inequality and the Data Processing Inequality.

@ Fano’s inequality relates probability of error and equivocation. We will derive it in
two different manners over the next few slides.
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Fano’s Inequality

Y

—» Prix() g) P>

Error Probability and Equivocation

@ Suppose we guess X from the observation Y. Let the guess be X = g(Y).
@ Conditional probability of error (conditioned on Y = y):
Pe(y) = Pr(X £ X|Y = y) = > Pxv(x1y)

XEX:
x#9(y)

Probability of error:
Pe=P(X #X) =Y Py(y)Pe(y)

yey

@ Equivocation:
HX[Y) =Y Py(n)H(X]Y = y)
yey
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Fano’s Inequality

Maximising H(X|Y = y) for a given Pg(y)
Pe(y) = Z Pxiv(x]y)

XEX:
x#g(y)

=1-Pxy(g¥)y)
>1— Te"’}%( Pxiv(x]y)

Thus, for each y € Y, the probability of error Ps(y) is minimised for
X = g(y) = argmax Pxy(x|y),

for which maxxex Pxjy(x|y) =1 — Pe.
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Fano’s Inequality

Maximising H(X|Y = y) for a given Pg(y)
Pe(y) = Z Pxiv(x]y)

XEX:
x#g(y)

=1-Pxy(g¥)y)
>1— fxné’:}%( Pxiv(x]y)

Thus, for each y € Y, the probability of error Ps(y) is minimised for
X = g(y) = argmax Pxy(x|y),

for which maxxex Pxjy(x|y) =1 — Pe.

@ Maximising H(X|Y = y) for a given Ps(y) is equivalent to maximising over all
distributions for which maxxex Pxjy(x|y) =1 — Pe
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Fano’s Inequality

Maximising H(X|Y = y) for a given Pg(y)
Pe(y) = Z Pxiv(x]y)

XEX:
x#g(y)

=1-Pxy(g¥)y)
>1- max Pxv(xly)

Thus, for each y € Y, the probability of error Ps(y) is minimised for
X = g(y) = argmax Pxy(x|y),

for which maxxex Pxjy(x|y) =1 — Pe.
@ Maximising H(X|Y = y) for a given Ps(y) is equivalent to maximising over all
distributions for which maxxex Pxjy(x|y) =1 — Pe
@ Entropy is maximised by the distribution that is uniform over the remaining
symbols in the alphabet X
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Fano’s Inequality

Pxy (z|y)
1= Pe(y) p------- a
Pe(y)
=TT
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Fano’s Inequality
Upper Bound (conditioned on Y = y)

HIXIY =) < ~(1 = Pe(y)logy(1 = Po(y)) — (1] = 1) 22 log, 220

= Hp(Pe(y)) + Pelog, (| X — 1) 1

Upper Bound (averaged over Y)

H(XIY) =Y Py(y)H(X|Y =)
yey

<> Py(¥)[Ho(Pe(y)) + Pe(y)log,(|X] — 1)]  using (?2)
yey

(Z Py(y)Psl y)) +10g,(1X] — 1) Y Pe(y)Pely)

yey yey
= Hp(Pe) + Pelog,(|X'| — 1)

where the third step follows by the concavity of Hy(-) an by Jensen’s inequality.

— This can be weakened to H(X|Y) < 1+ Pelog, | X|.

v
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Fano’s Inequality

Standard proof of Fano’s Inequality

The following alternative proof is much simpler but gives less insight than the one
stated previously:

@ Let E be an indicator random variable whose value is 0 if X = X and 1 if X # X.
Note that Pe(1) = Pe and H(E) = Hy(Ps).

@ We have
H(X|Y) = H(X,E|Y) — H(E|X,Y) chain rule for entropies
= H(X, E|Y) because Y and X determine E
= H(E|Y)+ H(X|Y,E) chain rule for entropies

< H(E) + Pe(0)H(X|Y, E = 0) + Pe(1)H(X| Y, E = 1)
< Hy(Pe) + Pelog,(|X] — 1)

Here the fourth step follows because conditioning reduces entropy, and the last
step follows because
@ given E =0, g(Y) = X determines X, which implies that H(X|Y, E = 0) =0
@ given Y and E = 1, X can take on at most |X'| — 1 values. Hence, its entropy can be at
most log, (|| — 1).

v

©4Jossy Sayir (CUED) Advanced Wireless Communications Lent 2012 22/32



Fano’s Inequality

logy | X
2t g2| |
15¢ logy (| —1) 1
1
o
= 1r Allowable region 1
0.5- ,
O 1 1 1 1
0 0.2 0.4 0.6 0.8 1
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Converse Proof: R > C,Ps + 0

Proof of the converse part of Shannon’s Noisy Coding Theorem

@ Consider the above communications system. We have the Markov chain
m — X — Y — M, where X = ¢(m) and rh = ¢(Y).

@ If mis drawn uniformly from the message set M, then we have

nR = H(m) H(m) = log M| = nR
= H(m|Y) + I(m; Y) I(m; Y) = H(m) — H(m|Y)
<14 PenR+ I(m;Y) by Fano’s inequality

<1+ PenR + (X Y) by Data Processing Inequality

<1+ PenR + Z I(Xi; Yi) because channel is memoryless
i=1
<1+ PenR+nC

where C = maxp, .y I(X; Y).
@ Rewriting the above equation yields
C 1
>1 - = - —
Pez1-R- 7R
Thus, if R > C, then P does not tend to zero as n — oo.
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Achievability Proof R < C, P — 0

Achievability Proof
@ We show that rates R < C are achievable, i.e., if R < C then P, — 0 as n — co.

@ Codebook construction: generate codewords at random from a particular
distribution. We will consider the case where the entries of each of the | M|
codewords have been generated i.i.d. from Px(-), i.e., Px(x) = [, Px(xi).

Codeword length 7

A
v

Ay
£
x
S
£ Xm
[}
o
3 D R
0
3 randomly generate
‘g entries according to
3 Px ()
o
o
YonR
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Achievability Proof R < C, P — 0

Achievability Proof

@ We study maximum likelihood decoding, i.e., the decoder choses the message
that maximises the likelihood of having been transmitted

m = arg mcax Py x(¥|Xm)
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Achievability Proof R < C, P — 0

Achievability Proof
@ We study maximum likelihood decoding, i.e., the decoder choses the message
that maximises the likelihood of having been transmitted
m = arg max Py x(¥|Xm)
@ We study the average error probability over the ensemble of random codes,
denoted by Pe = i 11 Po(m)

m=1
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Achievability Proof R < C, P — 0

Achievability Proof
@ We study maximum likelihood decoding, i.e., the decoder choses the message
that maximises the likelihood of having been transmitted
m = arg max Py x(¥|Xm)
@ We study the average error probability over the ensemble of random codes,
denoted by Pe = i 11 Po(m)

@ Given the symmetry (random codewords), Pe = P.(m) for any m € M
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Achievability Proof R < C, P — 0

Achievability Proof

@ We study maximum likelihood decoding, i.e., the decoder choses the message
that maximises the likelihood of having been transmitted
m = arg max Py x(y|Xm)
@ We study the average error probability over the ensemble of random codes,
denoted by Pe = i 11 Po(m)
@ Given the symmetry (random codewords), Pe = P.(m) for any m € M
@ Averaged over the random code ensemble, we have that

Po(m) = E[Pr {o(Y) # m|Xm, ¥}]
= 33 Px(xm) Prix(¥1xm) Pr {io(y) # mixm, ¥}

Xm Y

where Pr{p(y) # m|xm, y} is the probability that, for a channel output y, the
decoder ¢ selects a codeword other than the transmitted xm
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Achievability Proof R < C, P — 0

Achievability Proof
@ Using the union bound over all possible codewords, and for all 0 < p < 1,

Pr{o(y) # m|Xm, y} < Pr{ U {ey) = m’lxm,y}}

m’#m

< (Z Prie(y) = m’lxm,y})

m’#m

<
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Achievability Proof R < C, P — 0

Achievability Proof
@ Using the union bound over all possible codewords, and for all 0 < p < 1,

Pr{o(y) # m|Xm, y} < F’r{ U {ey) = m’lxm,y}}

m’#m

< (Z Prie(y) = m’lxm,y})

m’=#m
@ The pairwise error probability Pr{¢(y) = m’|xm, ¥} of wrongly selecting message
m’ when message m has been transmitted and sequence y has been received is

Pr{e(y) =m'|Xm,y} = > Px(Xm)

X/ 2 Py x(¥| X ) > Py x(¥|Xm)

v
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Achievability Proof R < C, P — 0

Achievability Proof
@ Using the union bound over all possible codewords, and for all 0 < p < 1,

Pr{o(y) # m|Xm, y} < Pr{ U {ey) = m’lxm,y}}

m’#m

< (Z Prie(y) = m’lxm,y})

m’#m

@ The pairwise error probability Pr{¢(y) = m’|xm, ¥} of wrongly selecting message

m’ when message m has been transmitted and sequence y has been received is
Pr{e(y) = m'[Xm, y} = > Px(Xn)
X/ - Py x (¥ |Xpr) 2> Py x(¥]Xm)

@ Since Pyx(¥|Xm) > Py x(¥|xm) and the sum over all x;,, upper bounds the sum
over the set {Xm/ : Pyx(¥|Xm’) > Py;x(¥|Xm)}, for any s > 0, the above
pairwise error probability can bounded by

; PY\X(.VP‘m'))S
Pr =m|Xm, ¥} < Px(Xm/) | =———-
(o) = mlbem y1 < 3 Prtow) (T

v
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Achievability Proof R < C, P — 0

Achievability Proof
@ As m’ is a dummy variable, for any s > 0 and 0 < p < 1 it holds that
P
PY|x(.V|me))S
Pr m|Xm, y} < M| -1 Px(Xm) | =———-
{So(y) # | m y} — <(| | ) Z X( m )(PY\X(ylxm)

X
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Achievability Proof R < C, P — 0

Achievability Proof
@ As m’ is a dummy variable, for any s > 0 and 0 < p < 1 it holds that

Pr{o(y) # m|Xm,y} < ((|M| -1) ZPX(Xm') (M) )

Pyix(y|Xm)

X

@ Therefore, we obtain that

B Pyix(Y]Xm)\° '
s -8 (e (G0 |
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Achievability Proof R < C, P — 0

Achievability Proof
@ As m’ is a dummy variable, for any s > 0 and 0 < p < 1 it holds that

Pr{(y) # m|Xm,y} < <(|M|—1) 2 Px(xm) (%> )

@ Therefore, we obtain that

Pyix(Y[Xm)\* '
Po< (1M -1)° KZPXO‘m (P(YIX)))]

@ It can be shown (see Gallager 1968) that s = 3 actually minimises the bound
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Achievability Proof R < C, P — 0

Achievability Proof
@ As m’ is a dummy variable, for any s > 0 and 0 < p < 1 it holds that
P
PV|X(Y|Xm/)>S
P m|Xm, y} < M| -1 Px(Xm) | =———-
{p(y) # mixn, ¥} < <(| =) 32 Pxtm) ( Prox (Y1)

@ Therefore, we obtain that

Pyix(Y[Xm)\* '
Po< (1M -1)° KZPX% (P(YIX)))]

@ It can be shown (see Gallager 1968) that s = 3 actually minimises the bound

@ Now, for memoryless channels and input dlstrlbutlons Px(x) =TT, Px(x) we
obtain a single-letter characterisation

Pe < (M| —1)” ( KZPX(X)<’iil|f<i3t||))(<;)w> D
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Achievability Proof R < C, P — 0

Achievability Proof
@ Hence, since | M| = 2™ for any input distribution Px(x), and 0 < p < 1,

Prix(YIX)\ 77
(ZPX( )<PY|X(Y|X)> )]

Ps < 27 "E(0)=PR) with  Ey(p) £ —log, E
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Achievability Proof R < C, P — 0

Achievability Proof
@ Hence, since | M| = 2™ for any input distribution Px(x), and 0 < p < 1,
P
ZPX( ) <PY|X(Y|X )>
Pyix(Y[X)
@ Ey(p) is called the Gallager function. The expectatlon is carried out according to
the joint distribution Px v(x,y) = Py x(¥|x)Px(x).
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Achievability Proof R < C, P — 0

Achievability Proof

@ Hence, since | M| = 2™ for any input distribution Px(x), and 0 < p < 1,

(Z Pt) (i) )]
Pyix(Y[X)
@ Ey(p) is called the Gallager function. The expectation is carried out according to
the joint distribution Px v(x,y) = Py x(¥|x)Px(x).
@ We define the random coding exponent as

E(R) = max (Eo(p) — o).

Ps < 27 "E(0)=PR) with  Ey(p) £ —log, E
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Achievability Proof R < C, P — 0

Achievability Proof

@ Hence, since | M| = 2™ for any input distribution Px(x), and 0 < p < 1,

1 P
7 PY|X(Y|X')> A7

Px(x
(; x(x) <PY|X(Y|X)
@ Ey(p) is called the Gallager function. The expectation is carried out according to

the joint distribution Px v(x,y) = Py x(¥|x)Px(x).
@ We define the random coding exponent as
A
E(R) = max (Eo(p) — pR).
@ Hence, the tightest error probability bound is obtained as
P, < 27"&(A

Ps < 27 "E(0)=PR) with  Ey(p) £ —log, E
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Achievability Proof R < C, P — 0

Achievability Proof

@ Hence, since | M| = 2™ for any input distribution Px(x), and 0 < p < 1,

1 P
Py x(Y|X’) T+p
Px(x' <7|
(; x(x) Pyix(Y1X)
@ Ey(p) is called the Gallager function. The expectation is carried out according to
the joint distribution Px v(x,y) = Py x(¥|x)Px(x).
@ We define the random coding exponent as
A
E(R) = max (Eo(p) — pR).
@ Hence, the tightest error probability bound is obtained as
P, < 27"&(A
@ The average error probability goes to zero for increasing n when
Eo(p) > pR

Ps < 27 "E(0)=PR) with  Ey(p) £ —log, E
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Achievability Proof R < C, P — 0

Achievability Proof
@ Using that Ey(0) = 0 we see that

dEy(p) - Eo(p) n Pyix(YIx')
— = lim ———= = —E |lo Px (X)) =——F<+
dp | T p 92; X B (YX)
Py ix(Y1X) } { PY\X(Y|X)]
=E|l =E |log, ———2| = I(X; Y
o0 e =B 99 ey ] = 06)
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Achievability Proof R < C, P — 0

Achievability Proof
@ Using that Ey(0) = 0 we see that

dE - E '

0| =50 =2 oo
B Pyix(Y|X) _
—E [|092 S PX(X,)PY|X(Y|X/):| -

o Actually, 0 < %) < J(X; Y) with equality iff p =

Pyix(Y1X)

Pyix(Y]x)

|

Pyix(Y[X)

E {Iog2 Py (V) ] =I(X;Y)

0. Also,%gomrpzo
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Achievability Proof R < C, P — 0

Achievability Proof
@ Using that Ey(0) = 0 we see that

dEo(p)| _ . Eolp) _ n Prix(Y1X')
=287 = lim OT =-FE [Iog2 ; Px(x )an(le)]

~ Pox(YIX) 1 Pyx(YIX)
=k ['°92 S Px(x')anmxf)} =k {'°92 Pv(Y)

] =I(X;Y)

o Actually, 0 < %) < j(X; Y) with equality iff p = 0. Also, % <0forp>0
@ Then Ey(p) is an increasing function of p > 0 and its maximum slope is at p = 0,
given by I(X;Y)
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Achievability Proof R < C, P — 0

Achievability Proof
@ Using that Ey(0) = 0 we see that

dE(p)| . Eo(p) _ PY|X(Y|X)
TR T =) - [mggsz an(vm]
Pix(YIX) ] _pfoq Prx(YIX)
[|092 2w PX(X')PY|X(Y|X’)} ; {Iogz Py(Y) ]_I(X' Y)

o Actually, 0 < %) < j(X; Y) with equality iff p = 0. Also, i E;; <0forp>0
@ Then Eq(p) is an increasing function of p > 0 and its maximum slope is at p = 0,
given by I(X;Y)
@ It follows that the function g(p) = Eo(p) — pR has a maximum in [0, 1] if
dEo(p) _
~ap 170
has a solution in [0, 1]. Otherwise, the maximum is achieved by p = 1 for
R<I(X;Y)orp=0for R>I(X;Y)
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Achievability Proof R < C, P — 0
Achievability Proof R < C, Ps — 0

@ Since P, < 2= "5(A) then there must exist codes for which P, < 2-"5(R)

@ Finally, since so far Px(X) was fixed, we can maximise over the input distribution
to obtain the tightest bound and prove the achievability part of Shannon’s theorem,
i.e., rates R < C are achievable.

1} pI(X;Y)

038f PR

0 0:2 0:4 0.6 0‘.8 1 0 0.5 1 15 2 25
4 R

Gallager function Ey(p) and the random coding error exponent
E;(R) for 16-QAM in an AWGN channel with SNR=5 dB
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Channel Capacity Theorem

Summary
We have proved that the channel capacity is
C=maxI(X;Y)
px(X)

Achievability For every rate R < C there exists a codebook C for which the
probability of error tends to zero as n — co.

Converse The probability of error satisfies

c 1
>1-_- = -
Pezl-2 1R
Thus, if R > C then the probability of error does not tend to zero as

n — oo.

Summary The channel capacity is the fundamental limit of information
transmission.
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