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Information Theoretic Channel

Definition (Kelly)
A channel is that part of the communication system that one is either unwilling or
unable to change.
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Definitions

Entropy, Divergence
Let the random variables X ,Y take value in the sets X ,Y. We define (in bits)

Entropy / Uncertainty

H(X ) = H(PX )
def
= −

X
x∈X

PX (x) log2 PX (x) = −E[log2 PX (X )]

Divergence / Relative Entropy / Kullback-Leibler “Distance”

D(PX‖QX )
def
=
X
x∈X

PX (x) log2
PX (x)

QX (x)
= E

»
log2

PX (X )

QX (X )

–
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Definitions

Joint Entropy, Conditional Entropy and Mutual Information
Let the random variables X ,Y take value in the sets X ,Y. We define (in bits)

Joint Entropy
H(X ,Y )

def
= H(PXY ) = −E[log2 PX ,Y (X ,Y )]

Conditional Entropy (conditioned on an event)

H(X |Y = y)
def
= H(PX |Y =y ) = −E

ˆ
log2 PX |Y (X |y)

˜
Conditional Entropy/Equivocation

H(X |Y )
def
=
X

y

PY (y)H(X |Y = y) = −E[log2 PX |Y (X |Y )]

Mutual Information

I(X ; Y )
def
= H(X )− H(X |Y ) = H(Y )− H(Y |X )

= D(PXY‖PX PY ) = E
»
log2

PX ,Y (X ,Y )

PX (X )PY (Y )

–
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Properties
Properties of Entropy, Mutual Information and Relative Entropy

1 Chain rules

H(X ,Y ) = H(X ) + H(Y |X )

I(X1,X2; Y ) = I(X1; Y ) + I(X2; Y |X1)

where I(X2; Y |X1)
def
= H(X2|X1)− H(X2|X1Y ).

2 Positiveness

entropy: H(X ) ≥ 0, with equality iff X is deterministic

implies positiveness of conditional entropy.

relative entropy: D(PX ||QX ) ≥ 0, with equality iff PX = QX

implies I(X ; Y ) ≥ 0 (equality iff X and Y are independent).
3 Conditioning reduces entropy

H(X |Y ) ≤ H(X )

4 Maximum entropy

H(X ) ≤ log |X |, with equality iff X is uniform
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Properties

Data Processing Inequality
Let X → Y → Z form a Markov chain (i.e., PXZ |Y = PX |Y PZ |Y ). Then

I(X ; Z ) ≤ I(X ; Y )

X ZY

c©Jossy Sayir (CUED) Advanced Wireless Communications Lent 2012 8 / 32



Channel Coding

Channel Definitions
Channel input X over alphabet X .
Channel output Y over alphabet Y.
Sequence of transition probabilities˘

PY |X (y1, . . . , yn|x1, . . . , xn) : n = 1, 2, . . .
¯

Memoryless channel: for x ∈ X n, y ∈ Yn

PY |X (y |x) =
nY

i=1

PY |X (yi |xi )

Discrete Memoryless Channel (|X |, |Y| <∞) defined by transition matrix P

[P]i,j = Pr(Y = i|X = j)

0

1

p

1-p

1-p

0

1

0

1

p

1-p

1-p

0

1

?

Binary Symmetric Channel (BSC) Binary Erasure Channel (BEC)
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Channel Coding

Channel Coding Definitions
A channel coding scheme, or block code, is defined by

A codebook C ⊆ X n;

a uniformly distributed message m ∈M = {1, . . . , |M|} (note that |C| ≤ |M|);
the sequences x ∈ C are called codewords;

the coding rate R = 1
n log2 |M| (bits/channel use);

an encoding function φ :M→ C such that φ(m) = xm is the codeword
corresponding to message m ∈M;

a decoding function ϕ : Yn →M such that ϕ(y) = m̂ maps the received
sequence to an estimated information message.

Encoder Decoder
m m̂

φ ϕ
Channel

xm y

PY |X(y|xm)
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Channel Coding

Example
Consider a binary (X = {0, 1}) code C of length n = 4 defined as

C =
˘

(0, 0, 0, 0), (0, 0, 1, 1), (1, 1, 0, 0), (1, 1, 1, 1)
¯

The rate of the code is R = 1
4 log2 |M| = 1

4 log2 4 = 1
2 . The message set

M = {1, 2, 3, 4} can be represented by 2 bits. Hence the encoder has as input 2 bits
and outputs 4 bits (adds redundancy).

Error Probability
The average message (or codeword) error probability of the code C is defined as

Pe
∆
=

1
|M|

|M|X
m=1

Pe(m) =
1
|M|

|M|X
m=1

X
y :ϕ(y) 6=m

PY |X (y |xm = φ(m))

c©Jossy Sayir (CUED) Advanced Wireless Communications Lent 2012 11 / 32



Channel Coding

Example
Consider a binary (X = {0, 1}) code C of length n = 4 defined as

C =
˘

(0, 0, 0, 0), (0, 0, 1, 1), (1, 1, 0, 0), (1, 1, 1, 1)
¯

The rate of the code is R = 1
4 log2 |M| = 1

4 log2 4 = 1
2 . The message set

M = {1, 2, 3, 4} can be represented by 2 bits. Hence the encoder has as input 2 bits
and outputs 4 bits (adds redundancy).

Error Probability
The average message (or codeword) error probability of the code C is defined as

Pe
∆
=

1
|M|

|M|X
m=1

Pe(m) =
1
|M|

|M|X
m=1

X
y :ϕ(y) 6=m

PY |X (y |xm = φ(m))

c©Jossy Sayir (CUED) Advanced Wireless Communications Lent 2012 11 / 32



Channel Coding

Achievable Rates and Capacity
A rate R is said to be achievable if there exist codes C of length n equipped with
encoding and decoding functions φ, ϕ such that, for every ε > 0 and every n ≥ nε
(for some nε),

1
n

log2 |M| ≥ R and Pe ≤ ε

The channel capacity C is defined as the supremum of all achievable rates.

Thus, for transmission rates R < C there exist coding schemes with arbitrarily
small error probability (for sufficiently large block length), while for R > C there
exist no such schemes.

Theorem (Shannon’s noisy channel coding theorem)
The channel capacity for a memoryless channel PY |X (·) is given by

C = max
PX (·)

I(X ; Y )

where the maximisation is over all probability distributions on the channel input X .
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Channel Capacity

Example
BSC

C = 1− Hb(p), P?X (0) = P?X (1) =
1
2

BEC
C = 1− p, P?X (0) = P?X (1) =

1
2

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

p

C

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

p

C

BSC BEC
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Channel Capacity

Example (AWGN Channel)

AWGN channel with noise power σ2 and input power constraint P, i.e.,

PY |X (y |x) =
1
πσ2 e−

|y−x|2

σ2 , x , y ∈ C and E[|X |2] ≤ P

Capacity is

C = log2 (1 + SNR) , SNR =
P
σ2 P?X (x) =

1
πP

e−
|x|2

P

Gaussian inputs are not practical; we commonly resort to modulations such as
PSK/QAM, assuming PX (x) = 1

|X| , x ∈ X :

I(X ; Y ) =
1
|X |

X
x∈X

E

"
log2

PY |X (Y |x)
1
|X|
P

x′∈X PY |X (Y |x ′)

#
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Channel Capacity
AWGN Channel

−20 −10 0 10 20 30
0

1

2

3

4

5

6

7

SNR (dB)

C
64−QAM

32−QAM

16−QAM

8−PSK

QPSK

BPSK

Gaussian
input
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Channel Capacity

Computer Exercise
Simulate the mutual information curves for BPSK, QPSK, 8-PSK and 16-QAM.

Let PY |X (y |x) = 1
πσ2 e−

1
σ2 |y−x|2 , x , y ∈ C.

For each SNR value
I calculate the expectation over X as 1

M
P

x∈X
I calculate the expectation over Y |X by randomly generating noise samples ∼ NC(0, σ2)

and average Montecarlo

end for

TIP: Normalise your constellations in energy, i.e., 1
|X|
P

x∈X |x |
2 = 1
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Converse: R > C, Pe 9 0

Converse part of Shannon’s Noisy Coding Theorem
We will show that rates R > C are not achievable, i.e., if R > C then Pe does not
tend to zero as n→∞.

In other words, in order to have Pe → 0 we must have that R ≤ C.

The proof is based on Fano’s inequality and the Data Processing Inequality.

Fano’s inequality relates probability of error and equivocation. We will derive it in
two different manners over the next few slides.
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Fano’s Inequality

X X̂Y
PY |X(·) g(·)

Error Probability and Equivocation

Suppose we guess X from the observation Y . Let the guess be X̂ = g(Y ).

Conditional probability of error (conditioned on Y = y ):

Pe(y) = Pr(X 6= X̂ |Y = y) =
X
x∈X :

x 6=g(y)

PX |Y (x |y)

Probability of error:

Pe = P(X 6= X̂ ) =
X
y∈Y

PY (y)Pe(y)

Equivocation:
H(X |Y ) =

X
y∈Y

PY (y)H(X |Y = y)
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Fano’s Inequality

Maximising H(X |Y = y) for a given Pe(y)

Pe(y) =
X
x∈X :

x 6=g(y)

PX |Y (x |y)

= 1− PX |Y (g(y)|y)

≥ 1−max
x∈X

PX |Y (x |y)

Thus, for each y ∈ Y, the probability of error Pe(y) is minimised for

x̂ = g(y) = arg max
x∈X

PX |Y (x |y),

for which maxx∈X PX |Y (x |y) = 1− Pe.

Maximising H(X |Y = y) for a given Pe(y) is equivalent to maximising over all
distributions for which maxx∈X PX |Y (x |y) = 1− Pe

Entropy is maximised by the distribution that is uniform over the remaining
symbols in the alphabet X .
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Fano’s Inequality

x

PX|Y (x|y)

1− Pe(y)

Pe(y)
|X | − 1
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Fano’s Inequality
Upper Bound (conditioned on Y = y )

H(X |Y = y) ≤ −(1− Pe(y)) log2(1− Pe(y))− (|X | − 1)
Pe(y)

|X | − 1
log2

Pe(y)

|X | − 1
= Hb(Pe(y)) + Pe log2(|X | − 1) (1)

Upper Bound (averaged over Y )

H(X |Y ) =
X
y∈Y

PY (y)H(X |Y = y)

≤
X
y∈Y

PY (y)
ˆ
Hb(Pe(y)) + Pe(y) log2(|X | − 1)

˜
using (??)

≤ Hb

0@X
y∈Y

PY (y)Pe(y)

1A+ log2(|X | − 1)
X
y∈Y

PY (y)Pe(y)

= Hb(Pe) + Pe log2(|X | − 1)

where the third step follows by the concavity of Hb(·) an by Jensen’s inequality.

=⇒ This can be weakened to H(X |Y ) ≤ 1 + Pe log2 |X |.
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Fano’s Inequality

Standard proof of Fano’s Inequality
The following alternative proof is much simpler but gives less insight than the one
stated previously:

Let E be an indicator random variable whose value is 0 if X̂ = X and 1 if X̂ 6= X .
Note that PE (1) = Pe and H(E) = Hb(Pe).

We have

H(X |Y ) = H(X ,E |Y )− H(E |X ,Y ) chain rule for entropies

= H(X ,E |Y ) because Y and X determine E

= H(E |Y ) + H(X |Y ,E) chain rule for entropies

≤ H(E) + PE (0)H(X |Y ,E = 0) + PE (1)H(X |Y ,E = 1)

≤ Hb(Pe) + Pe log2(|X | − 1)

Here the fourth step follows because conditioning reduces entropy, and the last
step follows because

1 given E = 0, g(Y ) = X̂ determines X , which implies that H(X |Y ,E = 0) = 0
2 given Y and E = 1, X can take on at most |X | − 1 values. Hence, its entropy can be at

most log2(|X | − 1).
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Fano’s Inequality

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

Pe

H
(X

|X̂
)

Allowable region

log2 |X |

log2(|X | − 1)
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Converse Proof: R > C, Pe 9 0

Proof of the converse part of Shannon’s Noisy Coding Theorem
Consider the above communications system. We have the Markov chain
m→ X → Y → m̂, where X = φ(m) and m̂ = ϕ(Y ).

If m is drawn uniformly from the message setM, then we have

nR = H(m) H(m) = log |M| = nR

= H(m|Y ) + I(m; Y ) I(m; Y ) = H(m)− H(m|Y )

≤ 1 + PenR + I(m; Y ) by Fano’s inequality

≤ 1 + PenR + I(X ; Y ) by Data Processing Inequality

≤ 1 + PenR +
nX

i=1

I(Xi ; Yi ) because channel is memoryless

≤ 1 + PenR + nC

where C = maxPX (·) I(X ; Y ).

Rewriting the above equation yields

Pe ≥ 1− C
R
− 1

nR
Thus, if R > C, then Pe does not tend to zero as n→∞.
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Achievability Proof R < C, Pe → 0

Achievability Proof
We show that rates R < C are achievable, i.e., if R < C then Pe → 0 as n→∞.

Codebook construction: generate codewords at random from a particular
distribution. We will consider the case where the entries of each of the |M|
codewords have been generated i.i.d. from PX (·), i.e., PX (x) =

Qn
i=1 PX (xi ).

Codeword length

C
od

ew
or

d/
m

es
sa

ge
 in

de
x 

m

PX(·)

randomly generate
entries according to 

2nR

1

n

xm
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Achievability Proof R < C, Pe → 0

Achievability Proof
We study maximum likelihood decoding, i.e., the decoder choses the message
that maximises the likelihood of having been transmitted

m̂ = arg max
C

PY |X (y |xm)

We study the average error probability over the ensemble of random codes,
denoted by P̄e = 1

|M|
P|M|

m=1 P̄e(m)

Given the symmetry (random codewords), P̄e = P̄e(m) for any m ∈M
Averaged over the random code ensemble, we have that

P̄e(m) = E[Pr {ϕ(Y ) 6= m|X m,Y}]

=
X
xm

X
y

PX (xm)PY |X (y |xm) Pr {ϕ(y) 6= m|xm, y}

where Pr {ϕ(y) 6= m|xm, y} is the probability that, for a channel output y , the
decoder ϕ selects a codeword other than the transmitted xm
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X
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X
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Achievability Proof

Using the union bound over all possible codewords, and for all 0 ≤ ρ ≤ 1,

Pr {ϕ(y) 6= m|xm, y} ≤ Pr

8<: [
m′ 6=m

{ϕ(y) = m′|xm, y}

9=;
≤

0@X
m′ 6=m

Pr{ϕ(y) = m′|xm, y}

1Aρ

The pairwise error probability Pr{ϕ(y) = m′|xm, y} of wrongly selecting message
m′ when message m has been transmitted and sequence y has been received is

Pr{ϕ(y) = m′|xm, y} =
X

xm′ : PY |X (y|xm′ )≥ PY |X (y|xm)

PX (xm′)

Since PY |X (y |xm′) ≥ PY |X (y |xm) and the sum over all xm′ upper bounds the sum
over the set {xm′ : PY |X (y |xm′) ≥ PY |X (y |xm)}, for any s > 0, the above
pairwise error probability can bounded by

Pr{ϕ(y) = m′|xm, y} ≤
X
xm′

PX (xm′)

„
PY |X (y |xm′)

PY |X (y |xm)

«s
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Achievability Proof R < C, Pe → 0

Achievability Proof

As m′ is a dummy variable, for any s > 0 and 0 ≤ ρ ≤ 1 it holds that

Pr {ϕ(y) 6= m|xm, y} ≤

0@`|M| − 1
´ X

xm′

PX (xm′)

„
PY |X (y |xm′)

PY |X (y |xm)

«s
1Aρ

Therefore, we obtain that

P̄e ≤
`
|M| − 1

´ρ E

240@X
xm′

PX (xm′)

„
PY |X (Y |xm′)

PY |X (Y |X m)

«s
1Aρ35

It can be shown (see Gallager 1968) that s = 1
1+ρ

actually minimises the bound

Now, for memoryless channels and input distributions PX (x) =
Qn

i=1 PX (xi ) we
obtain a single-letter characterisation

P̄e ≤ (|M| − 1
´ρ  E

" X
x′

PX (x ′)
„

PY |X (Y |x ′)
PY |X (Y |X )

« 1
1+ρ

!ρ#!n
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Achievability Proof R < C, Pe → 0

Achievability Proof

Hence, since |M| = 2nR for any input distribution PX (x), and 0 ≤ ρ ≤ 1,

P̄e ≤ 2−n(E0(ρ)−ρR) with E0(ρ)
∆
= − log2 E

" X
x′

PX (x ′)
„

PY |X (Y |x ′)
PY |X (Y |X )

« 1
1+ρ

!ρ#
E0(ρ) is called the Gallager function. The expectation is carried out according to
the joint distribution PX ,Y (x , y) = PY |X (y |x)PX (x).

We define the random coding exponent as

Er (R)
∆
= max

0≤ρ≤1

`
E0(ρ)− ρR

´
.

Hence, the tightest error probability bound is obtained as
P̄e ≤ 2−nEr (R)

The average error probability goes to zero for increasing n when
E0(ρ) > ρR
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Achievability Proof R < C, Pe → 0

Achievability Proof
Using that E0(0) = 0 we see that

dE0(ρ)

dρ

˛̨̨̨
˛
ρ=0

= lim
ρ→0

E0(ρ)

ρ
= −E

"
log2

X
x′

PX (x ′)
PY |X (Y |x ′)
PY |X (Y |X )

#

= E
»
log2

PY |X (Y |X )P
x′ PX (x ′)PY |X (Y |x ′)

–
= E

»
log2

PY |X (Y |X )

PY (Y )

–
= I(X ; Y )

Actually, 0 < dE0(ρ)
dρ ≤ I(X ; Y ) with equality iff ρ = 0. Also, d2E0(ρ)

dρ2 ≤ 0 for ρ ≥ 0
Then E0(ρ) is an increasing function of ρ ≥ 0 and its maximum slope is at ρ = 0,
given by I(X ; Y )
It follows that the function g(ρ) = E0(ρ)− ρR has a maximum in [0, 1] if

dE0(ρ)

dρ
− R = 0

has a solution in [0, 1]. Otherwise, the maximum is achieved by ρ = 1 for
R < I(X ; Y ) or ρ = 0 for R ≥ I(X ; Y )
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Achievability Proof R < C, Pe → 0

Since P̄e ≤ 2−nEr (R), then there must exist codes for which Pe ≤ 2−nEr (R)

Finally, since so far PX (X ) was fixed, we can maximise over the input distribution
to obtain the tightest bound and prove the achievability part of Shannon’s theorem,
i.e., rates R < C are achievable.
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Gallager function E0(ρ) and the random coding error exponent
Er (R) for 16-QAM in an AWGN channel with SNR=5 dB
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Channel Capacity Theorem

Summary
We have proved that the channel capacity is

C = max
pX (X)

I(X ; Y )

Achievability For every rate R < C there exists a codebook C for which the
probability of error tends to zero as n→∞.

Converse The probability of error satisfies

Pe ≥ 1− C
R
− 1

nR

Thus, if R > C then the probability of error does not tend to zero as
n→∞.

Summary The channel capacity is the fundamental limit of information
transmission.
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