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Introduction and Motivation

So far...
We have shown that we can achieve Pe → 0

I with codes of rate R < C
I provided that n→∞
I using random coding (average Pe over the ensemble of random codes)

The proof is not constructive
I average performance
I does not tell us how to achieve the limits

Random codes
I not implementable, we need to store the whole codebook at transmitter and receiver
I we do not know how to encode and decode algorithmically
I in practice n <∞, i.e., finite-length codes

We need codes that can be implemented (encoding and decoding) and that
perform close to capacity
We will study

I Linear block codes
I convolutional codes
I turbo-codes
I low-density parity-check codes
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Linear Block Codes

Definitions

A binary code C of length n and dimension k is a set of different 2k binary
codewords of length n.

The rate of the code is R = 1
n log2 |C| =

k
n

C is a vector subspace of the vector space defined by all possible binary vectors of
length n, hence the code is linear

C is the set of codewords c satisfying for all b ∈ Fk
2 (row convention)

c = bG, where G =

26664
g1,1 . . . g1,n

g2,1 . . . g2,n
...

. . .
...

gk,1 . . . gk,n

37775 is the generator matrix

For equiprobable messages, every symbol of a linear code is uniformly distributed

The code is called systematic if the information bits b are part of the codeword,
i.e., c = [b p] where p ∈ Fn−k

2 is the parity vector (redundancy)

The corresponding generator matrix is

G =
ˆ
Ik P

˜
, where P ∈ Fk×n−k

2 is the parity generator matrix
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Linear Block Codes
Definitions

We can also express the code C as the set of codewords c such that

cHT = 0, where H =

26664
h1,1 . . . h1,n

h2,1 . . . h2,n
...

. . .
...

hn−k,1 . . . hn−k,n

37775 is the parity-check matrix

H represents the linear system of equations that every codeword must satisfy
The parity-check matrix of a systematic code can be expressed as

H =
ˆ
PT In−k

˜
Hamming weight wh(c) =

Pn
i=1 ci , sum is the sum over the integers (not binary)

Hamming distance between c, c′ ∈ C: number of positions in which they differ

dh(c, c′) =
nX

i=1

ci ⊕ c′i = wh(c ⊕ c′)

Minimum Hamming distance
dmin = min

c,c′∈C
c′ 6=c

dh(c, c′)

Since the sum of 2 codewords is a codeword (linear code)
dmin = min

c∈C
c 6=0

wh(c) we can take the all-zero codeword as reference
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Linear Block Codes
Definitions

Weight enumerator Ad is the number of codewords in C with Hamming weight d
Input-output weight enumerator Ai,d is the number of codewords in C with
Hamming weight d generated with an input sequence b of Hamming weight
i = wh(b)
Obviously, Ad =

P
i Ai,d

Example (The (7, 4) Hamming Code)

Binary code of rate R = 4
7 , generator and parity-check matrices given by

G =

2664
1 0 0 0 1 1 0
0 1 0 0 1 0 1
0 0 1 0 0 1 1
0 0 0 1 1 1 1

3775 H =

241 1 0 1 1 0 0
1 0 1 1 0 1 0
0 1 1 1 0 0 1

35 .
2k = 16 codewords

c1 = [0000000] c2 = [0001111] c3 = [0010011] c4 = [0011101]

c5 = [0100101] c6 = [0101010] c7 = [0110110] c8 = [0111001]

c9 = [1000110] c10 = [1001001] c11 = [1010101] c12 = [1011010]

c13 = [1100011] c14 = [1101100] c15 = [1110000] c16 = [1111111]

A3 = 6,A4 = 8,A7 = 1,
A1,3 = 3,A2,3 = 2,A3,3 = 1A1,4 = 1,A2,4 = 4,A3,4 = 3,A4,7 = 1
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Error Probability and Union Bound

Error Probability and Union Bound
BPSK modulation xi = 1− 2 ci , i = 1, . . . , n (0 −→ +1 and 1 −→ −1)
Binary codeword c vs modulated BPSK codeword x
AWGN channel

I y = x + z
I zi ∼ N (0, σ2)

I PY |X (yi |x) = 1√
2πσ2

e−
1

2σ2 (yi−x)2

I PY |X (y |x) = 1
(2πσ2)n/2 e−

1
2σ2 ‖y−x‖2

Maximum Likelihood decoding

x̂ = arg max
x∈C

PY |X (y |x) = arg max
x∈C

e−
1

2σ2 ‖y−x‖2

= arg min
x∈C
‖y − x‖2 = arg min

x∈C

nX
i=1

(yi − xi)
2

Exhaustive search over 2k codewords, find the closest. Implementable for short
codes (i.e., Hamming code), impractical for standard code lengths.
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Error Probability and Union Bound

Error Probability and Union Bound
Calculating exact the error probability for a particular code is a hard task
However, it is easy to obtain a simple and tight bound using the union bound

Pe = Pr{ĉ 6= 0|0 was transmitted}

= Pr

([
ĉ 6=0

{error with codeword ĉ|0 was transmitted}

)

≤
X
ĉ 6=0

Pr
˘

error with codeword ĉ
˛̨
0 was transmitted

¯
=
X
ĉ 6=0

PEP(0→ ĉ)

PEP(0→ ĉ) is the pairwise error probability

PEP(0→ ĉ) = Pr

(
nX

i=1

(yi − x̂i)
2 <

nX
i=1

(yi − (+1))2

)

= Pr

(
dX

i=1

(yi − (−1))2 <
dX

i=1

(yi − (+1))2

)
= Pr

(
dX

i=1

4yi < 0

)
= Q

“√
2dSNR

”
,

with SNR = 1/(2σ2), since yi are Gaussians N (+1, σ2), thenPd
i=1 4yi ∼ N (4d , 16dσ2), Pr(X > x) = Q( x−µ

σ
) and Q(−x) = 1−Q(x)
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Error Probability and Union Bound
Error Probability and Union Bound

Summarising we have that

Pe ≤
X

d

Ad Q
“√

2d SNR
”

Pb ≤
X

d

X
i

i
k

Ai,d Q
“√

2d SNR
”

Since Q is a decreasing function, at large SNR we have that

Pe ≤
X

d

Ad Q
“√

2d SNR
”
≈ Admin Q

“p
2dmin SNR

”
.
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Random Coding for the BEC

Coding and Decoding for the Binary Erasure Channel
For the BEC, linear codes can be decoded by matrix inversion:

I eliminate the columns of G corresponding to erased positions in the codeword −→ G′
I invert G′
I recover the information bits b = c′G′−1 where c′ is the vector containing only the

non-erased bits of the received sequence

A similar decoder can be constructed based on the parity-check matrix H, where
decoding is achieved via triangulation of the portion of H corresponding to the
erased bits

The complexity of matrix inversion or triangulation decoding is the complexity of
Gauss elimination over GF(2), i.e. on the order n2 if n is the codeword length

What is the probability of success of matrix inversion decoding if the generator
matrix G has been selected at random? (random coding)

0

1

p

1-p

1-p

0

1

?

Binary Erasure Channel (BEC)
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Random Coding for the BEC
Probability of Inverting a Random Matrix

The matrix inversion decoder will be successful if the matrix G′ with erased
columns has rank k = nR, i.e., if G′ has full rank

Let A be a random binary k × n matrix chosen uniformly at random, with k ≤ n.
How probable is it that A has rank k?

There are 2k×n binary k × n matrices and
Qk−1

i=0 (2n − 2i) of them have rank k (for
each row, choose any sequence of length n except any linear (binary) combination
of previous rows)

The resulting probability of full rank is

P(rank(A)=k) =

Qk−1
i=0 (2n − 2i)

2k×n =
nY

i=n−k+1

(1− 2−i)

For n = k , we have

P(rank(A)=k) =
1
2

3
4

7
8

15
16

. . . (1− 2−n)

whose limit as n goes to infinity is 0.288788

For n > k , the product omits the first and smallest terms (1/2, 3/4, etc.), so the
limit gets larger and closer to 1 as n − k grows
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Random Coding for the BEC

Rate and Chebyshev’s inequality
Remember that the capacity of a BEC with erasure probability p is C = 1− p and
we know from the converse to the coding theorem that we cannot hope to achieve
arbitrary reliability for R ≥ C with any type of coding, so all the more so now that
we restrict ourselves to linear coding

Therefore, let the rate be R = 1− p − ε for any arbitrarily small ε > 0

Let W be the number of erased bits in our block of length n. W follows a binomial
distribution

PW (w) =

 
n
w

!
pw (1− p)n−w ,

and we have E[W ] = np and var(W ) = np(1− p)

We use Chebyshev’s inequality

P(|W − pn| ≥ α) ≤ np(1− p)

α2 ,

which, by setting α = δn, gives us

P(|W − pn| ≤ δn) ≥ 1− p(1− p)

nδ2 .
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Random Coding for the BEC

Probability of success for random coding

Let us denote D = |W − pn|. We can now write the probability of successful
decoding Ps as

Ps = Ps|D≤δnP(D ≤ δn) + Ps|D>δnP(D > δn)

≥ Ps|D≤δnP(D ≤ δn) (dropping a positive term)

≥ Ps|W=pn+δn

„
1− p(1− p)

nδ2

«
(Chebyshev’s inequality)

where we have also used the fact that the probability of success over the interval
|W − pn| ≤ δn is smallesta for W = pn + δn

We now use the expression we computed for the probability of successfully
inverting a random matrix, whose dimensions are nR = n(1− p − ε) rows and
n − (pn + δn) = n(1− p − δ) columns, to get

Ps ≥
„

1− p(1− p)

nδ2

« n(1−p−δ)Y
i=n(ε−δ)+1

(1− 2−i)

awe brush over all integer constraints on the number of erasures and the matrix sizes. The proof can be
made precise by appropriate use of floor or ceiling integer rounding functions.
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Random Coding for the BEC

Probability of error for random coding

We now get for the probability of error Pe = 1− Ps, by choosing δ = ε/2,

Pe ≤ 1−
„

1− 4p(1− p)

nε2

« n(1−p−ε/2)Y
i=nε/2+1

(1− 2−i)

which can be made arbitrarily small for any given ε by choosing n appropriately
large
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Random coding for the BEC

What we have learnt. . .
For the BEC, linear codes achieve arbitrary reliability on average over all codes by
choosing n large

While the bound for a specific number of erasures is exponential in the block
length, the overall bound we calculated is not: this comes from the Chebyshev
averaging which is a weak bounding technique and can be improved by use of
Chernoff or Gallager bounding

In fact, linear codes achieve arbitrary reliability on average for all input-symmetric
channels (we will not prove that) including the AWGN channel with BPSK that we
studied earlier

Linear coding provides a low-complexity method to define a set of codewords
(better than picking 2nR codewords at random) and to encode information digits via
matrix multiplication

What we need now is techniques for efficient decoding that work better than
exhaustive search for the maximum likelihood solution
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