### 4F5: Advanced Wireless Communications

#### Handout 3: Linear Block Codes

#### Jossy Sayir

Signal Processing and Communications Lab Department of Engineering University of Cambridge jossy.sayir@eng.cam.ac.uk

Lent 2012

© Jossy Sayir (CUED)

Advanced Wireless Communications

Lent 2012 1 / 15

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

#### Introduction and Motivation

- 2 Linear Block Codes
- Error Probability and Union Bound
- 4 Random Coding for the Binary Erasure Channel

イロト イヨト イヨト イヨト

Introduction and Motivation

### 2 Linear Block Codes

Error Probability and Union Bound



Introduction and Motivation





Random Coding for the Binary Erasure Channel

(D) (A) (A) (A)

Introduction and Motivation

- 2 Linear Block Codes
- Error Probability and Union Bound
  - 4 Random Coding for the Binary Erasure Channel

## Introduction and Motivation

### So far...

- We have shown that we can achieve  $P_e 
  ightarrow 0$ 
  - ▶ with codes of rate *R* < *C*
  - ▶ provided that  $n \to \infty$
  - using random coding (average P<sub>e</sub> over the ensemble of random codes)
- The proof is not constructive
  - average performance
  - does not tell us how to achieve the limits
- Random codes
  - not implementable, we need to store the whole codebook at transmitter and receiver
  - we do not know how to encode and decode algorithmically
  - in practice  $n < \infty$ , i.e., finite-length codes
- We need codes that can be implemented (encoding and decoding) and that perform close to capacity
- We will study
  - Linear block codes
  - convolutional codes
  - turbo-codes
  - Iow-density parity-check codes

## Linear Block Codes

### Definitions

- A binary code C of length n and dimension k is a set of different 2<sup>k</sup> binary codewords of length n.
- The rate of the code is  $R = \frac{1}{n} \log_2 |\mathcal{C}| = \frac{k}{n}$
- C is a vector subspace of the vector space defined by all possible binary vectors of length n, hence the code is linear
- $\mathcal{C}$  is the set of codewords *c* satisfying for all  $\boldsymbol{b} \in \mathbb{F}_2^k$  (row convention)

 $\boldsymbol{c} = \boldsymbol{b}\boldsymbol{G}, \text{ where } \boldsymbol{G} = \begin{bmatrix} g_{1,1} & \cdots & g_{1,n} \\ g_{2,1} & \cdots & g_{2,n} \\ \vdots & \ddots & \vdots \\ g_{k,1} & \cdots & g_{k,n} \end{bmatrix}$  is the generator matrix

- For equiprobable messages, every symbol of a linear code is uniformly distributed
- The code is called systematic if the information bits **b** are part of the codeword, i.e., c = [b p] where  $p \in \mathbb{F}_2^{n-k}$  is the parity vector (redundancy)
- The corresponding generator matrix is

 $\boldsymbol{G} = \begin{bmatrix} \boldsymbol{I}_k & \boldsymbol{P} \end{bmatrix}$ , where  $\boldsymbol{P} \in \mathbb{F}_2^{k \times n-k}$  is the parity generator matrix

### Linear Block Codes

Definitions

 $\bullet\,$  We can also express the code  ${\mathcal C}$  as the set of codewords  ${\boldsymbol c}$  such that

 $\boldsymbol{C}\boldsymbol{H}^{T} = \boldsymbol{0}, \text{ where } \boldsymbol{H} = \begin{bmatrix} h_{1,1} & \dots & h_{1,n} \\ h_{2,1} & \dots & h_{2,n} \\ \vdots & \ddots & \vdots \\ h_{n-k,1} & \dots & h_{n-k,n} \end{bmatrix} \text{ is the parity-check matrix}$ 

- H represents the linear system of equations that every codeword must satisfy
- The parity-check matrix of a systematic code can be expressed as

$$\boldsymbol{H} = \begin{bmatrix} \boldsymbol{P}^T & \boldsymbol{I}_{n-k} \end{bmatrix}$$

- Hamming weight  $w_h(c) = \sum_{i=1}^n c_i$ , sum is the sum over the integers (not binary)
- Hamming distance between  ${m c}, {m c}' \in {\mathcal C}$ : number of positions in which they differ

$$oldsymbol{a}_{\mathsf{h}}(oldsymbol{c},oldsymbol{c}') = \sum_{i=1}^{''} oldsymbol{c}_i \oplus oldsymbol{c}_i' = oldsymbol{w}_{\mathsf{h}}(oldsymbol{c} \oplus oldsymbol{c}')$$

• Minimum Hamming distance

$$d_{\min} = \min_{\substack{m{c},m{c}'\in\mathcal{C}\m{c}'\neqm{c}}} d_{\mathrm{h}}(m{c},m{c}')$$

• Since the sum of 2 codewords is a codeword (linear code)

 $d_{\min} = \min_{\substack{\boldsymbol{c} \in \mathcal{C} \\ \boldsymbol{c} \neq \boldsymbol{0}}} w_h(\boldsymbol{c}) \quad \text{we can take the all-zero codeword as reference}$ 

## Linear Block Codes

### Definitions

- Weight enumerator  $A_d$  is the number of codewords in C with Hamming weight d
- Input-output weight enumerator  $A_{i,d}$  is the number of codewords in C with Hamming weight d generated with an input sequence  $\boldsymbol{b}$  of Hamming weight  $i = w_h(\boldsymbol{b})$
- Obviously,  $A_d = \sum_i A_{i,d}$

### Example (The (7,4) Hamming Code)

• Binary code of rate  $R = \frac{4}{7}$ , generator and parity-check matrices given by  $\boldsymbol{G} = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 \end{bmatrix} \quad \boldsymbol{H} = \begin{bmatrix} 1 & 1 & 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 & 0 & 0 & 1 \end{bmatrix}.$ •  $2^k = 16$  codewords  $c_1 = [0000000]$   $c_2 = [0001111]$   $c_3 = [0010011]$   $c_4 = [0011101]$  $c_5 = [0100101]$   $c_6 = [0101010]$   $c_7 = [0110110]$   $c_8 = [0111001]$  $c_9 = [1000110]$   $c_{10} = [1001001]$   $c_{11} = [1010101]$   $c_{12} = [1011010]$  $c_{13} = [1100011]$   $c_{14} = [1101100]$   $c_{15} = [1110000]$   $c_{16} = [1111111]$ •  $A_3 = 6, A_4 = 8, A_7 = 1,$ •  $A_{1,3} = 3, A_{2,3} = 2, A_{3,3} = 1A_{1,4} = 1, A_{2,4} = 4, A_{3,4} = 3, A_{4,7} = 1$ 

## Error Probability and Union Bound

### Error Probability and Union Bound

- BPSK modulation  $x_i = 1 2c_i$ ,  $i = 1, ..., n (0 \longrightarrow +1 \text{ and } 1 \longrightarrow -1)$
- Binary codeword c vs modulated BPSK codeword x
- AWGN channel

Maximum Likelihood decoding

$$\hat{\boldsymbol{x}} = \arg \max_{\boldsymbol{x} \in \mathcal{C}} P_{\boldsymbol{Y}|\boldsymbol{X}}(\boldsymbol{y}|\boldsymbol{x}) = \arg \max_{\boldsymbol{x} \in \mathcal{C}} e^{-\frac{1}{2\sigma^2} \|\boldsymbol{y} - \boldsymbol{x}\|^2}$$
$$= \arg \min_{\boldsymbol{x} \in \mathcal{C}} \|\boldsymbol{y} - \boldsymbol{x}\|^2 = \arg \min_{\boldsymbol{x} \in \mathcal{C}} \sum_{i=1}^n (y_i - x_i)^2$$

• Exhaustive search over 2<sup>k</sup> codewords, find the closest. Implementable for short codes (i.e., Hamming code), impractical for standard code lengths.

# Error Probability and Union Bound

#### Error Probability and Union Bound

- Calculating exact the error probability for a particular code is a hard task
- However, it is easy to obtain a simple and tight bound using the union bound  $P_{i} = P_{i} \left(\frac{2}{3} + \frac{2}{3}\right)^{2}$

$$\mathbf{P}_e = \Pr\{\hat{\boldsymbol{c}} \neq \boldsymbol{0} | \boldsymbol{0} \text{ was transmitted}\}$$

$$= \Pr\left\{\bigcup_{\hat{c}\neq 0} \{\text{error with codeword } \hat{c} | \mathbf{0} \text{ was transmitted}\}\right\}$$
$$\leq \sum_{\hat{c}\neq 0} \Pr\{\text{error with codeword } \hat{c} | \mathbf{0} \text{ was transmitted}\} = \sum_{\hat{c}\neq 0} \mathsf{PEP}(\mathbf{0} \to \hat{c}$$

• 
$$\mathsf{PEP}(\mathbf{0} \to \hat{\mathbf{c}})$$
 is the pairwise error probability

$$\begin{aligned} \mathsf{PEP}(\mathbf{0} \to \hat{\mathbf{c}}) &= \mathsf{Pr}\left\{\sum_{i=1}^{n} (y_i - \hat{x}_i)^2 < \sum_{i=1}^{n} (y_i - (+1))^2\right\} \\ &= \mathsf{Pr}\left\{\sum_{i=1}^{d} (y_i - (-1))^2 < \sum_{i=1}^{d} (y_i - (+1))^2\right\} = \mathsf{Pr}\left\{\sum_{i=1}^{d} 4y_i < 0\right\} = Q\left(\sqrt{2d\mathsf{SNR}}\right), \end{aligned}$$

with SNR =  $1/(2\sigma^2)$ , since  $y_i$  are Gaussians  $\mathcal{N}(+1, \sigma^2)$ , then  $\sum_{i=1}^{d} 4y_i \sim \mathcal{N}(4d, 16d\sigma^2)$ ,  $\Pr(X > x) = Q(\frac{x-\mu}{\sigma})$  and Q(-x) = 1 - Q(x)

・ロト ・回ト ・ヨト ・ヨト

# Error Probability and Union Bound

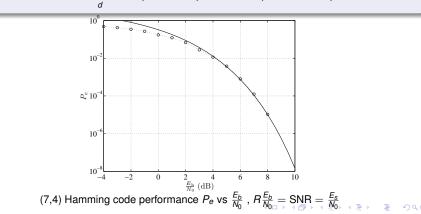
Error Probability and Union Bound

Summarising we have that

$$P_{e} \leq \sum_{i} A_{d}Q\left(\sqrt{2d}\operatorname{SNR}\right) \qquad P_{b} \leq \sum_{i} \sum_{i} \frac{i}{k} A_{i,d}Q\left(\sqrt{2d}\operatorname{SNR}\right)$$

• Since Q is a decreasing function, at large SNR we have that

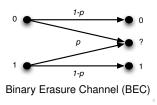
$$P_e \leq \sum_d A_d Q \left( \sqrt{2d \operatorname{SNR}} \right) pprox A_{d_{\min}} Q \left( \sqrt{2d_{\min} \operatorname{SNR}} \right)$$



© Jossy Sayir (CUED)

### Coding and Decoding for the Binary Erasure Channel

- For the BEC, linear codes can be decoded by matrix inversion:
  - eliminate the columns of **G** corresponding to erased positions in the codeword  $\longrightarrow$  **G**' invert **G**'
  - recover the information bits  $\mathbf{b} = \mathbf{c}' \mathbf{G}'^{-1}$  where  $\mathbf{c}'$  is the vector containing only the non-erased bits of the received sequence
- A similar decoder can be constructed based on the parity-check matrix *H*, where decoding is achieved via triangulation of the portion of *H* corresponding to the erased bits
- The complexity of matrix inversion or triangulation decoding is the complexity of Gauss elimination over GF(2), i.e. on the order *n*<sup>2</sup> if *n* is the codeword length
- What is the probability of success of matrix inversion decoding if the generator matrix *G* has been selected at random? (random coding)



### Probability of Inverting a Random Matrix

- The matrix inversion decoder will be successful if the matrix G' with erased columns has rank k = nR, i.e., if G' has full rank
- Let *A* be a random binary *k* × *n* matrix chosen uniformly at random, with *k* ≤ *n*. How probable is it that *A* has rank *k*?
- There are  $2^{k \times n}$  binary  $k \times n$  matrices and  $\prod_{i=0}^{k-1} (2^n 2^i)$  of them have rank k (for each row, choose any sequence of length n except any linear (binary) combination of previous rows)
- The resulting probability of full rank is

$$P(\operatorname{rank}(\mathbf{A}) = k) = \frac{\prod_{i=0}^{k-1} (2^n - 2^i)}{2^{k \times n}} = \prod_{i=n-k+1}^n (1 - 2^{-i})$$

• For n = k, we have

$$P(\operatorname{rank}(\mathbf{A}) = k) = \frac{1}{2} \frac{3}{4} \frac{7}{8} \frac{15}{16} \dots (1 - 2^{-n})$$

whose limit as n goes to infinity is 0.288788

 For n > k, the product omits the first and smallest terms (1/2, 3/4, etc.), so the limit gets larger and closer to 1 as n − k grows

© Jossy Sayir (CUED)

Advanced Wireless Communications

#### Rate and Chebyshev's inequality

- Remember that the capacity of a BEC with erasure probability p is C = 1 p and we know from the converse to the coding theorem that we cannot hope to achieve arbitrary reliability for  $R \ge C$  with any type of coding, so all the more so now that we restrict ourselves to linear coding
- Therefore, let the rate be  $R = 1 p \varepsilon$  for any arbitrarily small  $\varepsilon > 0$
- Let *W* be the number of erased bits in our block of length *n*. *W* follows a binomial distribution

$$P_W(w) = \binom{n}{w} p^w (1-p)^{n-w},$$

and we have E[W] = np and var(W) = np(1 - p)

• We use Chebyshev's inequality

$$P(|W - pn| \ge \alpha) \le \frac{np(1-p)}{\alpha^2},$$

which, by setting  $\alpha = \delta n$ , gives us

$$P(|W-pn| \leq \delta n) \geq 1 - \frac{p(1-p)}{n\delta^2}.$$

#### Probability of success for random coding

• Let us denote D = |W - pn|. We can now write the probability of successful decoding  $P_s$  as

$$\begin{split} P_{s} &= P_{s|D \leq \delta n} P(D \leq \delta n) + P_{s|D > \delta n} P(D > \delta n) \\ &\geq P_{s|D \leq \delta n} P(D \leq \delta n) & (\text{dropping a positive term}) \\ &\geq P_{s|W = pn + \delta n} \left( 1 - \frac{p(1-p)}{n\delta^{2}} \right) & (\text{Chebyshev's inequality}) \end{split}$$

where we have also used the fact that the probability of success over the interval  $|W - pn| \le \delta n$  is smallest<sup>*a*</sup> for  $W = pn + \delta n$ 

• We now use the expression we computed for the probability of successfully inverting a random matrix, whose dimensions are  $nR = n(1 - p - \varepsilon)$  rows and  $n - (pn + \delta n) = n(1 - p - \delta)$  columns, to get

$$P_s \geq \left(1 - rac{p(1-p)}{n\delta^2}
ight) \prod_{i=n(arepsilon-\delta)+1}^{n(1-p-\delta)} (1-2^{-i})$$

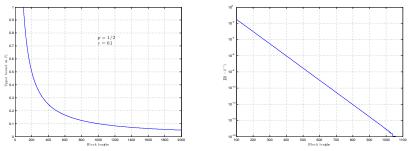
<sup>&</sup>lt;sup>a</sup>we brush over all integer constraints on the number of erasures and the matrix sizes. The proof can be made precise by appropriate use of floor or ceiling integer rounding functions.

### Probability of error for random coding

• We now get for the probability of error  $P_e = 1 - P_s$ , by choosing  $\delta = \varepsilon/2$ ,

$$P_e \leq 1 - \left(1 - rac{4p(1-p)}{narepsilon^2}
ight) \prod_{i=narepsilon/2+1}^{n(1-
ho-arepsilon/2)} (1-2^{-i})$$

which can be made arbitrarily small for any given  $\varepsilon$  by choosing n appropriately large



Upper bounds including the Chebyshev averaging - excluding averaging (i.e. assuming W = np)

#### What we have learnt...

- For the BEC, linear codes achieve arbitrary reliability on average over all codes by choosing *n* large
- While the bound for a specific number of erasures is exponential in the block length, the overall bound we calculated is not: this comes from the Chebyshev averaging which is a weak bounding technique and can be improved by use of Chernoff or Gallager bounding
- In fact, linear codes achieve arbitrary reliability on average for all input-symmetric channels (we will not prove that) including the AWGN channel with BPSK that we studied earlier
- Linear coding provides a low-complexity method to define a set of codewords (better than picking 2<sup>nR</sup> codewords at random) and to encode information digits via matrix multiplication
- What we need now is techniques for efficient decoding that work better than exhaustive search for the maximum likelihood solution