
4F5: Advanced Wireless Communications
Handout 4: Trellis Decoders and Turbo Codes

Jossy Sayir

Signal Processing and Communications Lab
Department of Engineering

University of Cambridge
jossy.sayir@eng.cam.ac.uk

Lent 2012

c© Jossy Sayir (CUED) Advanced Wireless Communications Lent 2012 1 / 32

(7,3) Hamming Code

Parity-check matrix, N = 7, N − K = 4:

H =

24 0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1

35
Systematic Parity-check matrix (by Gaussian elimi-
nation):

Hsys =

24 0 1 1 1 1 0 0
1 0 1 1 0 1 0
1 1 0 1 0 0 1

35
Systematic generator matrix:

Gsys =

2664
1 0 0 0 0 1 1
0 1 0 0 1 0 1
0 0 1 0 1 1 0
0 0 0 1 1 1 1

3775

Codewords
0000 000
0001 111
0010 110
0100 101
1000 011
0011 001
0101 010
1001 100
0110 011
1010 101
1100 110
0111 100
1011 010
1101 001
1110 000
1111 111

c© Jossy Sayir (CUED) Advanced Wireless Communications Lent 2012 2 / 32

Decoding problem

Discrete Memoryless Channel, for example

a

a

aa
aa
a

!!
!!

!!
!!

!!

"
"
"
"
"
"
"
"
"
"

#
#
#
#
#
#
#
#
#
#

``````````

aaaaaaaaaa

b
b
b
b
b
b
b
b
b
b

c
c
c
c
c
c
c
c
c
c

1/2
1/4

1/81/16
1/16

1/
16

1/1
6
1/8

1/4

1/20

1

X

A

B

C

D

E

Y

Hamming codeword transmitted, received word for ecample

y = (y1, . . . , y7) = (A,D,C,B,E,D,E)

What was the encoded information sequence?

c© Jossy Sayir (CUED) Advanced Wireless Communications Lent 2012 3 / 32



Symbol vs. Block Decoding

Binary
Symmetric

Source

-U1, . . . ,UK Linear
Encoder

X1, . . . ,XN

?

Discrete
Memoryless

Channel

�
Y1, . . . ,YN

Block
Decoder

�X̂ =
ˆz }| {

X1, . . . ,XNInverse
Encoder

�Û =
ˆz }| {

U1, . . . ,UKSink

For systematic encoders, the “inverse encoder” just picks the systematic part of
the estimated codeword, and the symbol decoder can be viewed alternatively as
estimating codeword symbols (X1, . . . ,XK ).

Asymptotically, both approaches are equivalent and yield arbitrary reliability at
rates below capacity for capacity-achieving families of codes.

c© Jossy Sayir (CUED) Advanced Wireless Communications Lent 2012 4 / 32



Symbol vs. Block Decoding

Binary
Symmetric

Source

-U1, . . . ,UK Linear
Encoder

X1, . . . ,XN

?

Discrete
Memoryless

Channel

�
Y1, . . . ,YN

Block
Decoder

�X̂ =
ˆz }| {

X1, . . . ,XNInverse
Encoder

�Û =
ˆz }| {

U1, . . . ,UKSink

�Symbol
Decoder

� Û1, . . . , ÛKSink

For systematic encoders, the “inverse encoder” just picks the systematic part of
the estimated codeword, and the symbol decoder can be viewed alternatively as
estimating codeword symbols (X1, . . . ,XK ).

Asymptotically, both approaches are equivalent and yield arbitrary reliability at
rates below capacity for capacity-achieving families of codes.

c© Jossy Sayir (CUED) Advanced Wireless Communications Lent 2012 4 / 32



Symbol vs. Block Decoding

Binary
Symmetric

Source

-U1, . . . ,UK Linear
Encoder

X1, . . . ,XN

?

Discrete
Memoryless

Channel

�
Y1, . . . ,YN

Block
Decoder

�X̂ =
ˆz }| {

X1, . . . ,XNInverse
Encoder

�Û =
ˆz }| {

U1, . . . ,UKSink

�Symbol
Decoder

� Û1, . . . , ÛKSink

For systematic encoders, the “inverse encoder” just picks the systematic part of
the estimated codeword, and the symbol decoder can be viewed alternatively as
estimating codeword symbols (X1, . . . ,XK ).

Asymptotically, both approaches are equivalent and yield arbitrary reliability at
rates below capacity for capacity-achieving families of codes.

c© Jossy Sayir (CUED) Advanced Wireless Communications Lent 2012 4 / 32



Symbol vs. Block Decoding

Binary
Symmetric

Source

-U1, . . . ,UK Linear
Encoder

X1, . . . ,XN

?

Discrete
Memoryless

Channel

�
Y1, . . . ,YN

Block
Decoder

�X̂ =
ˆz }| {

X1, . . . ,XNInverse
Encoder

�Û =
ˆz }| {

U1, . . . ,UKSink

�Symbol
Decoder

� Û1, . . . , ÛKSink

For systematic encoders, the “inverse encoder” just picks the systematic part of
the estimated codeword, and the symbol decoder can be viewed alternatively as
estimating codeword symbols (X1, . . . ,XK ).

Asymptotically, both approaches are equivalent and yield arbitrary reliability at
rates below capacity for capacity-achieving families of codes.

c© Jossy Sayir (CUED) Advanced Wireless Communications Lent 2012 4 / 32



Optimal ML and MAP block decoding

Maximum A-Posteriori (MAP) Decoding
Pick a codeword whose conditional probability given the channel output observation is
maximal, i.e.,

x̂ = arg maxx PX |Y (x |y).

where the notation arg maxx f (x) is taken to mean here and hereafter “pick any one of
the values achieving the maximum of f (.)”.

Maximum Likelihood (ML) decoding
Pick a codeword that maximises the conditional probability of the channel output
observation (likelihood), i.e.,

x̂ = arg maxx PY |X (y |x).

For discrete memoryless channels, this reduces to

x̂ = arg max(x1,...,xN )∈C

NY
i=1

PY |X (yi |xi ).

It is easy to see that, for equally likely codewords, ML and MAP decoding are
equivalent.

c© Jossy Sayir (CUED) Advanced Wireless Communications Lent 2012 5 / 32



Optimal ML and MAP symbol decoding

MAP/ML decoding
MAP and ML are again equivalent when Ui is uniformly distributed, i.e.,
PUi (0) = PUi (1) = 1/2, which is true by definition. For discrete memoryless channels,

ûi = arg maxui
PUi |Y (ui |y)

= arg maxui
PY |Ui (y |ui )

= arg maxui

X
(x1,...,xN )∈CUi =ui

NY
i=1

PY |X (yi |xi ) (1)

where the sum is over all the codewords corresponding to information sequences that
have value ui at their i-th position.

Since there are only 2 possibilities to chose from in the symbol decoding problem, the
difficulty for this decoder is not in the decision, i.e., the arg max in (1), but in the
evaluation of the a-posteriori probability, i.e., the sum and product in (1).

c© Jossy Sayir (CUED) Advanced Wireless Communications Lent 2012 6 / 32



Brute Force Block Decoding

x PY |X (y |x)

0000000 1
2 ×

1
16 ×

1
8 ×

1
4 ×

1
16 ×

1
16 ×

1
16

0001111 1
2 ×

1
16 ×

1
8 ×

1
16 ×

1
2 ×

1
4 ×

1
2

0010110 1
2 ×

1
16 ×

1
8 ×

1
16 ×

1
2 ×

1
4 ×

1
16

0100101 1
2 ×

1
4 ×

1
8 ×

1
4 ×

1
2 ×

1
16 ×

1
2

1000011 1
16 ×

1
16 ×

1
8 ×

1
4 ×

1
2 ×

1
4 ×

1
2

0011001 1
2 ×

1
16 ×

1
8 ×

1
16 ×

1
16 ×

1
16 ×

1
2

0101010 1
2 ×

1
4 ×

1
8 ×

1
16 ×

1
16 ×

1
4 ×

1
16

1001100 1
16 ×

1
16 ×

1
8 ×

1
16 ×

1
2 ×

1
16 ×

1
16

0110011 1
2 ×

1
4 ×

1
8 ×

1
4 ×

1
16 ×

1
4 ×

1
2

1010101 1
16 ×

1
4 ×

1
8 ×

1
4 ×

1
2 ×

1
16 ×

1
2

1100110 1
16 ×

1
4 ×

1
8 ×

1
4 ×

1
2 ×

1
4 ×

1
16

0111100 1
2 ×

1
4 ×

1
8 ×

1
4 ×

1
2 ×

1
16 ×

1
16

1011010 1
16 ×

1
16 ×

1
8 ×

1
16 ×

1
16 ×

1
4 ×

1
16

1101001 1
16 ×

1
4 ×

1
8 ×

1
16 ×

1
16 ×

1
16 ×

1
2

1110000 1
16 ×

1
4 ×

1
8 ×

1
4 ×

1
16 ×

1
16 ×

1
16

1111111 1
16 ×

1
4 ×

1
8 ×

1
16 ×

1
2 ×

1
4 ×

1
2

a

a

aa
aa
a

   
   

   
 

!!
!!

!!
!!

!!

"
"
"
"
"
"
"
"
"
"

#
#
#
#
#
#
#
#
#
#

``````````

aaaaaaaaaa

b
b
b
b
b
b
b
b
b
b

c
c
c
c
c
c
c
c
c
c

1/2
1/4

1/81/16
1/16

1/
16

1/1
6
1/8

1/4

1/20

1

X

A

B

C

D

E

Y

y = (y1, . . . , y7) = (A,D,C,B,E,D,E)

c© Jossy Sayir (CUED) Advanced Wireless Communications Lent 2012 7 / 32

Brute Force Block Decoding

x PY |X (y |x)

0000000 2−22

0001111 2−16

0010110 2−17

0100101 2−14

1000011 2−20

0011001 2−21

0101010 2−20

1001100 2−22

0110011 2−15

1010101 2−19

1100110 2−15

0111100 2−19

1011010 2−25

1101001 2−22

1110000 2−23

1111111 2−17

a

a

aa
aa
a

!!
!!

!!
!!

!!

"
"
"
"
"
"
"
"
"
"

#
#
#
#
#
#
#
#
#
#

``````````

aaaaaaaaaa

b
b
b
b
b
b
b
b
b
b

c
c
c
c
c
c
c
c
c
c

1/2
1/4

1/81/16
1/16

1/
16

1/1
6
1/8

1/4

1/20

1

X

A

B

C

D

E

Y

y = (y1, . . . , y7) = (A,D,C,B,E,D,E)

x̂ = (0, 1, 0, 0, 1, 0, 1)

Information bits: 0,1,0,0.

2K (N − 1) multiplications,
2K − 1 comparisons

c© Jossy Sayir (CUED) Advanced Wireless Communications Lent 2012 7 / 32



Brute Force Symbol Decoding

x PY |X (y |x) Sum

0000000 2−22

1.1802× 10−4

0001111 2−16

0010110 2−17

0100101 2−14

0011001 2−21

0101010 2−20

0110011 2−15

0111100 2−19

1000011 2−20

4.1634× 10−5

1001100 2−22

1010101 2−19

1100110 2−15

1011010 2−25

1101001 2−22

1110000 2−23

1111111 2−17

Decoding symbol at position 1,
assuming systematic encoder

PX1|Y (0|y) =
1.1802

1.1802 + 0.441634

PX1|Y (0|y) > PX1|Y (1|y), thus
Û1 = X̂1 = 0.

This operation must be repeated
for U2,U3 and U4. In general
(though not in this case), the
estimates of the symbol and block
decoders do not necessarily
coincide.

c© Jossy Sayir (CUED) Advanced Wireless Communications Lent 2012 8 / 32



Block vs. Symbol Decoding in Practice

Block decoding optimal with respect to Block Error Rate (BLER)

Information to codeword assignment (“encoding”) is irrelevant for block decoding:
only the code (set of codewords) and its properties (distance spectrum etc.)
matter.

Symbol decoding optimal with respect to Bit Error Rate (BER)

Performance of the symbol decoder depends on the code as well as on the
encoder.

The BER of a block decoder does depend on the encoder. Systematic is a good
choice (although not necessarily optimal) because codewords at moderate
distances from each other will result in few bit errors.

BER→ 0 =⇒ BLER→ 0 and vice versa, so asymptotically optimal systems in
terms of BLER are also asymptotically optimal in terms of BER.

Decoders presented are “decision algorithms”, i.e., the output is a decision on the
value of X , U, Xi or Ui , rather than the a-posteriori probability of those random
variables.

Soft decoders are “estimation algorithms” that provide a-posteriori probabilities
rather than decisions. They are relevant, e.g., when the output of the decoder is
used by another decoder rather than being the final verdict on the value of the
information sequence.

c© Jossy Sayir (CUED) Advanced Wireless Communications Lent 2012 9 / 32



Block vs. Symbol Decoding in Practice

Block decoding optimal with respect to Block Error Rate (BLER)

Information to codeword assignment (“encoding”) is irrelevant for block decoding:
only the code (set of codewords) and its properties (distance spectrum etc.)
matter.

Symbol decoding optimal with respect to Bit Error Rate (BER)

Performance of the symbol decoder depends on the code as well as on the
encoder.

The BER of a block decoder does depend on the encoder. Systematic is a good
choice (although not necessarily optimal) because codewords at moderate
distances from each other will result in few bit errors.

BER→ 0 =⇒ BLER→ 0 and vice versa, so asymptotically optimal systems in
terms of BLER are also asymptotically optimal in terms of BER.

Decoders presented are “decision algorithms”, i.e., the output is a decision on the
value of X , U, Xi or Ui , rather than the a-posteriori probability of those random
variables.

Soft decoders are “estimation algorithms” that provide a-posteriori probabilities
rather than decisions. They are relevant, e.g., when the output of the decoder is
used by another decoder rather than being the final verdict on the value of the
information sequence.

c© Jossy Sayir (CUED) Advanced Wireless Communications Lent 2012 9 / 32



Block vs. Symbol Decoding in Practice

Block decoding optimal with respect to Block Error Rate (BLER)

Information to codeword assignment (“encoding”) is irrelevant for block decoding:
only the code (set of codewords) and its properties (distance spectrum etc.)
matter.

Symbol decoding optimal with respect to Bit Error Rate (BER)

Performance of the symbol decoder depends on the code as well as on the
encoder.

The BER of a block decoder does depend on the encoder. Systematic is a good
choice (although not necessarily optimal) because codewords at moderate
distances from each other will result in few bit errors.

BER→ 0 =⇒ BLER→ 0 and vice versa, so asymptotically optimal systems in
terms of BLER are also asymptotically optimal in terms of BER.

Decoders presented are “decision algorithms”, i.e., the output is a decision on the
value of X , U, Xi or Ui , rather than the a-posteriori probability of those random
variables.

Soft decoders are “estimation algorithms” that provide a-posteriori probabilities
rather than decisions. They are relevant, e.g., when the output of the decoder is
used by another decoder rather than being the final verdict on the value of the
information sequence.

c© Jossy Sayir (CUED) Advanced Wireless Communications Lent 2012 9 / 32



Block vs. Symbol Decoding in Practice

Block decoding optimal with respect to Block Error Rate (BLER)

Information to codeword assignment (“encoding”) is irrelevant for block decoding:
only the code (set of codewords) and its properties (distance spectrum etc.)
matter.

Symbol decoding optimal with respect to Bit Error Rate (BER)

Performance of the symbol decoder depends on the code as well as on the
encoder.

The BER of a block decoder does depend on the encoder. Systematic is a good
choice (although not necessarily optimal) because codewords at moderate
distances from each other will result in few bit errors.

BER→ 0 =⇒ BLER→ 0 and vice versa, so asymptotically optimal systems in
terms of BLER are also asymptotically optimal in terms of BER.

Decoders presented are “decision algorithms”, i.e., the output is a decision on the
value of X , U, Xi or Ui , rather than the a-posteriori probability of those random
variables.

Soft decoders are “estimation algorithms” that provide a-posteriori probabilities
rather than decisions. They are relevant, e.g., when the output of the decoder is
used by another decoder rather than being the final verdict on the value of the
information sequence.

c© Jossy Sayir (CUED) Advanced Wireless Communications Lent 2012 9 / 32



Block vs. Symbol Decoding in Practice

Block decoding optimal with respect to Block Error Rate (BLER)

Information to codeword assignment (“encoding”) is irrelevant for block decoding:
only the code (set of codewords) and its properties (distance spectrum etc.)
matter.

Symbol decoding optimal with respect to Bit Error Rate (BER)

Performance of the symbol decoder depends on the code as well as on the
encoder.

The BER of a block decoder does depend on the encoder. Systematic is a good
choice (although not necessarily optimal) because codewords at moderate
distances from each other will result in few bit errors.

BER→ 0 =⇒ BLER→ 0 and vice versa, so asymptotically optimal systems in
terms of BLER are also asymptotically optimal in terms of BER.

Decoders presented are “decision algorithms”, i.e., the output is a decision on the
value of X , U, Xi or Ui , rather than the a-posteriori probability of those random
variables.

Soft decoders are “estimation algorithms” that provide a-posteriori probabilities
rather than decisions. They are relevant, e.g., when the output of the decoder is
used by another decoder rather than being the final verdict on the value of the
information sequence.

c© Jossy Sayir (CUED) Advanced Wireless Communications Lent 2012 9 / 32



Block vs. Symbol Decoding in Practice

Block decoding optimal with respect to Block Error Rate (BLER)

Information to codeword assignment (“encoding”) is irrelevant for block decoding:
only the code (set of codewords) and its properties (distance spectrum etc.)
matter.

Symbol decoding optimal with respect to Bit Error Rate (BER)

Performance of the symbol decoder depends on the code as well as on the
encoder.

The BER of a block decoder does depend on the encoder. Systematic is a good
choice (although not necessarily optimal) because codewords at moderate
distances from each other will result in few bit errors.

BER→ 0 =⇒ BLER→ 0 and vice versa, so asymptotically optimal systems in
terms of BLER are also asymptotically optimal in terms of BER.

Decoders presented are “decision algorithms”, i.e., the output is a decision on the
value of X , U, Xi or Ui , rather than the a-posteriori probability of those random
variables.

Soft decoders are “estimation algorithms” that provide a-posteriori probabilities
rather than decisions. They are relevant, e.g., when the output of the decoder is
used by another decoder rather than being the final verdict on the value of the
information sequence.

c© Jossy Sayir (CUED) Advanced Wireless Communications Lent 2012 9 / 32



Block vs. Symbol Decoding in Practice

Block decoding optimal with respect to Block Error Rate (BLER)

Information to codeword assignment (“encoding”) is irrelevant for block decoding:
only the code (set of codewords) and its properties (distance spectrum etc.)
matter.

Symbol decoding optimal with respect to Bit Error Rate (BER)

Performance of the symbol decoder depends on the code as well as on the
encoder.

The BER of a block decoder does depend on the encoder. Systematic is a good
choice (although not necessarily optimal) because codewords at moderate
distances from each other will result in few bit errors.

BER→ 0 =⇒ BLER→ 0 and vice versa, so asymptotically optimal systems in
terms of BLER are also asymptotically optimal in terms of BER.

Decoders presented are “decision algorithms”, i.e., the output is a decision on the
value of X , U, Xi or Ui , rather than the a-posteriori probability of those random
variables.

Soft decoders are “estimation algorithms” that provide a-posteriori probabilities
rather than decisions. They are relevant, e.g., when the output of the decoder is
used by another decoder rather than being the final verdict on the value of the
information sequence.

c© Jossy Sayir (CUED) Advanced Wireless Communications Lent 2012 9 / 32



Block vs. Symbol Decoding in Practice

Block decoding optimal with respect to Block Error Rate (BLER)

Information to codeword assignment (“encoding”) is irrelevant for block decoding:
only the code (set of codewords) and its properties (distance spectrum etc.)
matter.

Symbol decoding optimal with respect to Bit Error Rate (BER)

Performance of the symbol decoder depends on the code as well as on the
encoder.

The BER of a block decoder does depend on the encoder. Systematic is a good
choice (although not necessarily optimal) because codewords at moderate
distances from each other will result in few bit errors.

BER→ 0 =⇒ BLER→ 0 and vice versa, so asymptotically optimal systems in
terms of BLER are also asymptotically optimal in terms of BER.

Decoders presented are “decision algorithms”, i.e., the output is a decision on the
value of X , U, Xi or Ui , rather than the a-posteriori probability of those random
variables.

Soft decoders are “estimation algorithms” that provide a-posteriori probabilities
rather than decisions. They are relevant, e.g., when the output of the decoder is
used by another decoder rather than being the final verdict on the value of the
information sequence.

c© Jossy Sayir (CUED) Advanced Wireless Communications Lent 2012 9 / 32



Practical decoding metric for block ML decoding

Multiplicative metrics are inconvenient for implementation

Equivalent practical ML decoding rule, for any α > 0:

x̂ = arg max(x1,...,xN )∈C log2

 
α

NY
i=1

PY |X (yi |xi )

!

= arg max(x1,...,xN )∈C

NX
i=1

µ(xi , yi ), where µ(xi , yi )
def
= log2(PY |X (yi |xi )) + β

where the first step follows because multiplying by a positive constant or taking the
logarithm leaves the arg max unchanged, and β = 1

N log2 α. α and β are picked so
that all metrics are non-negative and can be implemented in fixed-point arithmetic.

Additive decoding metric for our channel:

c© Jossy Sayir (CUED) Advanced Wireless Communications Lent 2012 10 / 32



Practical decoding metric for block ML decoding

Multiplicative metrics are inconvenient for implementation

Equivalent practical ML decoding rule, for any α > 0:

x̂ = arg max(x1,...,xN )∈C log2

 
α

NY
i=1

PY |X (yi |xi )

!

= arg max(x1,...,xN )∈C

NX
i=1

µ(xi , yi ), where µ(xi , yi )
def
= log2(PY |X (yi |xi )) + β

where the first step follows because multiplying by a positive constant or taking the
logarithm leaves the arg max unchanged, and β = 1

N log2 α. α and β are picked so
that all metrics are non-negative and can be implemented in fixed-point arithmetic.

Additive decoding metric for our channel:

HHH
HHx
y A B C D E

0 3 2 1 0 0
1 0 0 1 2 3 a

a

aa
aa
a

   
   

   
 

!!
!!

!!
!!

!!

"
"
"
"
"
"
"
"
"
"

#
#
#
#
#
#
#
#
#
#

``````````

aaaaaaaaaa

b
b
b
b
b
b
b
b
b
b

c
c
c
c
c
c
c
c
c
c

1/2
1/4

1/81/16
1/16

1/
16

1/1
6
1/8

1/4

1/20

1

X

A

B

C

D

E

Y

c© Jossy Sayir (CUED) Advanced Wireless Communications Lent 2012 10 / 32

Brute Force Block Decoding with Additive Metric

x µ(X ,Y)

0000000 3 + 0 + 1 + 2 + 0 + 0 + 0 = 6
0001111 3 + 0 + 1 + 0 + 3 + 2 + 3 = 12
0010110 3 + 0 + 1 + 2 + 3 + 2 + 0 = 11
0100101 3 + 2 + 1 + 2 + 3 + 0 + 3 = 14
1000011 0 + 0 + 1 + 2 + 0 + 2 + 3 = 8
0011001 3 + 0 + 1 + 0 + 0 + 0 + 3 = 7
0101010 3 + 2 + 1 + 0 + 0 + 2 + 0 = 8
1001100 0 + 2 + 1 + 0 + 3 + 0 + 0 = 6
0110011 3 + 2 + 1 + 2 + 0 + 2 + 3 = 13
1010101 0 + 0 + 1 + 2 + 3 + 0 + 3 = 9
1100110 0 + 2 + 1 + 2 + 3 + 2 + 0 = 10
0111100 3 + 2 + 1 + 0 + 3 + 0 + 0 = 9
1011010 0 + 0 + 1 + 0 + 0 + 2 + 0 = 3
1101001 0 + 2 + 1 + 0 + 0 + 0 + 3 = 6
1110000 0 + 2 + 1 + 2 + 0 + 0 + 0 = 5
1111111 0 + 2 + 1 + 0 + 3 + 2 + 3 = 11

a

a

aa
aa
a

!!
!!

!!
!!

!!

"
"
"
"
"
"
"
"
"
"

#
#
#
#
#
#
#
#
#
#

``````````

aaaaaaaaaa

b
b
b
b
b
b
b
b
b
b

c
c
c
c
c
c
c
c
c
c

1/2
1/4

1/81/16
1/16

1/
16

1/1
6
1/8

1/4

1/20

1

X

A

B

C

D

E

Y

y = (y1, . . . , y7) = (A,D,C,B,E,D,E)

x̂ = (0, 1, 0, 0, 1, 0, 1)

Information bits: 0,1,0,0.

2K (N − 1) additions,
2K − 1 comparisons

c© Jossy Sayir (CUED) Advanced Wireless Communications Lent 2012 11 / 32



Tree and trellis of a Linear Block Code

0 = xHT = x

24 0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1

35T
8><>:

x4 + x5 + x6 + x7 = 0 (E1)

x2 + x3 + x6 + x7 = 0 (E2)

x1 + x3 + x5 + x7 = 0 (E3)

a���
�

A
A
A
A

a

ax1 = 0

x1 = 1

c© Jossy Sayir (CUED) Advanced Wireless Communications Lent 2012 12 / 32



Tree and trellis of a Linear Block Code

0 = xHT = x

24 0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1

35T
8><>:

x4 + x5 + x6 + x7 = 0 (E1)

x2 + x3 + x6 + x7 = 0 (E2)

x1 + x3 + x5 + x7 = 0 (E3)

a���
�

A
A
A
A

a

ax1 = 0

x1 = 1

E1 �
E2 �
E3 �

E1 �
E2 �
E3 ×

c© Jossy Sayir (CUED) Advanced Wireless Communications Lent 2012 12 / 32



Tree and trellis of a Linear Block Code

0 = xHT = x

24 0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1

35T
8><>:

x4 + x5 + x6 + x7 = 0 (E1)

x2 + x3 + x6 + x7 = 0 (E2)

x1 + x3 + x5 + x7 = 0 (E3)

a���
�

A
A
A
A

a

ax1 = 0

x1 = 1

E1 �
E2 �
E3 �

E1 �
E2 �
E3 ×

a��
@
@x2 = 0

x2 = 1

a
a

E1 �
E2 �
E3 �

E1 �
E2 ×
E3 �

a
a

c© Jossy Sayir (CUED) Advanced Wireless Communications Lent 2012 12 / 32



Tree and trellis of a Linear Block Code

0 = xHT = x

24 0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1

35T
8><>:

x4 + x5 + x6 + x7 = 0 (E1)

x2 + x3 + x6 + x7 = 0 (E2)

x1 + x3 + x5 + x7 = 0 (E3)

a���
�

A
A
A
A

a

ax1 = 0

x1 = 1

E1 �
E2 �
E3 �

E1 �
E2 �
E3 ×

a��
@
@x2 = 0

x2 = 1

a
a

E1 �
E2 �
E3 �

E1 �
E2 ×
E3 �

a
a

a��
@
@x2 = 0

x2 = 1

a
a

E1 �
E2 �
E3 ×

E1 �
E2 ×
E3 ×

a
a

c© Jossy Sayir (CUED) Advanced Wireless Communications Lent 2012 12 / 32



Tree and trellis of a Linear Block Code

0 = xHT = x

24 0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1

35T
8><>:

x4 + x5 + x6 + x7 = 0 (E1)

x2 + x3 + x6 + x7 = 0 (E2)

x1 + x3 + x5 + x7 = 0 (E3)

a���
�

A
A
A
A

a

ax1 = 0

x1 = 1

E1 �
E2 �
E3 �

E1 �
E2 �
E3 ×

a��
@
@x2 = 0

x2 = 1

a
a

E1 �
E2 �
E3 �

E1 �
E2 ×
E3 �

a
a

a��
@
@x2 = 0

x2 = 1

a
a

E1 �
E2 �
E3 ×

E1 �
E2 ×
E3 ×

a
ax3 = 1

x3 = 0
a

a E1 �
E2 �
E3 �

E1 �
E2 �
E3 �

c© Jossy Sayir (CUED) Advanced Wireless Communications Lent 2012 12 / 32



Tree and trellis of a Linear Block Code

0 = xHT = x

24 0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1

35T
8><>:

x4 + x5 + x6 + x7 = 0 (E1)

x2 + x3 + x6 + x7 = 0 (E2)

x1 + x3 + x5 + x7 = 0 (E3)

a���
�

A
A
A
A

a

ax1 = 0

x1 = 1

E1 �
E2 �
E3 �

E1 �
E2 �
E3 ×

a��
@
@x2 = 0

x2 = 1

a
a

E1 �
E2 �
E3 �

E1 �
E2 ×
E3 �

a
a

a��
@
@x2 = 0

x2 = 1

a
a

E1 �
E2 �
E3 ×

E1 �
E2 ×
E3 ×

a
a

x
3

=
1

C
C
C
C
C
C
C
C
C
C
C
C

x3 = 0
a E1 �

E2 �
E3 �

For every codeword x with prefix
(x1, x2, x3) = (0, 0, 0), there is
another codeword x ′ with prefix
(x ′1, x

′
2, x
′
3) = (1, 1, 1) for which

(x ′4, x
′
5, x
′
6, x
′
7) = (x4, x5, x6, x7)

c© Jossy Sayir (CUED) Advanced Wireless Communications Lent 2012 12 / 32



Tree and trellis of a Linear Block Code

0 = xHT = x

24 0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1

35T
8><>:

x4 + x5 + x6 + x7 = 0 (E1)

x2 + x3 + x6 + x7 = 0 (E2)

x1 + x3 + x5 + x7 = 0 (E3)

a���
�

A
A
A
A

a

ax1 = 0

x1 = 1

E1 �
E2 �
E3 �

E1 �
E2 �
E3 ×

a��
@
@x2 = 0

x2 = 1

a
a

E1 �
E2 �
E3 �

E1 �
E2 ×
E3 �

a
a

a��
@
@x2 = 0

x2 = 1

a
a

E1 �
E2 �
E3 ×

E1 �
E2 ×
E3 ×

a
a

x
3

=
1

C
C
C
C
C
C
C
C
C
C
C
C

x3 = 0
a E1 �

E2 �
E3 �

For every codeword x with prefix
(x1, x2, x3) = (0, 0, 0), there is
another codeword x ′ with prefix
(x ′1, x

′
2, x
′
3) = (1, 1, 1) for which

(x ′4, x
′
5, x
′
6, x
′
7) = (x4, x5, x6, x7)

x3 = 0

x 3
=

1

�
�
�
�
�
�
�
�
�
�
�
�
a E1 �

E2 ×
E3 ×

For every codeword x with prefix
(x1, x2, x3) = (1, 1, 0), there is
another codeword x ′ with prefix
(x ′1, x

′
2, x
′
3) = (0, 0, 1) for which

(x ′4, x
′
5, x
′
6, x
′
7) = (x4, x5, x6, x7)

etc.

c© Jossy Sayir (CUED) Advanced Wireless Communications Lent 2012 12 / 32



Tree and trellis of a Linear Block Code

0 = xHT = x

24 0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1

35T
8><>:

x4 + x5 + x6 + x7 = 0 (E1)

x2 + x3 + x6 + x7 = 0 (E2)

x1 + x3 + x5 + x7 = 0 (E3)

Simplified representation 0
1E1 E2 E3

1 1 1
1 1 0
1 0 1
1 0 0
0 1 1
0 1 0
0 0 1
0 0 0 aa

aa
aa
aa

��
�q �

��q�
��q






q���qHHHqJ
J
JJ

q
�
�
�
��

q�
�
�
��

q�
�
�
��

q�
�
�
��

q
�
�
�
�
�
�









L
L
L
L
LL

J
J
JJ

q
L
L
L
L
LL

q
q
J
J
JJ

q
�
�
�
�
��

q

q






q

q

�
�
�
�
�
�
�

B
B
B
B
B
B
B�

�
�
�
�
�
�

B
B
B
B
B
B
B

�
��q@@@

q
�
��q@@@

q

q

q

q

q
C
C
C
C
C
C
C
C�

�
�
�
�
�
�
�

�
�
�
�
�
�

q
L
L
L
L
LL

q






q

J
J
JJ

q
�
��qHHHq

q

q qq
qq
qq
qq

c© Jossy Sayir (CUED) Advanced Wireless Communications Lent 2012 13 / 32



Tree and trellis of a Linear Block Code

0 = xHT = x

24 0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1

35T
8><>:

x4 + x5 + x6 + x7 = 0 (E1)

x2 + x3 + x6 + x7 = 0 (E2)

x1 + x3 + x5 + x7 = 0 (E3)

Simplified representation 0
1E1 E2 E3

1 1 1
1 1 0
1 0 1
1 0 0
0 1 1
0 1 0
0 0 1
0 0 0 aa

aa
aa
aa

��
�q �

��q�
��q






q���qHHHqJ
J
JJ

q
�
�
�
��

q�
�
�
��

q�
�
�
��

q�
�
�
��

q
�
�
�
�
�
�









L
L
L
L
LL

J
J
JJ

q
L
L
L
L
LL

q
q
J
J
JJ

q
�
�
�
�
��

q

q






q

q

�
�
�
�
�
�
�

B
B
B
B
B
B
B�

�
�
�
�
�
�

B
B
B
B
B
B
B

�
��q@@@

q
�
��q@@@

q

q

q

q

q
C
C
C
C
C
C
C
C�

�
�
�
�
�
�
�

�
�
�
�
�
�

q
L
L
L
L
LL

q






q

J
J
JJ

q
�
��qHHHq

q

q qq
qq
qq
qq

“TOOR” symbol
“ROOT” symbol

c© Jossy Sayir (CUED) Advanced Wireless Communications Lent 2012 13 / 32



Tree and trellis of a Linear Block Code

0 = xHT = x

24 0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1

35T
8><>:

x4 + x5 + x6 + x7 = 0 (E1)

x2 + x3 + x6 + x7 = 0 (E2)

x1 + x3 + x5 + x7 = 0 (E3)

Simplified representation 0
1E1 E2 E3

1 1 1
1 1 0
1 0 1
1 0 0
0 1 1
0 1 0
0 0 1
0 0 0 aa

aa
aa
aa

��
�q �

��q�
��q






q���qHHHqJ
J
JJ

q
�
�
�
��

q�
�
�
��

q�
�
�
��

q�
�
�
��

q
q
L
L
L
L
LL

q
q
J
J
JJ

q
�
�
�
�
��

q

q






q

q

�
�
�
�
�
�
�

B
B
B
B
B
B
Bq

q

q

q
C
C
C
C
C
C
C
C

q

q q
“TOOR” symbol

“ROOT” symbol

c© Jossy Sayir (CUED) Advanced Wireless Communications Lent 2012 13 / 32



Viterbi’s principle

For every codeword x with prefix
(x1, x2, x3) = (0, 0, 0), there is

another codeword x ′ with prefix
(x ′1, x

′
2, x
′
3) = (1, 1, 1) for which

(x ′4, x
′
5, x
′
6, x
′
7) = (x4, x5, x6, x7) �

��

@
@@

If prefix (1, 1, 1) beats prefix
(0, 0, 0) in terms of additive metric,
then the metrics of all codewords
starting with (1, 1, 1) will be larger
than the metrics of all codewords
starting with (0, 0, 0)

�
�
�

@
@
@

When paths merge in a trellis,
eliminate the prefix with the
lower metric!

c© Jossy Sayir (CUED) Advanced Wireless Communications Lent 2012 14 / 32



The Viterbi Algorithm
Let M`(s) be the metric corresponding to state s after stage ` in the trellis, and
m`(x(s′, s)) be the additive metric term added between stage `− 1 and ` in the trellis
when transitioning between state s′ and s.
Viterbi Decoding

1 Initialisation M0(0) = 0
2 Add Compare Select (ACS) recursion: for ` = 1, . . . , L and for all states

s = (s1, . . . , sν), calculate

M`(s) = max
s′∈Π(s)

{M`−1(s′) + m`(x(s′, s))}

where Π(s) is the set of parent states to state s (states s′ that have a connection
with s). Ties in the maximum are resolved by picking a winner at random.

3 Trace back. The maximum metric is ML(0), output the input sequence
corresponding to ML(0).

s

mℓ

(
x(s′

2, s)
)

s′
1Mℓ−1

(
s′1

)

s′
2Mℓ−1

(
s′2

)

mℓ

(
x(s′

1, s)
)

Mℓ(s) = max
s′
1,s′

2

{
Mℓ−1(s′1) + mℓ

(
x(s′1, s)

)
, Mℓ−1(s′2) + mℓ

(
x(s′2, s)

)}

c© Jossy Sayir (CUED) Advanced Wireless Communications Lent 2012 15 / 32



The Viterbi Decoder in Action

Metric Table
H
HHHHx

y A B C D E

0 3 2 1 0 0
1 0 0 1 2 3

0
1

��
��q �

�
�
�

q�
�
�
�

q














q�
��

�qHHHHqJJ
J
J
J
JJ

q

�
�
�
�
�
�
�
�

q�
�
�
�
�
�
�
�

q�
�
�
�
�
�
�
�

q�
�
�
�
�
�
�
�

q

q

L
L
L
L
L
L
L
L
L
LL

q

q
J
J
J
J
J
JJ

q
�
�
�
�
�
�
�
�
�
��

q

q















q

q

�
�
�
�
�
�
�
�
�
�
�
��

B
B
B
B
B
B
B
B
B
B
B
BBq

q

q

q
C
C
C
C
C
C
C
C
C
C
C
C
C
C

q

q q
y = ( A, D, C, B, E, D, E)

c© Jossy Sayir (CUED) Advanced Wireless Communications Lent 2012 16 / 32



The Viterbi Decoder in Action

Metric Table
H
HHHHx

y A B C D E

0 3 2 1 0 0
1 0 0 1 2 3

0
1

��
��q �

�
�
�

q�
�
�
�

q














q�
��

�qHHHHqJJ
J
J
J
JJ

q

�
�
�
�
�
�
�
�

q�
�
�
�
�
�
�
�

q�
�
�
�
�
�
�
�

q�
�
�
�
�
�
�
�

q

q

L
L
L
L
L
L
L
L
L
LL

q

q
J
J
J
J
J
JJ

q
�
�
�
�
�
�
�
�
�
��

q

q















q

q

�
�
�
�
�
�
�
�
�
�
�
��

B
B
B
B
B
B
B
B
B
B
B
BBq

q

q

q
C
C
C
C
C
C
C
C
C
C
C
C
C
C

q

q q
y = ( A, D, C, B, E, D, E)

3
0

c© Jossy Sayir (CUED) Advanced Wireless Communications Lent 2012 16 / 32



The Viterbi Decoder in Action

Metric Table
H
HHHHx

y A B C D E

0 3 2 1 0 0
1 0 0 1 2 3

0
1

��
��q �

�
�
�

q�
�
�
�

q














q�
��

�qHHHHqJJ
J
J
J
JJ

q

�
�
�
�
�
�
�
�

q�
�
�
�
�
�
�
�

q�
�
�
�
�
�
�
�

q�
�
�
�
�
�
�
�

q

q

L
L
L
L
L
L
L
L
L
LL

q

q
J
J
J
J
J
JJ

q
�
�
�
�
�
�
�
�
�
��

q

q















q

q

�
�
�
�
�
�
�
�
�
�
�
��

B
B
B
B
B
B
B
B
B
B
B
BBq

q

q

q
C
C
C
C
C
C
C
C
C
C
C
C
C
C

q

q q
y = ( A, D, C, B, E, D, E)

3
0

3

0

c© Jossy Sayir (CUED) Advanced Wireless Communications Lent 2012 16 / 32



The Viterbi Decoder in Action

Metric Table
H
HHHHx

y A B C D E

0 3 2 1 0 0
1 0 0 1 2 3

0
1

��
��q �

�
�
�

q�
�
�
�

q














q�
��

�qHHHHqJJ
J
J
J
JJ

q

�
�
�
�
�
�
�
�

q�
�
�
�
�
�
�
�

q�
�
�
�
�
�
�
�

q�
�
�
�
�
�
�
�

q

q

L
L
L
L
L
L
L
L
L
LL

q

q
J
J
J
J
J
JJ

q
�
�
�
�
�
�
�
�
�
��

q

q















q

q

�
�
�
�
�
�
�
�
�
�
�
��

B
B
B
B
B
B
B
B
B
B
B
BBq

q

q

q
C
C
C
C
C
C
C
C
C
C
C
C
C
C

q

q q
y = ( A, D, C, B, E, D, E)

3
0

3

0

0
2

0
2

c© Jossy Sayir (CUED) Advanced Wireless Communications Lent 2012 16 / 32



The Viterbi Decoder in Action

Metric Table
H
HHHHx

y A B C D E

0 3 2 1 0 0
1 0 0 1 2 3

0
1

��
��q �

�
�
�

q�
�
�
�

q














q�
��

�qHHHHqJJ
J
J
J
JJ

q

�
�
�
�
�
�
�
�

q�
�
�
�
�
�
�
�

q�
�
�
�
�
�
�
�

q�
�
�
�
�
�
�
�

q

q

L
L
L
L
L
L
L
L
L
LL

q

q
J
J
J
J
J
JJ

q
�
�
�
�
�
�
�
�
�
��

q

q















q

q

�
�
�
�
�
�
�
�
�
�
�
��

B
B
B
B
B
B
B
B
B
B
B
BBq

q

q

q
C
C
C
C
C
C
C
C
C
C
C
C
C
C

q

q q
y = ( A, D, C, B, E, D, E)

3
0

3

0

0
2

0
2

3

0

5

2

c© Jossy Sayir (CUED) Advanced Wireless Communications Lent 2012 16 / 32



The Viterbi Decoder in Action

Metric Table
H
HHHHx

y A B C D E

0 3 2 1 0 0
1 0 0 1 2 3

0
1

��
��q �

�
�
�

q�
�
�
�

q














q�
��

�qHHHHqJJ
J
J
J
JJ

q

�
�
�
�
�
�
�
�

q�
�
�
�
�
�
�
�

q�
�
�
�
�
�
�
�

q�
�
�
�
�
�
�
�

q

q

L
L
L
L
L
L
L
L
L
LL

q

q
J
J
J
J
J
JJ

q
�
�
�
�
�
�
�
�
�
��

q

q















q

q

�
�
�
�
�
�
�
�
�
�
�
��

B
B
B
B
B
B
B
B
B
B
B
BBq

q

q

q
C
C
C
C
C
C
C
C
C
C
C
C
C
C

q

q q
y = ( A, D, C, B, E, D, E)

3
0

3

0

0
2

0
2

3

0

5

2

1
11

1
1
1
11

c© Jossy Sayir (CUED) Advanced Wireless Communications Lent 2012 16 / 32



The Viterbi Decoder in Action

Metric Table
H
HHHHx

y A B C D E

0 3 2 1 0 0
1 0 0 1 2 3

0
1

��
��q �

�
�
�

q�
�
�
�

q














q�
��

�qHHHHqJJ
J
J
J
JJ

q

�
�
�
�
�
�
�
�

q�
�
�
�
�
�
�
�

q�
�
�
�
�
�
�
�

q�
�
�
�
�
�
�
�

q

q

L
L
L
L
L
L
L
L
L
LL

q

q
J
J
J
J
J
JJ

q
�
�
�
�
�
�
�
�
�
��

q

q















q

q

�
�
�
�
�
�
�
�
�
�
�
��

B
B
B
B
B
B
B
B
B
B
B
BBq

q

q

q
C
C
C
C
C
C
C
C
C
C
C
C
C
C

q

q q
y = ( A, D, C, B, E, D, E)

3
0

3

0

0
2

0
2

3

0

5

2

1
11

1
1
1
11

4
=

c© Jossy Sayir (CUED) Advanced Wireless Communications Lent 2012 16 / 32



The Viterbi Decoder in Action

Metric Table
H
HHHHx

y A B C D E

0 3 2 1 0 0
1 0 0 1 2 3

0
1

��
��q �

�
�
�

q�
�
�
�

q














q�
��

�qHHHHqJJ
J
J
J
JJ

q

�
�
�
�
�
�
�
�

q�
�
�
�
�
�
�
�

q�
�
�
�
�
�
�
�

q�
�
�
�
�
�
�
�

q

q

L
L
L
L
L
L
L
L
L
LL

q

q
J
J
J
J
J
JJ

q
�
�
�
�
�
�
�
�
�
��

q

q















q

q

�
�
�
�
�
�
�
�
�
�
�
��

B
B
B
B
B
B
B
B
B
B
B
BBq

q

q

q
C
C
C
C
C
C
C
C
C
C
C
C
C
C

q

q q
y = ( A, D, C, B, E, D, E)

3
0

3

0

0
2

0
2

3

0

5

2

1
11

1
1
1
11

4
=
6

=

6=

4

=

c© Jossy Sayir (CUED) Advanced Wireless Communications Lent 2012 16 / 32



The Viterbi Decoder in Action

Metric Table
H
HHHHx

y A B C D E

0 3 2 1 0 0
1 0 0 1 2 3

0
1

��
��q �

�
�
�

q�
�
�
�

q














q�
��

�qHHHHqJJ
J
J
J
JJ

q

�
�
�
�
�
�
�
�

q�
�
�
�
�
�
�
�

q�
�
�
�
�
�
�
�

q�
�
�
�
�
�
�
�

q

q

L
L
L
L
L
L
L
L
L
LL

q

q
J
J
J
J
J
JJ

q
�
�
�
�
�
�
�
�
�
��

q

q















q

q

�
�
�
�
�
�
�
�
�
�
�
��

B
B
B
B
B
B
B
B
B
B
B
BBq

q

q

q
C
C
C
C
C
C
C
C
C
C
C
C
C
C

q

q q
y = ( A, D, C, B, E, D, E)

3
0

3

0

0
2

0
2

3

0

5

2

1
11

1
1
1
11

4
=
6

=

6=

4

=

2

2

2
2

0

0

0

0

6

8

8

6

4

6

6

4

0

0

0

0

3

3

3

3

9
=

8
=

9=

11=
0

0

2

2

11

=

11

=

0

3

14

=

c© Jossy Sayir (CUED) Advanced Wireless Communications Lent 2012 16 / 32



The Viterbi Decoder in Action

Metric Table
H
HHHHx

y A B C D E

0 3 2 1 0 0
1 0 0 1 2 3

0
1

��
��q �

�
�
�

q�
�
�
�

q














q�
��

�qHHHHqJJ
J
J
J
JJ

q

�
�
�
�
�
�
�
�

q�
�
�
�
�
�
�
�

q�
�
�
�
�
�
�
�

q�
�
�
�
�
�
�
�

q

q

L
L
L
L
L
L
L
L
L
LL

q

q
J
J
J
J
J
JJ

q
�
�
�
�
�
�
�
�
�
��

q

q















q

q

�
�
�
�
�
�
�
�
�
�
�
��

B
B
B
B
B
B
B
B
B
B
B
BBq

q

q

q
C
C
C
C
C
C
C
C
C
C
C
C
C
C

q

q q
y = ( A, D, C, B, E, D, E)

3
0

3

0

0
2

0
2

3

0

5

2

1
11

1
1
1
11

4
=
6

=

6=

4

=

2

2

2
2

0

0

0

0

6

8

8

6

4

6

6

4

0

0

0

0

3

3

3

3

9
=

8
=

9=

11=
0

0

2

2

11

=

11

=

0

3

14

= C
C
C
C
C
C
C
CO

1

c© Jossy Sayir (CUED) Advanced Wireless Communications Lent 2012 16 / 32



The Viterbi Decoder in Action

Metric Table
H
HHHHx

y A B C D E

0 3 2 1 0 0
1 0 0 1 2 3

0
1

��
��q �

�
�
�

q�
�
�
�

q














q�
��

�qHHHHqJJ
J
J
J
JJ

q

�
�
�
�
�
�
�
�

q�
�
�
�
�
�
�
�

q�
�
�
�
�
�
�
�

q�
�
�
�
�
�
�
�

q

q

L
L
L
L
L
L
L
L
L
LL

q

q
J
J
J
J
J
JJ

q
�
�
�
�
�
�
�
�
�
��

q

q















q

q

�
�
�
�
�
�
�
�
�
�
�
��

B
B
B
B
B
B
B
B
B
B
B
BBq

q

q

q
C
C
C
C
C
C
C
C
C
C
C
C
C
C

q

q q
y = ( A, D, C, B, E, D, E)

3
0

3

0

0
2

0
2

3

0

5

2

1
11

1
1
1
11

4
=
6

=

6=

4

=

2

2

2
2

0

0

0

0

6

8

8

6

4

6

6

4

0

0

0

0

3

3

3

3

9
=

8
=

9=

11=
0

0

2

2

11

=

11

=

0

3

14

= C
C
C
C
C
C
C
CO

1

�

0

c© Jossy Sayir (CUED) Advanced Wireless Communications Lent 2012 16 / 32



The Viterbi Decoder in Action

Metric Table
H
HHHHx

y A B C D E

0 3 2 1 0 0
1 0 0 1 2 3

0
1

��
��q �

�
�
�

q�
�
�
�

q














q�
��

�qHHHHqJJ
J
J
J
JJ

q

�
�
�
�
�
�
�
�

q�
�
�
�
�
�
�
�

q�
�
�
�
�
�
�
�

q�
�
�
�
�
�
�
�

q

q

L
L
L
L
L
L
L
L
L
LL

q

q
J
J
J
J
J
JJ

q
�
�
�
�
�
�
�
�
�
��

q

q















q

q

�
�
�
�
�
�
�
�
�
�
�
��

B
B
B
B
B
B
B
B
B
B
B
BBq

q

q

q
C
C
C
C
C
C
C
C
C
C
C
C
C
C

q

q q
y = ( A, D, C, B, E, D, E)

3
0

3

0

0
2

0
2

3

0

5

2

1
11

1
1
1
11

4
=
6

=

6=

4

=

2

2

2
2

0

0

0

0

6

8

8

6

4

6

6

4

0

0

0

0

3

3

3

3

9
=

8
=

9=

11=
0

0

2

2

11

=

11

=

0

3

14

= C
C
C
C
C
C
C
CO

1

�

0

�
�
�
�
�
���

1

c© Jossy Sayir (CUED) Advanced Wireless Communications Lent 2012 16 / 32



The Viterbi Decoder in Action

Metric Table
H
HHHHx

y A B C D E

0 3 2 1 0 0
1 0 0 1 2 3

0
1

��
��q �

�
�
�

q�
�
�
�

q














q�
��

�qHHHHqJJ
J
J
J
JJ

q

�
�
�
�
�
�
�
�

q�
�
�
�
�
�
�
�

q�
�
�
�
�
�
�
�

q�
�
�
�
�
�
�
�

q

q

L
L
L
L
L
L
L
L
L
LL

q

q
J
J
J
J
J
JJ

q
�
�
�
�
�
�
�
�
�
��

q

q















q

q

�
�
�
�
�
�
�
�
�
�
�
��

B
B
B
B
B
B
B
B
B
B
B
BBq

q

q

q
C
C
C
C
C
C
C
C
C
C
C
C
C
C

q

q q
y = ( A, D, C, B, E, D, E)

3
0

3

0

0
2

0
2

3

0

5

2

1
11

1
1
1
11

4
=
6

=

6=

4

=

2

2

2
2

0

0

0

0

6

8

8

6

4

6

6

4

0

0

0

0

3

3

3

3

9
=

8
=

9=

11=
0

0

2

2

11

=

11

=

0

3

14

= C
C
C
C
C
C
C
CO

1

�

0

�
�
�
�
�
���

1

�

0

�

0

�
�	

1

�

0

c© Jossy Sayir (CUED) Advanced Wireless Communications Lent 2012 16 / 32



Complexity Analysis

In our example: 32 additions and 11 comparisons instead of 96 additions and 15
comparisons for the brute force decoder

Trick question: is the performance of the Viterbi algorithm better or worse than that
of the brute force decoder?

In general, the complexity of the Viterbi decoder will depend on the structure of the
code (how many codewords have common prefixes?)

Worst case: no common prefixes, or all 2N−K states in use at each trellis stage,
i.e., (N − 1)2N−K additions and 2K − 1 comparisons, complexity comparable to
brute force. For example, (N, 1) repetition code has a trellis with two parallel paths
of length N who never merge, and therefore the same complexity for the brute
force and Viterbi decoders, 2(N − 1) additions, one comparison

Best case: single parity-check code of length N, i.e., H = [11 . . . 1], has 2N−1

codewords and hence the brute force decoder requires (N − 1)2N−1 additions,
whereas the Viterbi decoder needs only 2(N − 1) additions.

In general, the complexity of the Viterbi algorithm will be much better than that of
the bruten force decoder, but a random block code has variable, unpredictable
number of states at each trellis stage which makes it difficult to predict
performancexs

Can we design a code with a predictable, e.g., regular, trellis structure?

c© Jossy Sayir (CUED) Advanced Wireless Communications Lent 2012 17 / 32



Complexity Analysis

In our example: 32 additions and 11 comparisons instead of 96 additions and 15
comparisons for the brute force decoder

Trick question: is the performance of the Viterbi algorithm better or worse than that
of the brute force decoder?

In general, the complexity of the Viterbi decoder will depend on the structure of the
code (how many codewords have common prefixes?)

Worst case: no common prefixes, or all 2N−K states in use at each trellis stage,
i.e., (N − 1)2N−K additions and 2K − 1 comparisons, complexity comparable to
brute force. For example, (N, 1) repetition code has a trellis with two parallel paths
of length N who never merge, and therefore the same complexity for the brute
force and Viterbi decoders, 2(N − 1) additions, one comparison

Best case: single parity-check code of length N, i.e., H = [11 . . . 1], has 2N−1

codewords and hence the brute force decoder requires (N − 1)2N−1 additions,
whereas the Viterbi decoder needs only 2(N − 1) additions.

In general, the complexity of the Viterbi algorithm will be much better than that of
the bruten force decoder, but a random block code has variable, unpredictable
number of states at each trellis stage which makes it difficult to predict
performancexs

Can we design a code with a predictable, e.g., regular, trellis structure?

c© Jossy Sayir (CUED) Advanced Wireless Communications Lent 2012 17 / 32



Complexity Analysis

In our example: 32 additions and 11 comparisons instead of 96 additions and 15
comparisons for the brute force decoder

Trick question: is the performance of the Viterbi algorithm better or worse than that
of the brute force decoder?

In general, the complexity of the Viterbi decoder will depend on the structure of the
code (how many codewords have common prefixes?)

Worst case: no common prefixes, or all 2N−K states in use at each trellis stage,
i.e., (N − 1)2N−K additions and 2K − 1 comparisons, complexity comparable to
brute force. For example, (N, 1) repetition code has a trellis with two parallel paths
of length N who never merge, and therefore the same complexity for the brute
force and Viterbi decoders, 2(N − 1) additions, one comparison

Best case: single parity-check code of length N, i.e., H = [11 . . . 1], has 2N−1

codewords and hence the brute force decoder requires (N − 1)2N−1 additions,
whereas the Viterbi decoder needs only 2(N − 1) additions.

In general, the complexity of the Viterbi algorithm will be much better than that of
the bruten force decoder, but a random block code has variable, unpredictable
number of states at each trellis stage which makes it difficult to predict
performancexs

Can we design a code with a predictable, e.g., regular, trellis structure?

c© Jossy Sayir (CUED) Advanced Wireless Communications Lent 2012 17 / 32



Complexity Analysis

In our example: 32 additions and 11 comparisons instead of 96 additions and 15
comparisons for the brute force decoder

Trick question: is the performance of the Viterbi algorithm better or worse than that
of the brute force decoder?

In general, the complexity of the Viterbi decoder will depend on the structure of the
code (how many codewords have common prefixes?)

Worst case: no common prefixes, or all 2N−K states in use at each trellis stage,
i.e., (N − 1)2N−K additions and 2K − 1 comparisons, complexity comparable to
brute force. For example, (N, 1) repetition code has a trellis with two parallel paths
of length N who never merge, and therefore the same complexity for the brute
force and Viterbi decoders, 2(N − 1) additions, one comparison

Best case: single parity-check code of length N, i.e., H = [11 . . . 1], has 2N−1

codewords and hence the brute force decoder requires (N − 1)2N−1 additions,
whereas the Viterbi decoder needs only 2(N − 1) additions.

In general, the complexity of the Viterbi algorithm will be much better than that of
the bruten force decoder, but a random block code has variable, unpredictable
number of states at each trellis stage which makes it difficult to predict
performancexs

Can we design a code with a predictable, e.g., regular, trellis structure?

c© Jossy Sayir (CUED) Advanced Wireless Communications Lent 2012 17 / 32



Complexity Analysis

In our example: 32 additions and 11 comparisons instead of 96 additions and 15
comparisons for the brute force decoder

Trick question: is the performance of the Viterbi algorithm better or worse than that
of the brute force decoder?

In general, the complexity of the Viterbi decoder will depend on the structure of the
code (how many codewords have common prefixes?)

Worst case: no common prefixes, or all 2N−K states in use at each trellis stage,
i.e., (N − 1)2N−K additions and 2K − 1 comparisons, complexity comparable to
brute force. For example, (N, 1) repetition code has a trellis with two parallel paths
of length N who never merge, and therefore the same complexity for the brute
force and Viterbi decoders, 2(N − 1) additions, one comparison

Best case: single parity-check code of length N, i.e., H = [11 . . . 1], has 2N−1

codewords and hence the brute force decoder requires (N − 1)2N−1 additions,
whereas the Viterbi decoder needs only 2(N − 1) additions.

In general, the complexity of the Viterbi algorithm will be much better than that of
the bruten force decoder, but a random block code has variable, unpredictable
number of states at each trellis stage which makes it difficult to predict
performancexs

Can we design a code with a predictable, e.g., regular, trellis structure?

c© Jossy Sayir (CUED) Advanced Wireless Communications Lent 2012 17 / 32



Complexity Analysis

In our example: 32 additions and 11 comparisons instead of 96 additions and 15
comparisons for the brute force decoder

Trick question: is the performance of the Viterbi algorithm better or worse than that
of the brute force decoder?

In general, the complexity of the Viterbi decoder will depend on the structure of the
code (how many codewords have common prefixes?)

Worst case: no common prefixes, or all 2N−K states in use at each trellis stage,
i.e., (N − 1)2N−K additions and 2K − 1 comparisons, complexity comparable to
brute force. For example, (N, 1) repetition code has a trellis with two parallel paths
of length N who never merge, and therefore the same complexity for the brute
force and Viterbi decoders, 2(N − 1) additions, one comparison

Best case: single parity-check code of length N, i.e., H = [11 . . . 1], has 2N−1

codewords and hence the brute force decoder requires (N − 1)2N−1 additions,
whereas the Viterbi decoder needs only 2(N − 1) additions.

In general, the complexity of the Viterbi algorithm will be much better than that of
the bruten force decoder, but a random block code has variable, unpredictable
number of states at each trellis stage which makes it difficult to predict
performancexs

Can we design a code with a predictable, e.g., regular, trellis structure?

c© Jossy Sayir (CUED) Advanced Wireless Communications Lent 2012 17 / 32



Complexity Analysis

In our example: 32 additions and 11 comparisons instead of 96 additions and 15
comparisons for the brute force decoder

Trick question: is the performance of the Viterbi algorithm better or worse than that
of the brute force decoder?

In general, the complexity of the Viterbi decoder will depend on the structure of the
code (how many codewords have common prefixes?)

Worst case: no common prefixes, or all 2N−K states in use at each trellis stage,
i.e., (N − 1)2N−K additions and 2K − 1 comparisons, complexity comparable to
brute force. For example, (N, 1) repetition code has a trellis with two parallel paths
of length N who never merge, and therefore the same complexity for the brute
force and Viterbi decoders, 2(N − 1) additions, one comparison

Best case: single parity-check code of length N, i.e., H = [11 . . . 1], has 2N−1

codewords and hence the brute force decoder requires (N − 1)2N−1 additions,
whereas the Viterbi decoder needs only 2(N − 1) additions.

In general, the complexity of the Viterbi algorithm will be much better than that of
the bruten force decoder, but a random block code has variable, unpredictable
number of states at each trellis stage which makes it difficult to predict
performancexs

Can we design a code with a predictable, e.g., regular, trellis structure?

c© Jossy Sayir (CUED) Advanced Wireless Communications Lent 2012 17 / 32



Linear Convolutional Codes
Shift-Register Representation

Definitions
Linear convolutional codes are defined as a finite state machine (FSM)
Output ci,j =

Lν
`=0 gi,`bi−` i = 1, . . . ,N is the output generator index and j

denotes the time index, where the symbol
L

denotes sum is in the binary field
Common representations are: state diagrams and trellis

+

×
g1,1

× ×

+

g1,2 g1,ν

× × ×
g2,νg2,2g2,1

s1 s2 sν

b

c1

c2

Shift Register

. . .

×

×
g1,0

g2,0

c© Jossy Sayir (CUED) Advanced Wireless Communications Lent 2012 18 / 32



Linear Convolutional Codes
Shift-Register Representation

Example (4 states rate R = 1
2 )

Rate R = K
N = 1

2 , number of states 2ν = 4
State: content of the shift register s = (s1, s2)
Generators (in octal form) (5, 7)8 = (101, 111)

+

+

s1 s2

b

c1

c2

+ s1 s2

c1

c2+

+

b

Non-recursive non-systematic Recursive systematic

Note that the state is not linked to the parity-check matrix as it was for linear block
codes(there are many ways to define the state of a code)
Note also that this encoder generates two code digits per state transition, as
opposed to our previous trellis diagram for general linear block codes that
generated only one code digit per state transition

c© Jossy Sayir (CUED) Advanced Wireless Communications Lent 2012 19 / 32



Linear Convolutional Codes
State Diagram

00

11

1001

1/11

0/00

1/01

1/100/10

0/11

1/00

0/01

Notation: bi/c2ic2i+1 where bi is the
encoded input bit corresponding to
a state transition, and c2i , c2i+1 are
the resulting code digits for the
state transition

c© Jossy Sayir (CUED) Advanced Wireless Communications Lent 2012 20 / 32



Linear Convolutional Codes
Trellis Representation

0 0

1 0

0 1

1 1

S
ta

te
s

�
�*

HHj

1

0
q

�
�
�q 00

11
�
�
�

�
�
�

�
�
�
�
�
�

q
q

00
11

01

10

�
�
�

�
�
�

�
�
�
�
�
�

A
A
A
A
A
A

@
@
@

@
@
@

q
q
q
q

00
11

11

00

01

10

10
01

Trellis
Module

�
�
�

�
�
�

�
�
�
�
�
�

A
A
A
A
A
A

@
@
@

@
@
@

q
q
q
q

00
11

11

00

01

10

10
01

�
�
�

�
�
�

�
�
�
�
�
�

A
A
A
A
A
A

@
@
@

@
@
@

q
q
q
q

00
11

11

00

01

10

10
01

�
�
�

�
�
�

�
�
�
�
�
�

A
A
A
A
A
A

@
@
@

@
@
@

q
q
q
q

00
11

11

00

01

10

10
01

�
�
�

�
�
�

�
�
�
�
�
�

A
A
A
A
A
A

@
@
@

@
@
@

q
q
q
q

00
11

11
00

01

10

10
01

�
�
�A

A
A
A
A
A

@
@
@

q
q
q
q

00

11
01

10

A
A
A
A
A
Aq

q

00

11

Trellis of a Convolutional Code
Trellis consists of identical copies of the trellis module (except near root and toor)

Trellis termination drives the FSM back to its all-zero state and thus encodes no
information. For feedforward (non-recursive) convolutional encoders, this is
achieved simply by padding zeros at the end of the information sequence.

Note that states can always be ordered so the outgoing edge corresponding to a
“1” is above the edge corresponding to a “0”, so there is no need for colour coding.

c© Jossy Sayir (CUED) Advanced Wireless Communications Lent 2012 21 / 32



Viterbi Algorithm for Convolutional Codes

Example
Transmission over the channel defined
previously

Received sequence
ABACDEDEABADEDCADC

Additive Metric Table
H
HHHHx

y A B C D E

0 3 2 1 0 0
1 0 0 1 2 3

��*H
Hj

1

0
q

m path metric
M node metric
M tie at node

y = (AB, AC, DE, DE, AB, AD, ED, CA, DC)

�
�
�q 00

11
�
�
�

�
�
�

�
�
�
�
�
�

q
q

00
11

01

10

�
�
�

�
�
�

�
�
�
�
�
�

A
A
A
A
A
A

@
@
@

@
@
@

q
q
q
q

00
11

11

00

01

10
10

01

�
�
�

�
�
�

�
�
�
�
�
�

A
A
A
A
A
A

@
@
@

@
@
@

q
q
q
q

00
11

11

00

01
10

10
01

�
�
�

�
�
�

�
�
�
�
�
�

A
A
A
A
A
A

@
@
@

@
@
@

q
q
q
q

00
11

11
00

01

10

10
01

�
�
�

�
�
�

�
�
�
�
�
�

A
A
A
A
A
A

@
@
@

@
@
@

q
q
q
q

00
11

11

00

01

10

10
01

�
�
�

�
�
�

�
�
�
�
�
�

A
A
A
A
A
A

@
@
@

@
@
@

q
q
q
q

00
11

11

00

01

10

10
01

�
�
�A

A
A
A
A
A

@
@
@

q
q
q
q

00

11

01

10

A
A
A
A
A
Aq

q

00

11

c© Jossy Sayir (CUED) Advanced Wireless Communications Lent 2012 22 / 32



Viterbi Algorithm for Convolutional Codes

Example
Transmission over the channel defined
previously

Received sequence
ABACDEDEABADEDCADC

Additive Metric Table
H
HHHHx

y A B C D E

0 3 2 1 0 0
1 0 0 1 2 3

5

0

��*H
Hj

1

0
q

m path metric
M node metric
M tie at node

y = (AB, AC, DE, DE, AB, AD, ED, CA, DC)

�
�
�q 00

11
�
�
�

�
�
�

�
�
�
�
�
�

q
q

00
11

01

10

�
�
�

�
�
�

�
�
�
�
�
�

A
A
A
A
A
A

@
@
@

@
@
@

q
q
q
q

00
11

11

00

01

10
10

01

�
�
�

�
�
�

�
�
�
�
�
�

A
A
A
A
A
A

@
@
@

@
@
@

q
q
q
q

00
11

11

00

01
10

10
01

�
�
�

�
�
�

�
�
�
�
�
�

A
A
A
A
A
A

@
@
@

@
@
@

q
q
q
q

00
11

11
00

01

10

10
01

�
�
�

�
�
�

�
�
�
�
�
�

A
A
A
A
A
A

@
@
@

@
@
@

q
q
q
q

00
11

11

00

01

10

10
01

�
�
�

�
�
�

�
�
�
�
�
�

A
A
A
A
A
A

@
@
@

@
@
@

q
q
q
q

00
11

11

00

01

10

10
01

�
�
�A

A
A
A
A
A

@
@
@

q
q
q
q

00

11

01

10

A
A
A
A
A
Aq

q

00

11

c© Jossy Sayir (CUED) Advanced Wireless Communications Lent 2012 22 / 32



Viterbi Algorithm for Convolutional Codes

Example
Transmission over the channel defined
previously

Received sequence
ABACDEDEABADEDCADC

Additive Metric Table
H
HHHHx

y A B C D E

0 3 2 1 0 0
1 0 0 1 2 3

5

0

5

0

��*H
Hj

1

0
q

m path metric
M node metric
M tie at node

y = (AB, AC, DE, DE, AB, AD, ED, CA, DC)

�
�
�q 00

11
�
�
�

�
�
�

�
�
�
�
�
�

q
q

00
11

01

10

�
�
�

�
�
�

�
�
�
�
�
�

A
A
A
A
A
A

@
@
@

@
@
@

q
q
q
q

00
11

11

00

01

10
10

01

�
�
�

�
�
�

�
�
�
�
�
�

A
A
A
A
A
A

@
@
@

@
@
@

q
q
q
q

00
11

11

00

01
10

10
01

�
�
�

�
�
�

�
�
�
�
�
�

A
A
A
A
A
A

@
@
@

@
@
@

q
q
q
q

00
11

11
00

01

10

10
01

�
�
�

�
�
�

�
�
�
�
�
�

A
A
A
A
A
A

@
@
@

@
@
@

q
q
q
q

00
11

11

00

01

10

10
01

�
�
�

�
�
�

�
�
�
�
�
�

A
A
A
A
A
A

@
@
@

@
@
@

q
q
q
q

00
11

11

00

01

10

10
01

�
�
�A

A
A
A
A
A

@
@
@

q
q
q
q

00

11

01

10

A
A
A
A
A
Aq

q

00

11

c© Jossy Sayir (CUED) Advanced Wireless Communications Lent 2012 22 / 32



Viterbi Algorithm for Convolutional Codes

Example
Transmission over the channel defined
previously

Received sequence
ABACDEDEABADEDCADC

Additive Metric Table
H
HHHHx

y A B C D E

0 3 2 1 0 0
1 0 0 1 2 3

5

0

5

0

4

1

4

1

9

6

4

1

0

5
5

3
0

22

3
��*H
Hj

1

0
q

m path metric
M node metric
M tie at node

y = (AB, AC, DE, DE, AB, AD, ED, CA, DC)

�
�
�q 00

11
�
�
�

�
�
�

�
�
�
�
�
�

q
q

00
11

01

10

�
�
�

�
�
�

�
�
�
�
�
�

A
A
A
A
A
A

@
@
@

@
@
@

q
q
q
q

00
11

11

00

01

10
10

01

�
�
�

�
�
�

�
�
�
�
�
�

A
A
A
A
A
A

@
@
@

@
@
@

q
q
q
q

00
11

11

00

01
10

10
01

�
�
�

�
�
�

�
�
�
�
�
�

A
A
A
A
A
A

@
@
@

@
@
@

q
q
q
q

00
11

11
00

01

10

10
01

�
�
�

�
�
�

�
�
�
�
�
�

A
A
A
A
A
A

@
@
@

@
@
@

q
q
q
q

00
11

11

00

01

10

10
01

�
�
�

�
�
�

�
�
�
�
�
�

A
A
A
A
A
A

@
@
@

@
@
@

q
q
q
q

00
11

11

00

01

10

10
01

�
�
�A

A
A
A
A
A

@
@
@

q
q
q
q

00

11

01

10

A
A
A
A
A
Aq

q

00

11

c© Jossy Sayir (CUED) Advanced Wireless Communications Lent 2012 22 / 32



Viterbi Algorithm for Convolutional Codes

Example
Transmission over the channel defined
previously

Received sequence
ABACDEDEABADEDCADC

Additive Metric Table
H
HHHHx

y A B C D E

0 3 2 1 0 0
1 0 0 1 2 3

5

0

5

0

4

1

4

1

9

6

4

1

0

5
5

3
0

22

3

9

��*H
Hj

1

0
q

m path metric
M node metric
M tie at node

y = (AB, AC, DE, DE, AB, AD, ED, CA, DC)

�
�
�q 00

11
�
�
�

�
�
�

�
�
�
�
�
�

q
q

00
11

01

10

�
�
�

�
�
�

�
�
�
�
�
�

A
A
A
A
A
A

@
@
@

@
@
@

q
q
q
q

00
11

11

00

01

10
10

01

�
�
�

�
�
�

�
�
�
�
�
�

A
A
A
A
A
A

@
@
@

@
@
@

q
q
q
q

00
11

11

00

01
10

10
01

�
�
�

�
�
�

�
�
�
�
�
�

A
A
A
A
A
A

@
@
@

@
@
@

q
q
q
q

00
11

11
00

01

10

10
01

�
�
�

�
�
�

�
�
�
�
�
�

A
A
A
A
A
A

@
@
@

@
@
@

q
q
q
q

00
11

11

00

01

10

10
01

�
�
�

�
�
�

�
�
�
�
�
�

A
A
A
A
A
A

@
@
@

@
@
@

q
q
q
q

00
11

11

00

01

10

10
01

�
�
�A

A
A
A
A
A

@
@
@

q
q
q
q

00

11

01

10

A
A
A
A
A
Aq

q

00

11

c© Jossy Sayir (CUED) Advanced Wireless Communications Lent 2012 22 / 32



Viterbi Algorithm for Convolutional Codes

Example
Transmission over the channel defined
previously

Received sequence
ABACDEDEABADEDCADC

Additive Metric Table
H
HHHHx

y A B C D E

0 3 2 1 0 0
1 0 0 1 2 3

5

0

5

0

4

1

4

1

9

6

4

1

0

5
5

3
0

22

3

9

14

9

8

=

=

=
=

0

5
5

3
0

22

3

14

14

17

16

=
=

=

=

5

0
0

3
5

22

3

19

22

18

19

=

=

=

=

3

2
2

5
3

00

5

22

21

27

24

=

=

=

=

0

5
5

2
0

33

2

32

27

27

26

=

=

=

=

4

1

1

4

36

30

=

=

1

3

37
=

��*H
Hj

1

0
q

m path metric
M node metric
M tie at node

y = (AB, AC, DE, DE, AB, AD, ED, CA, DC)

�
�
�q 00

11
�
�
�

�
�
�

�
�
�
�
�
�

q
q

00
11

01

10

�
�
�

�
�
�

�
�
�
�
�
�

A
A
A
A
A
A

@
@
@

@
@
@

q
q
q
q

00
11

11

00

01

10
10

01

�
�
�

�
�
�

�
�
�
�
�
�

A
A
A
A
A
A

@
@
@

@
@
@

q
q
q
q

00
11

11

00

01
10

10
01

�
�
�

�
�
�

�
�
�
�
�
�

A
A
A
A
A
A

@
@
@

@
@
@

q
q
q
q

00
11

11
00

01

10

10
01

�
�
�

�
�
�

�
�
�
�
�
�

A
A
A
A
A
A

@
@
@

@
@
@

q
q
q
q

00
11

11

00

01

10

10
01

�
�
�

�
�
�

�
�
�
�
�
�

A
A
A
A
A
A

@
@
@

@
@
@

q
q
q
q

00
11

11

00

01

10

10
01

�
�
�A

A
A
A
A
A

@
@
@

q
q
q
q

00

11

01

10

A
A
A
A
A
Aq

q

00

11

c© Jossy Sayir (CUED) Advanced Wireless Communications Lent 2012 22 / 32



Viterbi Algorithm for Convolutional Codes

Example
Transmission over the channel defined
previously

Received sequence
ABACDEDEABADEDCADC

Additive Metric Table
H
HHHHx

y A B C D E

0 3 2 1 0 0
1 0 0 1 2 3

5

0

5

0

4

1

4

1

9

6

4

1

0

5
5

3
0

22

3

9

14

9

8

=

=

=
=

0

5
5

3
0

22

3

14

14

17

16

=
=

=

=

5

0
0

3
5

22

3

19

22

18

19

=

=

=

=

3

2
2

5
3

00

5

22

21

27

24

=

=

=

=

0

5
5

2
0

33

2

32

27

27

26

=

=

=

=

4

1

1

4

36

30

=

=

1

3

37
=

��*H
Hj

1

0
q

m path metric
M node metric
M tie at node

y = (AB, AC, DE, DE, AB, AD, ED, CA, DC)

�
�
�q 00

11
�
�
�

�
�
�

�
�
�
�
�
�

q
q

00
11

01

10

�
�
�

�
�
�

�
�
�
�
�
�

A
A
A
A
A
A

@
@
@

@
@
@

q
q
q
q

00
11

11

00

01

10
10

01

�
�
�

�
�
�

�
�
�
�
�
�

A
A
A
A
A
A

@
@
@

@
@
@

q
q
q
q

00
11

11

00

01
10

10
01

�
�
�

�
�
�

�
�
�
�
�
�

A
A
A
A
A
A

@
@
@

@
@
@

q
q
q
q

00
11

11
00

01

10

10
01

�
�
�

�
�
�

�
�
�
�
�
�

A
A
A
A
A
A

@
@
@

@
@
@

q
q
q
q

00
11

11

00

01

10

10
01

�
�
�

�
�
�

�
�
�
�
�
�

A
A
A
A
A
A

@
@
@

@
@
@

q
q
q
q

00
11

11

00

01

10

10
01

�
�
�A

A
A
A
A
A

@
@
@

q
q
q
q

00

11

01

10

A
A
A
A
A
Aq

q

00

11

��A
A
AK

��	

@@I

��	

��	

��

c© Jossy Sayir (CUED) Advanced Wireless Communications Lent 2012 22 / 32



Viterbi Algorithm for Convolutional Codes

Example
Transmission over the channel defined
previously

Received sequence
ABACDEDEABADEDCADC

Additive Metric Table
H
HHHHx

y A B C D E

0 3 2 1 0 0
1 0 0 1 2 3

5

0

5

0

4

1

4

1

9

6

4

1

0

5
5

3
0

22

3

9

14

9

8

=

=

=
=

0

5
5

3
0

22

3

14

14

17

16

=
=

=

=

5

0
0

3
5

22

3

19

22

18

19

=

=

=

=

3

2
2

5
3

00

5

22

21

27

24

=

=

=

=

0

5
5

2
0

33

2

32

27

27

26

=

=

=

=

4

1

1

4

36

30

=

=

1

3

37
=

��*H
Hj

1

0
q

m path metric
M node metric
M tie at node

y = (AB, AC, DE, DE, AB, AD, ED, CA, DC)

�
�
�q 00

11
�
�
�

�
�
�

�
�
�
�
�
�

q
q

00
11

01

10

�
�
�

�
�
�

�
�
�
�
�
�

A
A
A
A
A
A

@
@
@

@
@
@

q
q
q
q

00
11

11

00

01

10
10

01

�
�
�

�
�
�

�
�
�
�
�
�

A
A
A
A
A
A

@
@
@

@
@
@

q
q
q
q

00
11

11

00

01
10

10
01

�
�
�

�
�
�

�
�
�
�
�
�

A
A
A
A
A
A

@
@
@

@
@
@

q
q
q
q

00
11

11
00

01

10

10
01

�
�
�

�
�
�

�
�
�
�
�
�

A
A
A
A
A
A

@
@
@

@
@
@

q
q
q
q

00
11

11

00

01

10

10
01

�
�
�

�
�
�

�
�
�
�
�
�

A
A
A
A
A
A

@
@
@

@
@
@

q
q
q
q

00
11

11

00

01

10

10
01

�
�
�A

A
A
A
A
A

@
@
@

q
q
q
q

00

11

01

10

A
A
A
A
A
Aq

q

00

11

��A
A
AK

��	

@@I

��	

��	

��

û = (0, 0, 1, 0, 1, 0, 0, 0, 0)
No ties on winning path: ML solution is unique

c© Jossy Sayir (CUED) Advanced Wireless Communications Lent 2012 22 / 32



Linear Convolutional Codes
Transfer Function and Distance Spectrum

Transfer Function and Distance Spectrum
The distance spectrum determines the error probability performance
The distance spectrum can be determined from the transfer function
To derive the transfer function, we split the state diagram from and to the zero
state, labeling the Hamming weight of each transition with a dummy polynomial,
i.e., a transition with weight 2 is labelled W 2

This will count (simple) paths leaving and merging back into the zero state
Label each state with a variable and solve T (W ) = Y

X

V1 = W 2X , V2 = WV1 + WV3, Y = W 2V2, V3 = WV1 + WV3

T (W ) =
Y
X

=
X

d

Td W d =
W 5

1− 2W
= W 5 + 2W 6 + 4W 7 + 8W 8 + 16W 9 + . . .

00 0010 01

11

X YV1 V2

V3

W 2

W

W

W 0

W

W

W 2

c© Jossy Sayir (CUED) Advanced Wireless Communications Lent 2012 23 / 32



Linear Convolutional Codes
Error Probability

Error Probability and Union Bound
The minimum power is the free distance dfree = 5
It is not difficult to show that Ad ≤ LTd

Hence, we can bound Pe as

Pe ≤
X

d

LTd Q
“√

2d SNR
”

where Td are obtained from the transfer function
The high-SNR performance is dominated by dfree

−2 0 2 4 6 8
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Eb
N0

(dB)

P
e

c© Jossy Sayir (CUED) Advanced Wireless Communications Lent 2012 24 / 32



Convolutional Codes

What we have learned. . .
Unlike block codes, convolutional codes have predictable complexity for Viterbi
decoding irrespective of code length

However, performance does not improve with code length to the point of achieving
arbitrary reliability at rates approaching capacity. Performance is limited instead by
the shortest distance paths in the trellis (the free distance).

Can we combine the benefits of block codes in terms of performance with the
advantages of convolutional codes in terms of decoding complexity?

c© Jossy Sayir (CUED) Advanced Wireless Communications Lent 2012 25 / 32



Convolutional Codes

What we have learned. . .
Unlike block codes, convolutional codes have predictable complexity for Viterbi
decoding irrespective of code length

However, performance does not improve with code length to the point of achieving
arbitrary reliability at rates approaching capacity. Performance is limited instead by
the shortest distance paths in the trellis (the free distance).

Can we combine the benefits of block codes in terms of performance with the
advantages of convolutional codes in terms of decoding complexity?

c© Jossy Sayir (CUED) Advanced Wireless Communications Lent 2012 25 / 32



Convolutional Codes

What we have learned. . .
Unlike block codes, convolutional codes have predictable complexity for Viterbi
decoding irrespective of code length

However, performance does not improve with code length to the point of achieving
arbitrary reliability at rates approaching capacity. Performance is limited instead by
the shortest distance paths in the trellis (the free distance).

Can we combine the benefits of block codes in terms of performance with the
advantages of convolutional codes in terms of decoding complexity?

c© Jossy Sayir (CUED) Advanced Wireless Communications Lent 2012 25 / 32



Back to basics: symbol decoding on a trellis

Forward-Backward Decoding
Bitwise maximum a posteriori (MAP)

b̂i = arg max
bi =0,1

PB|Y (bj |y) = arg max
bi =0,1

PB,Y (bj , y) = arg max
bi =0,1

X
s,s′|x`(s′,s)

APP`(s′ → s)

APP`(s′ → s) is the a posteriori probability of the transition s′ → s at trellis step `

Forward-backward algorithm calculates APP`(s′ → s)

A posteriori probabilities for input/output bits of the transition are easily obtained
from APP`(s′ → s)

c© Jossy Sayir (CUED) Advanced Wireless Communications Lent 2012 26 / 32



Forward-Backward Decoding
Forward-Backward Decoding Algorithm

Input
I PY |X (yi |xi ): channel transition probability
I P`(s′ → s): a priori probability of the transition s′ → s at trellis step ` = 1, . . . , L
I Q`(s′, s) = 1 if the transition s′ → s exists, 0 otherwise

Output
I APP`(s′ → s): a posteriori probability of the transition s′ → s at trellis step `

Variables
I γ`(s′, s) = Pr{S` = s, y`|S`−1 = s′}: the metric used by the algorithm
I α`(s′) = Pr{S` = s′, y`1}: joint probability of state s and the observation from 1 to `
I β`(s′) = Pr{yL

`+1|S` = s′}: probability of the observation from `+ 1 to L given state s′

Channel

Forward-

Backward

Algorithm

00

10

01

11

00

10

01

11

s′ sℓ

X Y PY |X(Yi|Xi)

Pℓ(s′ → s)

Qℓ(s′ → s)

APPℓ(s′ → s)

Trellis structure

c© Jossy Sayir (CUED) Advanced Wireless Communications Lent 2012 27 / 32



Forward-Backward Decoding

Forward-Backward Decoding Algorithm
1 Initialisation

I α0(0) = 1 and α0(s) = 0 for s 6= 0
I βL(0) = 1 and βL(s) = 0 for s 6= 0
I γ`(s′, s) = Q`(s′, s)× P`(s′ → s)× PY |X (y`|x`)

2 Forward step
I α`(s) =

X
s′
γ`(s′, s)× α`−1(s′) for ` = 1, . . . , L

3 Backward step
I β`(s′) =

X
s
γ`+1(s′, s)× β`+1(s) for ` = L− 1, . . . , 0

4 APP computation
I APP`(s′ → s) = α`−1(s′)× γ`(s′, s)× β`(s)

c© Jossy Sayir (CUED) Advanced Wireless Communications Lent 2012 28 / 32



Turbo-Codes
Basic Structure

Turbo-codes (Berrou, Glavieux & Thitimajshima, 1993) consist of the
concatenation of 2 component codes through an interleaver permutation

The concatenation can be serial or parallel (original turbo-code, UMTS turbo-code)

Component encoders typically recursive convolutional codes

Bad minimum distance (improves with length), very low number of codewords at
minimum distance

Performance improves with length (longer interleaver, more randomness)

It can be proved that for n→∞, turbo-codes have a threshold SNRth, such that for
SNR > SNRth then Pb → 0 (asymptotically good codes)

Encoder 1 Encoder 2Interleaver

Information

bits Encoder 1

Encoder 2

Interleaver

Information

bits

c© Jossy Sayir (CUED) Advanced Wireless Communications Lent 2012 29 / 32



Turbo-Codes
Back to convolutional codes

The component encoders of parallel turbo-codes, or the inner encoder of serial
turbo-codes are recursive.

Note that (5, 7)8 = 7×
` 5

7 , 1
´

8 (see figure)

The impulse response of a non-recursive convolutional encoder vanishes after ν
trellis steps (same as trellis termination)

The impulse response of a recursive convolutional encoder settles into a periodic
state (infinite impulse response)

Interestingly, the two encoders represent the same code (same set of codewords)

+

+

s1 s2

b

c1

c2

+ s1 s2

c1

c2+

+

b

Non-recursive non-systematic Recursive systematic

c© Jossy Sayir (CUED) Advanced Wireless Communications Lent 2012 30 / 32



Turbo-Codes
Decoding

Due to the presence of interleaver, maximum likelihood is only possible through
exhaustive search (too complex)

Viterbi decoding of individual codes is not appropriate: hard decisions on word

Forward-backward (or BCJR) used instead: soft decisions on individual bits

We use an iterative (turbo) decoder that exchanges reliability messages (soft
values) about the bits over the iterations

For serial turbo-codes, the decoder is given below

Decoder 2

De-interleaver

Decoder 1

Interleaver

Estimated

information

bits

Channel

observations

Reliability on 

Code 2 information

bits

Reliability on 

Code 1 coded

bits

Reliability on 

Code 1 coded

bits

Reliability on 

Code 2 information

bits

c© Jossy Sayir (CUED) Advanced Wireless Communications Lent 2012 31 / 32



Setting the historical record straight

Convolutional codes were proposed by Peter Elias in the 1950s

The Viterbi algorithm was proposed by Andrew J. Viterbi in 1966 and shown by
Dave Forney to provide the ML solution in 1973. Forney also came up with the
graphical representation of a code trellis. The Viterbi algorithm is an instance of
dynamic programming for which algorithms existed in the mathematical
optimisation literature.

The forward-backward algorithm was known in the hidden Markov models
literature and introduced to the communications community by Bahl, Cocke,
Jelinek and Raviv (BCJR) in a 1974 paper.

The method for constructing the trellis of a block codes presented in these notes
was introduced by BCJR in the less well-known but more original second part of
their famous 1974 paper.

Turbo codes were presented by Berrou, Glavieux and Thitimajshima in 1993 at the
International Communications Conference and constitute arguably the most
important contribution to the information theory literature since Shannon’s 1948
paper. It was later discovered by MacKay that Low-Density Parity-Check codes,
invented along with their iterative decoding technique by Bob Gallager in 1962,
achieve similar performance to that of Turbo Codes.

c© Jossy Sayir (CUED) Advanced Wireless Communications Lent 2012 32 / 32



Setting the historical record straight

Convolutional codes were proposed by Peter Elias in the 1950s

The Viterbi algorithm was proposed by Andrew J. Viterbi in 1966 and shown by
Dave Forney to provide the ML solution in 1973. Forney also came up with the
graphical representation of a code trellis. The Viterbi algorithm is an instance of
dynamic programming for which algorithms existed in the mathematical
optimisation literature.

The forward-backward algorithm was known in the hidden Markov models
literature and introduced to the communications community by Bahl, Cocke,
Jelinek and Raviv (BCJR) in a 1974 paper.

The method for constructing the trellis of a block codes presented in these notes
was introduced by BCJR in the less well-known but more original second part of
their famous 1974 paper.

Turbo codes were presented by Berrou, Glavieux and Thitimajshima in 1993 at the
International Communications Conference and constitute arguably the most
important contribution to the information theory literature since Shannon’s 1948
paper. It was later discovered by MacKay that Low-Density Parity-Check codes,
invented along with their iterative decoding technique by Bob Gallager in 1962,
achieve similar performance to that of Turbo Codes.

c© Jossy Sayir (CUED) Advanced Wireless Communications Lent 2012 32 / 32



Setting the historical record straight

Convolutional codes were proposed by Peter Elias in the 1950s

The Viterbi algorithm was proposed by Andrew J. Viterbi in 1966 and shown by
Dave Forney to provide the ML solution in 1973. Forney also came up with the
graphical representation of a code trellis. The Viterbi algorithm is an instance of
dynamic programming for which algorithms existed in the mathematical
optimisation literature.

The forward-backward algorithm was known in the hidden Markov models
literature and introduced to the communications community by Bahl, Cocke,
Jelinek and Raviv (BCJR) in a 1974 paper.

The method for constructing the trellis of a block codes presented in these notes
was introduced by BCJR in the less well-known but more original second part of
their famous 1974 paper.

Turbo codes were presented by Berrou, Glavieux and Thitimajshima in 1993 at the
International Communications Conference and constitute arguably the most
important contribution to the information theory literature since Shannon’s 1948
paper. It was later discovered by MacKay that Low-Density Parity-Check codes,
invented along with their iterative decoding technique by Bob Gallager in 1962,
achieve similar performance to that of Turbo Codes.

c© Jossy Sayir (CUED) Advanced Wireless Communications Lent 2012 32 / 32



Setting the historical record straight

Convolutional codes were proposed by Peter Elias in the 1950s

The Viterbi algorithm was proposed by Andrew J. Viterbi in 1966 and shown by
Dave Forney to provide the ML solution in 1973. Forney also came up with the
graphical representation of a code trellis. The Viterbi algorithm is an instance of
dynamic programming for which algorithms existed in the mathematical
optimisation literature.

The forward-backward algorithm was known in the hidden Markov models
literature and introduced to the communications community by Bahl, Cocke,
Jelinek and Raviv (BCJR) in a 1974 paper.

The method for constructing the trellis of a block codes presented in these notes
was introduced by BCJR in the less well-known but more original second part of
their famous 1974 paper.

Turbo codes were presented by Berrou, Glavieux and Thitimajshima in 1993 at the
International Communications Conference and constitute arguably the most
important contribution to the information theory literature since Shannon’s 1948
paper. It was later discovered by MacKay that Low-Density Parity-Check codes,
invented along with their iterative decoding technique by Bob Gallager in 1962,
achieve similar performance to that of Turbo Codes.

c© Jossy Sayir (CUED) Advanced Wireless Communications Lent 2012 32 / 32



Setting the historical record straight

Convolutional codes were proposed by Peter Elias in the 1950s

The Viterbi algorithm was proposed by Andrew J. Viterbi in 1966 and shown by
Dave Forney to provide the ML solution in 1973. Forney also came up with the
graphical representation of a code trellis. The Viterbi algorithm is an instance of
dynamic programming for which algorithms existed in the mathematical
optimisation literature.

The forward-backward algorithm was known in the hidden Markov models
literature and introduced to the communications community by Bahl, Cocke,
Jelinek and Raviv (BCJR) in a 1974 paper.

The method for constructing the trellis of a block codes presented in these notes
was introduced by BCJR in the less well-known but more original second part of
their famous 1974 paper.

Turbo codes were presented by Berrou, Glavieux and Thitimajshima in 1993 at the
International Communications Conference and constitute arguably the most
important contribution to the information theory literature since Shannon’s 1948
paper. It was later discovered by MacKay that Low-Density Parity-Check codes,
invented along with their iterative decoding technique by Bob Gallager in 1962,
achieve similar performance to that of Turbo Codes.

c© Jossy Sayir (CUED) Advanced Wireless Communications Lent 2012 32 / 32


	Decoding Problem
	Brute Force Decoding
	Code Trellis
	Linear Convolutional Codes
	Shift-Register Representation
	State Diagram
	Trellis Representation
	Transfer Function and Distance Spectrum
	Error Probability

	Turbo Codes
	BCJR

	Turbo-Codes

