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Let αn denote the attenuation of path n, and let τn denote its delay.

Transmitter, receiver, scatterers move: αn and τn are time-varying.

Let xl (·) be the baseband equivalent of x(·), i.e., x(t) = Re
˘

xl (t)ej2πfc t¯:

y(t) =
X

n

αn(t)x(t − τn(t)) + n(t)

= Re

("X
n

αn(t)e−j2πfcτn(t)xl (t − τn(t)) + n′(t)

#
ej2πfc t

)

Suppose that τn(t) varies only little:

x(t − τn(t)) ≈ x(t − τn) and 2πfcτn(t) = θn(t) (since fc is large)

Then, the baseband equivalent received signal is

yl (t) =
X

n

αn(t)e−jθn(t)xl (t − τn) + n′(t) −→ yl (t) =

Z
h(t ; τ)xl (t − τ)dτ + n′(t)

as the number of paths tends to infinity.

Channel is described by the time-varying impulse response h(t ; τ).
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Multipath Fading Channels
Paths may add constructively or destructively: large fluctuations possible.

Path attenuations and delays are deterministic.

It is very complicated to describe each path (there are too many!). We therefore
model the path attenuations as random processes.

Image from A. F. Molisch, Wireless Communications, John Wiley & Sons, 2011.
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Multipath Fading Channels
Channel Correlation Functions and Power Spectra

Time-varying impulse response h(t ; τ) is modelled as complex random process.

Let Rh(t1, t2; τ1, τ2) , E[h(t1; τ1)∗h(t2; τ2)]. The WSSUS assumption is:
I {h(t ; τ), t ∈ R} is wide sense stationary, i.e., E[h(t ; τ)] does not depend on t ,

Rh(t1, t2; τ1, τ2) = Rh(t1 − t2, 0; τ1, τ2) and Rh(0, 0; τ1, τ2) <∞
I Scatterers are uncorrelated, so

Rh(t1, t2; τ1, τ2) = Rh(t1, t2; τ1, τ1)δ(τ2 − τ1)

Rh(τ) , Rh(0, 0; τ, τ) is called the delay power spectrum. It describes the average
power of the path attenuation as a function of τ .

The range of values of τ over which Rh(τ) > 0 is called the delay spread Td . It
indicates the amount of temporal broadening due to multipath propagation.

τ

Td

Rh(τ)
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Channel Correlation Functions and Power Spectra

Let H(t ; f ) =
R

h(t ; τ)e−j2πfτdτ be the time-varying Fourier transform of h(t ; τ),
and let RH(t1, t2; f1, f2) , E[H(t1; f1)∗H(t2; f2)].

By the WSSUS assumption

RH(t1, t2; f1, f2) =

Z
Rh(t1 − t2, 0; τ, τ)e−j2πτ(f2−f1)dτ = RH(t1 − t2, 0; f1 − f2, 0)

Consequently RH(∆f ) , RH(0, 0; ∆f , 0) =
R

Rh(τ)e−j2π∆fτdτ .

We define the coherence bandwidth as Bc , 1
Td

.Two sinusoids whose frequencies
are separated by more than Bc are affected independently by the channel.

Let B denote the bandwidth of the transmitted signal. If B > Bc then the channel is
said to be frequency-selective, and if B � Bc then it is said to be frequency-flat.

τ

Td

Rh(τ)

Rh(τ)

∆f

RH(∆f)

|RH(∆f)|

Bc =
1
Td
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Channel Correlation Functions and Power Spectra

Let

SH(ξ; ∆f ) ,
Z

RH(∆t , 0; ∆f , 0)e−j2πξ∆td∆t and SH(ξ) , SH(ξ; 0)

SH(ξ) is called the Doppler power spectrum. It indicates the amount of spectral
broadening in the received signal due to Doppler shift.

If the channel is time-invariant, then RH(t1, t2; f1, f1) = 1 and SH(ξ) = δ(ξ).

The range of frequencies ξ such that SH(ξ) > 0 is called the Doppler spread Bd .

We define the coherence time of the channel as Tc , 1
Bd

.

Let T be the duration of the transmitted codeword. If T > Tc , then the channel is
said to be time-selective (fast), and if T � Tc , then it is said to be time-flat (slow).

RH(∆t) SH(ξ)

Tc =
1

Bd

∆t

SH(ξ)|RH(∆t)|

ξ
Bd
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Multipath Fading Channels

Example
Mobile radio channels depend critically on the type of terrain.

Urban and suburban areas: Td ≈ 1− 10µs.

Rural, hilly areas: Td ≈ 10− 30µs.

A widely used model for the Doppler power spectrum is Jakes’ model

SH(ξ) =

8<:
1
πfm

1√
1−(ξ/fm)2

|ξ| < fm

0 |ξ| ≥ fm

where fm = vfc/c is the maximum Doppler frequency, v is the speed in m/s, fc is
the carrier frequency and c is the speed of light.

Rh(τ) Rh(τ)

0 dB

τ (in µs)τ (in µs)
7

0 dB

2 15

-10 dB

20

Urban and suburban areas Hilly terrain

fm−fm

ξ

SH(ξ)
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Multipath Fading Channels
Classification of Fading Channels

Let T be the codeword duration, and let B be the signal bandwidth:

T

B

Bc

Tc

flat in
selective in

flat in
flat in

selective in
selective in

selective in
flat inff

f f

t

tt

t

slow fading fast fading

IS
I

no
 IS

I
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Multipath Fading Channels

Classification of Fading Channels
Whether channel is selective in time/frequency depends on the statistics of the
channel and the transmitted signal.

If TcBc > 1 then the channel is said to be underspread, and if TcBc � 1 then it is
said to be overspread.
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Statistical Fading Models
From Continuous-Time to Discrete-Time

Continuous-time fading model:

yl (t) =

Z
h(t ; τ)xl (t − τ)dτ + n′(t), t ∈ R

Discrete-time fading model:

yi =

Np−1X
`=0

hi,`xi−` + ni , i = 1, 2, . . .

Each path hi,` summarises the contribution of multiple scatterers within a symbol
period Ts.

Often paths are modelled as complex Gaussian random variables with variance
σ2

n = |Rh(nTs)|2. This is “justified" by the central limit theorem.

Other models can be used to better fit experimental data, e.g., Nakagami-m.

τ
Td

Rh(τ)

τ

Rh(τ)

Ts

Ts(Np − 1)
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Statistical Fading Models

Flat Fading
Only one tap, i.e., Np = 1:

yi = hixi + ni , i = 1, 2, . . .

No ISI.

Slow fading: hi does not depend on i .

Fast fading: h1, h2, . . . are i.i.d.

Frequency-Selective Fading

yi =

Np−1X
`=0

hi,`xi−` + ni , i = 1, 2, . . .

hi,0, . . . , hi,Np−1 are independent (uncorrelated scattering).

Slow fading: hi,` does not depend on i .

Fast fading: h1,`, h2,`, . . . are i.i.d.
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