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Underspread Channels

Considered channel models
We consider

1 frequency-flat fading
2 slow frequency-selective fading

Most common scenarios for underspread channels.
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Frequency-Flat Fading
Channel Model
Channel output is given by

yi = hixi + ni , i = 1, 2, . . .

Slow fading: hi = h.

Fast fading: h1, h2, . . . are i.i.d.

Block fading: hi is constant for Tc time slots and changes then independently, i.e.,

yi = hdi/Tcexi + ni , i = 1, 2, . . .

where h1, h2, . . . are i.i.d.

Receiver has perfect knowledge of h1, h2, . . . : the channel can be estimated by
transmitting pilot symbols.

Transmitter has no knowledge of h1, h2, . . . : receiver would need to transfer
channel estimates to transmitter.

h1 h2 h3

Block fading channel
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Uncoded Transmission
Performance Analysis

Assume that h1, h2, . . . are Gaussian with mean zero and variance 1. This is
referred to as Rayleigh fading.

Consider uncoded BPSK modulation over a Rayleigh fading channel. (Whether
the fading is fast or slow does not matter. Why?)

Let Pb(h) denote the probability of error when hi = h. The average probability of
error (averaged over hi ) is given by

Pb =

Z
fH(h)Pb(h)dh

If |hi |2 = 1 with probability one, then the channel specialises to the AWGN channel
for which P(G)

b = Q
“√

2SNR
”

.

If |hi | > 1 then Pb(hi) < P(G)
b , and if |hi | < 1 then Pb(hi) > P(G)

b . By the convexity
of Pb(h) it follows that having a nondeterministic channel gain is detrimental.

The average probability of error can be computed as

Pb =

Z
fH(h)Q

„q
2|h|2SNR

«
dh =

1
2

 
1−

r
SNR

1 + SNR

!
≈ 1

4SNR
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Uncoded Transmission
Probability of Error

0 5 10 15 20 25 30
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

SNR (dB)

P
b

AWGN

Rayleigh fading

c© J. Sayir and T. Koch (CUED) Advanced Wireless Communications Lent 2012 5 / 17



Uncoded Transmission
Q-Function is Convex
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Diversity
Repetition Code

Bad error performance is due to events where hi is small.

Suppose we transmit the same BPSK symbol twice: we thus observe

y1 = h1x + n1 and y2 = h2x + n2

If h1 and h2 are independent, then it is less likely that both h1 and h2 are small.

Maximum-ratio combining:

h∗1 y1 + h∗2 y2 =
“
|h1|2 + |h2|2

”
x + h∗1 n1 + h∗2 n2

maximizes the signal-to-noise ratio at the receiver.

The probability of error is upper-bounded by

E
»
Q
„q

2 (|h1|2 + |h2|2) SNR
«–
≤ 1

2
E
h
exp

“
−
“
|h1|2 + |h2|2

”
SNR

”i
=

1
2

E
h
exp

“
−|h1|2SNR

”i
E
h
exp

“
−|h2|2SNR

”i
=

1
2(1 + SNR)2
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Diversity

Diversity Techniques
If the receiver observes D independently faded replicas of the same information
signal, the probability of all deep fades is reduced significantly: Pb ∝ SNR−D

Diversity order d , lim
SNR→∞

− log Pb

log SNR
(asymptotic slope of Pe in a log-log scale)

There are multiple ways of achieving diversity in practical wireless systems:
Frequency: transmitting the same information over D carriers

Time: transmitting the same information over D time slots
Space: equip the receiver, transmitter or both with multiple antennas

Note: time diversity does not require repetition coding. We will see later that usual
channel coding works well.

We have to ensure that we observe independently faded replicas of the
transmitted signal. To this end, the carriers/time slots/antennas must be spaced
sufficiently apart from each other.
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Time: transmitting the same information over D time slots
Space: equip the receiver, transmitter or both with multiple antennas

Note: time diversity does not require repetition coding. We will see later that usual
channel coding works well.

We have to ensure that we observe independently faded replicas of the
transmitted signal. To this end, the carriers/time slots/antennas must be spaced
sufficiently apart from each other.
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Diversity
Multiple Receive Antennas

Suppose we have 1 transmit and NR receive antennas. Then,

y i = hixi + ni , i = 1, 2, . . .

With maximum-ratio combining we obtain

hH
i y i = ‖hi‖2xi + hH

i ni =
“
|hi(1)|2 + . . .+ |hi(NR)|2

”
xi + eni

The error probability is upper-bounded by

Pb ≤
1

2
`
1 + SNR

NR

´NR
∝ SNR−NR

Transmitter Receiver
...y

x h1

hNR

...
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Diversity
Probability of Error: Multiple Receive Antennas
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Diversity
Multiple Transmit Antennas

Suppose we have NT transmit and 1 receive antennas, and assume that the fading
is slow. Then,

yi = hT x i + ni , i = 1, 2, . . .

If the transmitter would know h, then we could transmit h∗xi to obtain

yi = hT h∗xi + ni =
“
|h(1)|2 + . . .+ |h(NT )|2

”
xi + ni

But (by assumption) the transmitter has no knowledge of hi !

Repetition coding across antennas: x1 = (x , 0, . . . , 0)T , x2 = (0, x , 0, . . . , 0)T , . . .
The rate of this scheme is 1

NT
.

For NT = 2, Alamouti’s scheme achieves diversity order 2 at rate 1:
I transmit two symbols (s1, s2) over two time slots

x1 =

„
s1
s2

«
and x2 =

„
−s∗2
s∗1

«
I The receiver computes

h(1)∗y1 + h(2)y∗2 =
“
|h(1)|2 + |h(2)|2

”
s1 + ñ1, ñ1 ∼ NC

“
0, (|h(1)|2 + |h(2)|2)σ2

”
h(2)∗y1 − h(1)y∗2 =

“
|h(1)|2 + |h(2)|2

”
s2 + ñ2, ñ2 ∼ NC

“
0, (|h(1)|2 + |h(2)|2)σ2

”
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“
0, (|h(1)|2 + |h(2)|2)σ2

”
c© J. Sayir and T. Koch (CUED) Advanced Wireless Communications Lent 2012 11 / 17



Diversity
Multiple Transmit Antennas

Suppose we have NT transmit and 1 receive antennas, and assume that the fading
is slow. Then,

yi = hT x i + ni , i = 1, 2, . . .

If the transmitter would know h, then we could transmit h∗xi to obtain

yi = hT h∗xi + ni =
“
|h(1)|2 + . . .+ |h(NT )|2

”
xi + ni

But (by assumption) the transmitter has no knowledge of hi !

Repetition coding across antennas: x1 = (x , 0, . . . , 0)T , x2 = (0, x , 0, . . . , 0)T , . . .
The rate of this scheme is 1

NT
.

For NT = 2, Alamouti’s scheme achieves diversity order 2 at rate 1:
I transmit two symbols (s1, s2) over two time slots

x1 =

„
s1
s2

«
and x2 =

„
−s∗2
s∗1

«
I The receiver computes

h(1)∗y1 + h(2)y∗2 =
“
|h(1)|2 + |h(2)|2

”
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Diversity
Alamouti’s SchemeALAMOUTI: SIMPLE TRANSMIT DIVERSITY TECHNIQUE FOR WIRELESS COMMUNICATIONS 1455

Fig. 4. The BER performance comparison of coherent BPSK with MRRC and two-branch transmit diversity in Rayleigh fading.

likelihood detector:

(15)

Substituting the appropriate equations we have

(16)

These combined signals are then sent to the maximum like-
lihood decoder which for signal uses the decision criteria
expressed in (17) or (18) for PSK signals.

Choose iff

(17)

Choose iff

(18)

Similarly, for using the decision rule is to choose signal
iff

(19)

or, for PSK signals,

choose iff
(20)

The combined signals in (16) are equivalent to that of four-
branch MRRC, not shown in the paper. Therefore, the resulting
diversity order from the new two-branch transmit diversity

scheme with two receivers is equal to that of the four-branch
MRRC scheme.
It is interesting to note that the combined signals from the

two receive antennas are the simple addition of the combined
signals from each receive antenna, i.e., the combining scheme
is identical to the case with a single receive antenna. We
may hence conclude that, using two transmit and receive
antennas, we can use the combiner for each receive antenna
and then simply add the combined signals from all the receive
antennas to obtain the same diversity order as -branch
MRRC. In other words, using two antennas at the transmitter,
the scheme doubles the diversity order of systems with one
transmit and multiple receive antennas.
An interesting configuration may be to employ two antennas

at each side of the link, with a transmitter and receiver chain
connected to each antenna to obtain a diversity order of four
at both sides of the link.

IV. ERROR PERFORMANCE SIMULATIONS

The diversity gain is a function of many parameters, includ-
ing the modulation scheme and FEC coding. Fig. 4 shows the
BER performance of uncoded coherent BPSK for MRRC and
the new transmit diversity scheme in Rayleigh fading.
It is assumed that the total transmit power from the two

antennas for the new scheme is the same as the transmit power
from the single transmit antenna for MRRC. It is also assumed
that the amplitudes of fading from each transmit antenna
to each receive antenna are mutually uncorrelated Rayleigh
distributed and that the average signal powers at each receive
antenna from each transmit antenna are the same. Further, we
assume that the receiver has perfect knowledge of the channel.
Although the assumptions in the simulations may seem

highly unrealistic, they provide reference performance curves
for comparison with known techniques. An important issue is

Image from S. M. Alamouti, "A simple transmit diversity technique for wireless communications," IEEE Journal on Select. Areas in
Communications, October 1998.
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Diversity
Multiple-Input Multiple-Output (MIMO)

Suppose we have NT transmit and NR receive antennas.

The output of the multiple-input multiple-output (MIMO) flat fading channel is

y i = H ix i + ni , i = 1, 2, . . .

where

x i =

0B@ xi(1)
...

xi(NT )

1CA , y i =

0B@ yi(1)
...

yi(NR)

1CA ,ni =

0B@ ni(1)
...

ni(NR)

1CA ,H i =

0B@ hi(1, 1) . . . hi(NT , 1)
...

. . .
...

hi(1,NR) . . . hi(NT ,NR)

1CA
The diversity order is not larger than NT NR .

Transmitter Receiver
...

...

hi(1, 1)
hi(1, NR)

hi(NT , NR)

hi(NT , 1)

Hi

xi yi

c© J. Sayir and T. Koch (CUED) Advanced Wireless Communications Lent 2012 13 / 17



Diversity
Multiple-Input Multiple-Output (MIMO)

Suppose we have NT transmit and NR receive antennas.

The output of the multiple-input multiple-output (MIMO) flat fading channel is

y i = H ix i + ni , i = 1, 2, . . .

where

x i =

0B@ xi(1)
...

xi(NT )

1CA , y i =

0B@ yi(1)
...

yi(NR)

1CA ,ni =

0B@ ni(1)
...

ni(NR)

1CA ,H i =

0B@ hi(1, 1) . . . hi(NT , 1)
...

. . .
...

hi(1,NR) . . . hi(NT ,NR)

1CA
The diversity order is not larger than NT NR .

Transmitter Receiver
...

...

hi(1, 1)
hi(1, NR)

hi(NT , NR)

hi(NT , 1)

Hi

xi yi

c© J. Sayir and T. Koch (CUED) Advanced Wireless Communications Lent 2012 13 / 17



Diversity
Multiple-Input Multiple-Output (MIMO)

Suppose we have NT transmit and NR receive antennas.

The output of the multiple-input multiple-output (MIMO) flat fading channel is

y i = H ix i + ni , i = 1, 2, . . .

where

x i =

0B@ xi(1)
...

xi(NT )

1CA , y i =

0B@ yi(1)
...

yi(NR)

1CA ,ni =

0B@ ni(1)
...

ni(NR)

1CA ,H i =

0B@ hi(1, 1) . . . hi(NT , 1)
...

. . .
...

hi(1,NR) . . . hi(NT ,NR)

1CA
The diversity order is not larger than NT NR .

Transmitter Receiver
...

...

hi(1, 1)
hi(1, NR)

hi(NT , NR)

hi(NT , 1)

Hi

xi yi

c© J. Sayir and T. Koch (CUED) Advanced Wireless Communications Lent 2012 13 / 17



Diversity
Multiple-Input Multiple-Output (MIMO)

Suppose we have NT transmit and NR receive antennas.

The output of the multiple-input multiple-output (MIMO) flat fading channel is

y i = H ix i + ni , i = 1, 2, . . .

where

x i =

0B@ xi(1)
...

xi(NT )

1CA , y i =

0B@ yi(1)
...

yi(NR)

1CA ,ni =

0B@ ni(1)
...

ni(NR)

1CA ,H i =

0B@ hi(1, 1) . . . hi(NT , 1)
...

. . .
...

hi(1,NR) . . . hi(NT ,NR)

1CA
The diversity order is not larger than NT NR .

Transmitter Receiver
...

...

hi(1, 1)
hi(1, NR)

hi(NT , NR)

hi(NT , 1)

Hi

xi yi

c© J. Sayir and T. Koch (CUED) Advanced Wireless Communications Lent 2012 13 / 17



Frequency-Selective Fading
Channel Model

For slow frequency-selective fading, the channel output is

yi =

NP−1X
`=0

h`xi−` + ni , i = 1, 2, . . .

Thus, each channel realisation is a random realisation of an ISI channel with NP

taps having zero mean and variance given by the multipath delay profile Rh(τ).

Since the fading is slow, the taps do not depend on i .

Orthogonal Frequency-Division Multiplexing (OFDM)
Converts ISI channel into parallel frequency-flat fading channels.

Transmit block-wise in blocks of n symbols.

Before each block introduce a guard period of NP − 1.

...

NP − 1 n NP − 1 n

x

n n...

y
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Frequency-Selective Fading

OFDM

Transmit n information symbols x (i) = (x1, . . . , xn)
T .

Add the cyclic prefix x (p) = (xn−NP+2, . . . , xn)
T .

Let y = (y1, . . . , yn)
T , n = (n1, . . . , nn)

T and x =
`
x (p), x (i)´T .

In matrix notation

y =

0BBB@
hNP−1 · · · h0 0 · · · · · · 0

0 hNP−1 · · · h0 0 · · · 0
...

. . .
. . .

. . .
...

0 · · · · · · 0 hNP−1 · · · h0

1CCCA x + n

This can be written as y = eHx (i) + n, where

eH =

0BBB@
h0 0 . . . 0 hNP−1 . . . . . . h1

h1 h0 0 . . . 0 hNP−1 . . . h2
...

. . .
. . .

. . .
...

0 . . . . . . 0 hNP−1 . . . h0

1CCCA
Note that eH is a circulant matrix.
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Frequency-Selective Fading
Orthogonal Frequency-Division Multiplexing (OFDM)

Circulant matrices are diagonalised by the discrete Fourier transform matrix F n,
whose elements are

F (k , `) =
1√
n

e−j2π k`
n ,

`
k = 0, . . . , n − 1, ` = 0, . . . , n − 1

´
We thus have eH = F H

n diag(H0, . . . ,Hn−1) F n, where Hi =
PNP−1
`=0 h`e−j2π i`

n are
the DFT coefficients of the rows of eH.

By applying the DFT at the receiver we obtain

F ny = F n

“eHx (i) + n
”

= F nF H
n diag(H0, . . . ,Hn−1) F nx (i) + F nn

= diag(H0, . . . ,Hn−1)eX + eN
where eX = F nx (i) and eN = F nn.

F n is unitary: eN ∼ NC(0, σ2I) and E[|eX |2] = E
ˆ˛̨

x (i)
˛̨2˜.

OFDM converts the ISI channel into n parallel flat fading channels

Yi = Hi−1eXi + eNi , i = 1, . . . , n
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Frequency-Selective Fading
OFDM System Model

IFFT

Cyclic 
Prefix

FFT
�X x

Channel
Y

+×�X1

�X2

�Xn

�Nn

�N2

Y1

Y2

Yn

Hn−1

H1

H0

+×

+×

...

�N1

y

Complexity of FFT is O(n log n)
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