
















Question 5:

1. To find the spectrum of the 2d cosine window formed from the product of two 1d windows, first find
the FT of w1

W1(ω1) =

∫ U1

−U1

cos

(
πu1
U1

)
e−jω1u1du1

=
1

2

∫ U1

−U1

eju1(π/U1−ω1) + e−ju1(π/U1+ω1)du1

=
1

2

[
eju1(π/U1−ω1)

j(π/U1 − ω1)
− e−ju1(π/U1+ω1)

j(π/U1 + ω1)

]U1

−U1

= U1{ sinc(π − ω1U1) + sinc(π + ω1U1)} (1)

As before, W (ω2) will take precisely the same form so that the required spectrum will be the product
of W1 and W2.

W (ω1, ω2) = U1U2{ sinc(π − ω1U1) + sinc(π + ω1U1)}{ sinc(π − ω2U2) + sinc(π + ω2U2)}

Spectrum along ω1 axis looks like:

Figure 1: The spectrum of the 1d cosine window: drawn with U1 = π

As we can see from the above plot, the spectrum of the cosine window has a wide main lobe with a
significant depression at ω = 0 – even though the sidelobes are fairly low, the mainlobe characteristics
are not desirable.

2. Now find the spectrum of the 2d window formed from the product of two 1d rectangular windows,
where we now have

wi(ui) =

{
1 if |ui| < Ui

0 otherwise

First find the FT of w1
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W1(ω1) =

∫ U1

−U1

e−jω1u1du1

=

[
e−jω1u1

−jω1

]U1

−U1

= 2U1 sincω1U1

.

W (ω2) will take precisely the same form so that the required spectrum will be the product of W1 and
W2.

W (ω1, ω2) = 4U1U2 sincω1U1 sincω2U2

Spectrum looks like:
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Spectrum of product of rectangular windows, N= 15*15

Figure 2:

where, U1 is (for illustrative purposes) taken as 2.5π in the above sketch and units on ω1 and ω2 axes
are in units of 2π.

3. We can deduce the spectrum of this superposition of windows from the above results:

W1(ω1) = U1 (2α sincω1U1 + β{ sinc(π − ω1U1) + sinc(π + ω1U1)})

And similarly for W2(ω2).

If we plot W1 (doing it in 1d will do) while varying α (using α+ β = 1), we can see what happens to
the spectrum – some examples are given in figure 3 and figure 4. Figure 4 is the optimal value of α,
ie the value which causes the first and largest sidelobes to be suppressed.
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Figure 3: Upper graph shows the spectra of β times the cosine window and α times the rectangular window
for α = 0.3. The lower graph shows the resulting superposition.

Figure 4: Upper graph shows the spectra of β times the cosine window and α times the rectangular window
for α = 0.54. The lower graph shows the resulting superposition.
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Question 6:

1. First read in the colour image moireB.jpg take just one of the channels and then downsample by a
factor of 2 in both dimensions: do this using something like the following code:

% input the name of the image to test

s1 = input(’Filename:’, ’s’);

s1=[’/jl/4F8imageprocessing/2009-10/examplespaper/’,s1]; % put where it is

A =imread(s1);

figure(1)

imshow(X);

% take just the first channel of this colour image

A1 = double(X(:,:,1));

ndown=2;

C1 = downsample(A1,ndown);

Cds = downsample(C1’,ndown);

figure(2); grayimage(Cds);

The original and the downsampled image are show in figure 1:

Figure 1: Left hand figure shows the orginal 756 × 622 colour image, moireB.jpg. The right hand figure
shows the first channel of this image downsampled by 2 (size is then 378 × 311)

Aliasing artefacts are visible in the right-hand image of figure 1.

2. Next we take FFTs of both the original (first channel) and downsampled images. These are shown in
figure 2.

Figure 3 shows a comparison of regions of roughly the same frequency range and highlights some of
the visible aliasing.

3. Let us suppose that our continuous image has lengths a1 (horizontal) and a2 (vertical). For the original
image the spacings are therefore

∆1 = a1/622 ∆2 = a2/756
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Figure 2: Left hand figure shows the FFT of the original image (channel 1). The right hand figure shows
the FFT of the downsampled image

Figure 3: A comparison of similar frequency ranges for the original and downsampled images. The right-hand
image has some of the aliased frequencies outlined in red.
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We assume that this is an unaliased image. ie that Ω1 > 2ΩC1 and Ω2 > 2ΩC2, where Ω1 = 2π/∆1

and Ω2 = 2π/∆2, and ΩC1 and ΩC2 are the highest frequencies in the image.

From our FFT of A, we can estimate the largest frequencies in the image, see figure 4:

Figure 4: Original spectrum with approx highest frequencies outlined in red

We see that the highest ω1 frequency is at approx (512 − 312) = 200 and the highest ω2 frequency is
at approx (378 − 128) = 250. Thus, we approximate the largest directional frequencies as

ΩC1 ≈ 200 × (2π/a1) ΩC2 ≈ 250 × (2π/a2)

So, suppose we sample at ∆1a and ∆2a – for no aliasing, we then require

2π

∆1a
> 2ΩC1 =

800π

a1

and

2π

∆2a
> 2ΩC2 =

1000π

a2

But ∆1a = a1/n1 and ∆2a = a2/n2, so we have that

a1
n1

<
a1
400

a1
n1

<
a1
500

Thus, we need n1 > 400 and n2 > 500 – so a 500 × 400 image would be the minimum needed for no
aliasing.
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Question 7:

1. Can create the 512×512 images of black and white stripes (0 and 255) and either write code to rotate
the central 256×256 image, or use the imrotate command in Matlab. Figure 1 shows the central image
B and the version rotated by 7 degrees.

Figure 1: Left hand figure shows image B, with stripes 8 pixels wide. The right hand figure shows this
image rotated clockwise by 7 degrees

2. Adding these two images together (rescale so that resultant goes from 0 to 255) gives image C shown
in figure 2:

Figure 2: Addition of the two images in figure 1

Note the interference patterns when the two images are added, giving fringes of specific frequencies.

3. Figure 3 shows the FFTs of each of the images B, rotated B and C:

We can see that along the central ’vertical’, the addition produces frequencies which are very close to
each other. The closeness of these frequency components, as we have seen, will produce ’beating’, ie
sum and difference effects, which will manifest themselves as interference patterns.

From image C it is clear that the vertical spacing of the pattern is 16 (there are 16 repetitions in
the 256 length) and that the horizontal spacing is 128 (there are two repetitions in the 256 width).
Thus, we would expect that these arise from frequency differences of 16 in vertical frequency (from
1/16 = n/256) and 2 in horizontal frequency (from 1/128 = n/256). Figure 4 indicates the two
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Figure 3: Frequency spectra image B [left], rotated B [centre], and image C [right]

closely spaced frequencies near the centre of the frequency plane which will give rise to this (at points
(129,129) and (131,113) in the 256 × 256 frequency plane).

Figure 4: The two main frequencies which give rise to the interference are indicated in red
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