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Abstract— This paper shows that, for discrete memoryless
channels, the error exponent of a randomly generated code
with independent codewords converges in probability to its
expectation—the typical error exponent. For high rates, the result
follows from the fact that the random-coding error exponent
and the sphere-packing error exponent coincide. For low rates,
instead, the convergence is based on the fact that the union bound
accurately characterizes the error probability. The paper also
zooms into the behavior at asymptotically low rates, and shows
that the normalized error exponent converges in distribution to
the standard Gaussian or a Gaussian-like distribution. We also
state several results on the convergence of the error probability
and error exponent for generic ensembles and channels.

Index Terms— Error exponent, typical error exponent, random
coding, concentrations, maximum likelihood decoder.

I. INTRODUCTION

SHANNON [1] showed that for every discrete memoryless
channel (DMC), there exist codes whose probability of

error vanishes with the codeword length for rates below the
channel capacity. Since then, significant research effort has
been devoted to studying properties of the probability of error
of such codes. For rates below capacity, Fano [2] characterized
the exponential decay of the error probability defining the error
exponent as the negative logarithm of the ensemble-average
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error probability normalized by the block-length, i.e., the
random coding exponent (RCE). In [3], Gallager derived the
RCE in a simpler way and introduced the idea of expurga-
tion in order to obtain an improved error exponent at low
rates. A lower bound on the error probability in the DMC,
called sphere-packing bound, was first introduced in [4] and
it was shown to coincide with the RCE for rates higher
than a certain critical rate. Nakiboğlu [5] recently derived
sphere-packing bounds for some stationary memoryless chan-
nels using Augustin’s method [6].

In [7], Barg and Forney studied the independently and
identically distributed (i.i.d.) random-coding ensemble over the
binary symmetric channel (BSC) with maximum likelihood
decoding. They showed that the probability of finding a code
with an error exponent arbitrarily close to the so-called typical
random coding (TRC) exponent approaches 1 as the codeword
length grows. They also showed that TRC exponent is strictly
larger than the RCE at low rates, and that it coincides with the
expurgated exponent at rate zero. Upper and lower bounds on
the TRC for constant-composition codes and general DMCs
were provided in [8]. For the same type of codes and channels,
Merhav [9] determined the exact TRC error exponent for a
wide class of stochastic decoders called generalized likelihood
decoders (GLD), of which maximum-likelihood decoder is a
special case. Merhav derived the TRC exponent for spherical
codes over coloured Gaussian channels [10] and for random
convolutional code ensembles [11]. Tamir et al. [12] studied
the upper and lower tails of the error exponent around
the mean, the typical error exponent, for random pairwise-
independent constant-composition codes with GLD. It was
shown that the tails behave in a non-symmetric way: the
lower tail decays exponentially while the upper tail decays
double-exponentially; the latter was first established for a
limited range of rates in [13]. By studying the behavior of
both tails, the work in [12] implicitly proves concentration
in probability. The TRC was recently shown to be univer-
sally achievable with a likelihood mutual-information decoder
in [14]. For pairwise-independent ensembles and arbitrary
channels, Cocco et al. showed in [15] that the probability that
a code in the ensemble has an exponent smaller than a lower
bound on the TRC exponent is vanishingly small.

The main motivation of our work is the fact that the afore-
mentioned results highlight the importance of the statistical
properties of the error probability and the error exponent
across the random-coding ensemble. After describing the main
performance metrics of random codes for reliable communi-
cation in the next section, namely the error probability and
the error exponent, we use the notion of convergence in
probability and convergence in distribution to obtain a number
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of concentration results of such performance metrics, seen as
sequences of random variables, as the blocklength tends to
infinity. Specifically:
• In Theorem 1 we show that the error exponent of a

randomly chosen code from the ensemble converges in
probability to the TRC exponent.

• In Theorems 2–4 we provide bounds on the rate of such
convergence.

• For codes with a constant number of codewords, The-
orem 5 shows that the error exponent of a randomly
chosen code from the ensemble converges in distribution
to a Gaussian-like distribution. For codes with a growing
sub-exponential number of codewords, Theorem 6 shows
that the error exponent converges in distribution to a
Gaussian instead.

The aforementioned results are stated in Sec. III, and are
valid for the DMC and the i.i.d. and constant-composition
ensembles. In addition, for general channels we obtain in
Sec. IV the following results:
• For any channel and capacity-achieving ensemble, The-

orem 7 states that the error probability of a randomly
generated code converges in probability to the ensemble
average.

• Theorems 8–10 and Corollary 1 discuss several conver-
gence results relating randomness properties of the error
probability, the random-coding error exponent and the
TRC exponent.

• Sufficient conditions for the union bound on the error
probability and any general function of the error proba-
bility to converge to a Gaussian are respectively described
in Theorems 11 and 12.

Throughout the paper we use the following notation. Given
two positive sequences {an} and {bn}, n ∈ N, an

.= bn

indicates that limn→∞
1
n log

(
an

bn

)
= 0, an

.
≤ bn indicates

that limn→∞
1
n log

(
an

bn

)
≤ 0, and the expression an

.
≥ bn is

similarly defined. The relative entropy between distributions P
and Q is denoted as D(P∥Q). A sequence of random variables
{An}∞n=1 converges to A in probability, denoted as An

(p)−→A

if for all δ > 0 [16, Sec. 2.2],

lim
n→∞

P[|An −A| > δ] = 0. (1)

If An = 1
n

∑n
i=1 Xi, where Xi, i = 1, . . . , n are i.i.d. random

variables, then A = E[X1] and (1) reduces to the weak law
of large numbers [16, Th. 2.2.3]. We say that a sequence of
random variables {An}∞n=1 converges to A in distribution,
denoted as An

(d)−→A if [16, Sec. 3.2], for all continuity points
x of P[A ≤ x], it holds that

lim
n→∞

sup
x∈R

∣∣P[An ≤ x]− P[A ≤ x]
∣∣ = 0. (2)

Finally, we say that a sequence {An}∞n=1 converges almost
surely to a constant value A if

P
[

lim
n→∞

An = A
]

= 1, (3)

implying that the events for which An does not converge to
0 have asymptotically no probability.

This paper is structured as follows. We state our main results
for i.i.d. and constant-composition ensembles over DMCs in

Sec. III. Additional results for general channels are stated in
Sec. IV. The proofs of our theorems are included in Sec. V,
while most lemmas thereby used are proved in the Appendix.

II. PRELIMINARIES

We consider the problem of transmitting Mn equiprobable
messages over a DMC with transition probability W and finite
input and output alphabets X and Y , respectively. We employ
a codebook cn = {x1, x2, · · · , xMn

} with xm ∈ Xn, for
m = 1, . . . ,Mn. The channel transforms the transmitted
codeword x ∈ cn into a channel output y ∈ Yn according to
the random transmformation Wn(y|x) =

∏n
i=1 W (yi|xi). We

consider maximum-likelihood decoding, that is, we estimate
the transmitted codeword as x̂ = arg maxx∈cn

Wn(y|x). The
error probability is

Pe(cn) =
1

Mn

Mn∑
m=1

P
[ ⋃

m̄ ̸=m

{xm → xm̄}
]
, (4)

where {xm → xm̄} = {y ∈ Y : Wn(y|xm̄) ≥ Wn(y|xm)}
is the pairwise error event, i.e., the event of deciding in favor
of codeword xm̄ when codeword xm was transmitted. The
error exponent of code cn is defined as

En(cn) = − 1
n

log Pe(cn). (5)

Let R = lim infn→∞
1
n log Mn be the rate of the code in

bits per channel use. An error exponent E(R) is said to be
achievable when there exists a sequence of codes {cn}∞n=1

such that lim infn→∞En(cn) ≥ E(R). The channel capacity
C is the supremum of the code rates R such that E(R) > 0.

We next consider the random generation of the codebook.
Similarly to random variables, Cn denotes a random code,
and cn denotes a specific code in the ensemble. In partic-
ular, we consider the pairwise-independent random-coding
ensemble, i.e., the set of random codes Cn whose code-
words X1, X2, · · · , XMn are pairwise-independently gener-
ated. We consider the i.i.d. ensemble, in which each codeword
is generated according to the distribution

Qn
iid(x) =

n∏
i=1

Q(xi), (6)

with Q being the input distribution of each symbol, and the
constant-composition ensemble, in which each codeword is
generated according to the distribution

Qn
cc(x) =

1
|Tn(Qn)|

1{x ∈ Tn(Qn)}, (7)

where Tn(Qn) is the type class of composition Qn ∈ Pn(X ),
i.e., all n-length sequences whose empirical distribution is Qn

such that maxx |Qn(x) −Q(x)| ≤ 1
n for a given distribution

Q. For a given input distribution or composition Q, we define
the random-coding error exponent Erce(R,Q) as

Erce(R,Q) = lim
n→∞

− 1
n

log E[Pe(Cn, Q)], (8)

where Pe(Cn, Q) denotes the error probability of the ran-
dom code ensemble Cn parametrized by the distribution or
composition Q and where the expectation is taken over the

Authorized licensed use limited to: CAMBRIDGE UNIV. Downloaded on November 29,2023 at 11:40:05 UTC from IEEE Xplore.  Restrictions apply. 



TRUONG et al.: CONCENTRATION PROPERTIES OF RANDOM CODES 7501

Fig. 1. Example of the rancom-coding error exponent Erce(R, Q) in (8),
the typical error exponent Etrc(R, Q) in (9), the expurgated error exponent
Eex(R, Q) in [3, eq. (5.7.11)] and the sphere-packing exponent Esp(R, Q)
in [22, eq. (5.8.2)] all for i.i.d. codes over the BSC with equiprobable
input and crossover probability 0.01. For this channel, the capacity is
C = 0.919207 and the critical rate is Rcrit = 0.559122.

code ensemble. The existence of the limit in (8) is known
by [17]. Eq. (8) suggests that Erce(R,Q) is the asymptotic
exponent of the ensemble-average probability of error. For
i.i.d. code ensembles, Gallager [3, Th. 1] provided an expres-
sion of Erce(R,Q). For constant composition ensembles, the
expression of Erce(R,Q) is provided in [17] and [18]. It is
known that for any given Q, Eiid

rce(R,Q) ≤ Ecc
rce(R,Q)

(see e.g., [19]); when both exponents are optimized over the
distribution or composition Q, they coincide.

While Erce(R,Q) in (8) is the limiting exponential rate
of decay of the expected probability of error, the typical
random-coding exponent Etrc(R,Q) is instead defined as the
limiting expected error exponent, that is,

Etrc(R,Q) = lim
n→∞

− 1
n

E
[
log Pe(Cn, Q)

]
. (9)

Jensen’s inequality implies that the random-coding error expo-
nent in (8) and the typical random-coding error exponent in (9)
satisfy Erce(R,Q) ≤ Etrc(R,Q). For i.i.d. codes over the
BSC [7], the typical error exponent has been expressed as

Etrc(R,Q) = max{Eex(2R,Q) + R,Erce(R,Q)}, (10)

where Eex(R,Q) is Gallager’s expurgated error exponent for
i.i.d. ensembles [3, eq. (5.7.11)]. Since Gallager’s expurgated
exponent can be smaller than the random coding exponent,
we will assume in this paper that for i.i.d. ensembles,
whenever we refer to the expurgated exponent we mean
max{Eex(R,Q), Erce(R,Q)}. For the constant composition
ensemble and the general DMC channel, the expurgated expo-
nent derived in [20] (see also [9], [21]) does not exhibit this
limitation and the corresponding expression is [9, eq. (3)]

Etrc(R,Q) = Eex(2R,Q) + R. (11)

We define Rcrit as the critical rate, the smallest R such that the
random coding exponent Erce(R,Q) is tight, i.e., it coincides
with the upper bound given by the sphere-packing exponent
Esp(R,Q) given in [22, eq. (5.8.2)]. We show in Figure 1 an
example of the aforementioned error exponents for the BSC.

III. DISCRETE MEMORYLESS CHANNELS

In this section, we introduce our main concentration results
for DMCs. Our first result states the convergence in probability
of the sequence of error exponents {En(Cn)}∞n=1 to the TRC
exponent Etrc(R). Since the exponent of the probability of
error is not a sum of i.i.d. terms, the weak law of large
numbers cannot be applied. This result holds for i.i.d. and
constant-composition ensembles over DMCs with input distri-
bution or composition Q.

Theorem 1: For a DMC channel, i.i.d. and constant-
composition ensembles with input distribution or composition
Q, it holds that

En(Cn)
(p)−→Etrc(R,Q). (12)

for all rates R ∈ [Rcrit, C) such that Etrc(R,Q) =
Erce(R,Q).

Proof: Sec. V-A.
Theorem 1 shows the convergence of the sequence of

random variables {En(Cn)}∞n=1 to its statistical mean, the
TRC exponent. In proving convergence, Theorem 1 shows
the achievability of the TRC exponent as well as the fact
that the probability of finding a code in the ensemble with
higher or lower exponent than the TRC exponent tends to
zero. The above concentration property gives more information
about the error exponent behaviour of the ensemble than the
traditional derivation of the random coding error exponent,
which only computes the exponent of the ensemble average
error probability. This way, the TRC emerges as the error
exponent for i.i.d. and constant-composition ensembles over
DMC channels. At zero rate, the TRC and the expurgated
exponent coincide for both ensembles. At low, but positive
rates (i.e., 0 < R < Rcrit), the TRC exponent is lower than
or equal to the expurgated exponent and can in some case be
strictly smaller. This implies that the codes in the pairwise
independent ensemble that achieve the expurgated exponent
are not typical codes and are unlikely to be found by random
generation.

A refined analysis to that of Theorem 1 consists of studying,
separately, the probability tails involved in the definition of
convergence in probability in (1). The work in [12], addressed
this issue for the constant-composition ensemble over DMCs.
Specifically, [12, Ths. 1,2] showed an interesting asymme-
try: the probability P[En(Cn) < Etrc(R,Q) − ε] decays
exponentially, while P[En(Cn) > Etrc(R,Q) + ε] decays
double-exponentially. The exponential and double-exponential
decay behaviors can be explained by Sanov’s theorem in large
deviation theory. For our problem, Pe(Cn) —but not En(Cn)—
is a sum of pairwise random variables, which explains the
asymmetric behaviors of the two tails. This result implies
that, beyond the concentration property, it is significantly more
difficult to find a code in the ensemble with exponent higher
than Etrc(R,Q).

We next derive some results on the convergence rate of the
error exponent En(Cn) to the typical random-coding exponent
Etrc(R,Q).
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Theorem 2: For the i.i.d. ensemble with rate 0 ≤ R < C
and any ε > 0, it holds that

P
[
En(Cn) < Etrc(R,Q)− ε

] .
≤ 2−nε, (13)

P
[
En(Cn) > Etrc(R,Q) + ε

]
= O

(
1√
n

)
. (14)

Proof: Sec. V-B.
In contrast to the work in [12], the error probability

Pe(cn) = 2−nEn(Cn) is not a sum of pairwise-independent
random variables but a sum of dependent random variables.
Refining the bound in (14) to obtain a double exponential
decay as in the constant-compostion case remains a challeng-
ing problem.

Theorem 2 strengthens Theorem 1. The Berry-Esseen the-
orem [16, Th. 3.4.17] and Theorem 6 are used to obtain (14).
For a fixed code ensemble cn, we define the union bound to
the error probability as,

P ub
e (cn) =

1
Mn

Mn∑
i=1

∑
j ̸=i

P[xi → xj ], (15)

whose exponent is

Eub
n (cn) = − 1

n
log P ub

e (cn). (16)

For the above union bound and low rates, we refine the upper
tail bound in (14) as follows.

Theorem 3: For all rates R such that Etrc(R,Q) >
Erce(R,Q), for any ϵ > 0 and large enough n the sequence
of random variables {Eub

n (Cn)}∞n=1 satisfies:

P
[
Eub

n (Cn) ≥ Eex(R,Q) + ϵ
]
≤ 2−2nϵ

. (17)

Proof: Sec. V-C.
Theorem 3 states that the probability to find a code in the
i.i.d. ensemble for which Eub

n is larger than the expurgated
exponent tends to zero double-exponentially fast in n. In [12] it
is shown that, for constant composition codes, the probability
to find a code whose exponent En exceeds the expurgated
exponent decays double-exponentially. This fact together with
Theorem 3 suggest, although not proven here, that it is highly
unlikely to find a code in the i.i.d. ensemble whose exponent
exceeds the expurgated exponent. In Theorem 4 below we
show that this is indeed the case at least for R = 0. The proof
of Theorem 3 is similar in spirit to [12, Th. 2], the differences
being detailed in Sec. V-C and Appendix A-J.

Theorem 4: For the i.i.d. or constant-composition ensem-
bles with rate R = 0 and any ε > 0, we have that

P [En(Cn) ≥ Etrc(0, Q) + ϵ] ≤ 2−2nϵ

. (18)

Proof: Sec. V-D.
Theorem 4 shows that, at least for the point R = 0, the proba-
bility of finding a code from the i.i.d. or constant-composition
ensembles with an exponent larger than Etrc(0, Q) =
Eex(0, Q) decays double-exponentially in n.

So far, we have introduced results related to the convergence
in probability of the error exponent for i.i.d. and constant
composition ensembles. In the remainder of the section,
we discuss the convergence in distribution of the sequence

of error exponent random variables {En(Cn)}∞n=1 as n →∞
for vanishingly small rates. Theorem 5 and Theorem 6 below
are valid for i.i.d. codes and for constant-composition codes
as long as the type QX satisfies

|Pn(X × X )|
(

1− |Tn(Q∗XX′)|
|Tn(QX)|2

)
→ 0 (19)

as n → ∞, where Q∗XX′ = QXQX . We will call types QX

fulfilling (19) regular types.
Theorem 5: Let Mn = M be a constant number of

messages, fixed for every n, and let Uij ∼ N (0, 1), for
i = 1, . . . ,M and j = 1, . . . ,M such that i ̸= j, be a
set of independent standard normal random variables. For
i.i.d. codes or constant-composition codes with the type QX

satisfying (19), the error exponent sequence {En(Cn)}∞n=1 for
both i.i.d. and constant-composition random-coding ensembles
with regular type satisfies

En(Cn)− E[En(Cn)]√
Var(En(Cn))

(d)−→ mini ̸=j Uij − E[mini ̸=j Uij ]√
Var(mini̸=j Uij)

.

(20)

Proof: Sec. V-E.
We illustrate in Fig. 2 the histogram of the error exponent

En(Cn) used over a binary symmetric channel (BSC) with
crossover probability p = 0.11, equiprobable input and M =
4 codewords for a blocklength of n = 10, 000. The histograms
are obtained for the i.i.d. and constant-composition ensembles
using the Monte Carlo method with 107 trials. For the sake
of comparison, we also depict the asymptotic distribution of
the random variable mini ̸=j Uij in the right-hand side of (20)
(solid), and a normal approximation with the same mean and
variance (dashed). We observe that the two histograms match
the asymptotic distribution on the right-hand side of (20).
When comparing with the Gaussian approximation, is a notice-
able difference in the two tails. We refer to the distribution on
the right-hand side of (20) as Gaussian-like.

Theorem 5, valid for an exactly constant number of mes-
sages, states that the random-coding error exponent converges
to a Gaussian-like distribution. In Theorem 6 below we let the
number of messages Mn grow sub-exponentially with n, and
show that as long as Mn ≫

√
n, the error exponent sequence

{En(Cn)}∞n=1 converges to a Gaussian.
Theorem 6: Let Mn be a subexponential number of mes-

sages, namely limn→∞
1
n log Mn = 0, satisfying

∞∑
n=1

1
Mn(Mn − 1)

< ∞. (21)

Then, the the error exponent sequence {En(Cn)}∞n=1 for i.i.d.
and constant-composition ensembles satisfies

En(Cn)− E[En(Cn)]√
Var(En(Cn))

(d)−→N (0, 1). (22)

Proof: Sec. V-F.
For a constant number of messages Mn = M , the condi-

tion (21) in Theorem 6 is not satisfied, and therefore the error
exponent sequence does not concentrate according to (22) but
to (20) instead. For example, when the number of messages is
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Fig. 2. Distribution of the error exponent of the (a) i.i.d. and (b) constant-composition codes over the BSC with M = 4, n = 10, 000, symmetric input
distribution and composition, and p = 0.11. Histograms of En(Cn) with 107 trials, dashed black lines are normal distributions, and solid blue lines are the
distributions of mini ̸=j Uij .

such that Mn = Ω
(
n

1+δ
2
)
, the condition (21) is satisfied and

therefore the error exponent sequence converges to (22).

IV. GENERAL CHANNELS

In this section, we introduce a number of new results
related to the concentration of the error probability and
error exponent for relatively general channels and ensembles.
Specifically, Theorem 7 applies to any channel for which
the strong converse holds. The rest of the results in this
section hold for any channel, discrete or continuous, with
and without memory and pairwise independent ensembles with
the following exceptions: Corollary 1 and Theorem 12, hold
for ensembles satisfying a certain condition and Theorem 11
which holds only for i.i.d. ensembles. The first result is a
direct consequence of elementary probability results such as
Chebyshev’s inequality or Jensen’s inequality.

Theorem 7: For a channel and random-coding ensemble
such that E[Pe(Cn)] → 0 as n → ∞ for 0 ≤ R < C and
E[Pe(Cn)] → 1 for R > C, the error probability sequence
{Pe(Cn)}∞n=1 satisfies

Pe(Cn)− E[Pe(Cn)]
(p)−→ 0. (23)

Proof: Sec. V-G.
The following theorem has implications on the convergence

of the error exponent to a Gaussian r.v., as show in Corollary 1:
Theorem 8: For a general channel and a pairwise-

independent ensemble, under the condition that

E[Pe(Cn)2]
E[Pe(Cn)]2

→ 1, (24)

we have that the error exponent sequence {En(Cn)}∞n=1 sat-
isfies

En(Cn)
(p)−→Etrc(R). (25)

Proof: Sec. V-I.
Theorem 8 has the following corollary:

Corollary 1: For a general channel and pairwise-
independent ensemble such that the normalized error

probability converges in distribution to the standard normal
distribution, that is

Pe(Cn)− E[Pe(Cn)]√
Var(Pe(Cn))

(d)−→N (0, 1), (26)

we have that

En(Cn)
(p)−→Etrc(R). (27)

Proof: Sec. V-K.
We remark that condition (26) is sufficient, but not necessary

for the convergence in probability.
The next result is based on [15, Th. 1] and the

Paley-Zygmund inequality [23, p. 1] and has implications on
the convergence of the exponent to a Gaussian r.v., as shown
by Theorem 10:

Theorem 9: For a general channel and pariwise-
independent ensemble with rate such that Etrc(R) > Erce(R),
we have

E[Pe(Cn)]2

E[Pe(Cn)2]
→ 0. (28)

Proof: Sec. V-H.
For low rates, where the typical random-coding error expo-

nent is strictly larger than the random-coding error exponent,
the second-order moment of the error probability vanishes
slower than the squared first-order moment. This implies that
Var (Pe(Cn)) vanishes slower than the squared ensemble aver-
age E[Pe(Cn)]2, suggesting that the error probability cannot
converge to a Gaussian distribution in this rate regime. Such
intuition is formalized in the next results, based on Theorem 9
and Slutsky’s theorem [24, p. 334].

Theorem 10: For any code ensemble and channel such
that Etrc(R) > Erce(R), it holds that the error probability
sequence {Pe(Cn)}∞n=1 satisfies

Pe(Cn)− E[Pe(Cn)]√
Var(Pe(Cn))

(d)

−̸→N (0, 1). (29)

Proof: Sec. V-J.
In the remainder of the section, we state two auxiliary

results related to the convergence in distribution of the union
bound to the error probability of a code cn in (15), and the
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convergence in distribution of an arbitrary function of the error
probability.

Theorem 11: Let Y12 and γ2 be two parameters respectively
given by Y12 = P

[
{X1 → X2}

]
− E

[
P[{X1 → X2}]

]
and γ2 = Var

(
P[{X1 → X2}]

)
. For general channels and

i.i.d. ensembles such that
Mn

γ3
E[|Y12|3] → 0 ,

Mn

γ4
E[|Y12|4] → 0 (30)

as n → ∞, we have that the error probability sequence
{P ub

e (Cn)}∞n=1 satisfies

P ub
e (Cn)− E[P ub

e (Cn)]√
Var(P ub

e (Cn))
(d)−→N (0, 1). (31)

Proof: Sec. V-L.
While Theorem 11 gives sufficient conditions for the conver-

gence in probability of an upper bound on the error probability,
Theorem 10 gives a sufficient condition that prevents this
to happen. These results imply that for all codes and chan-
nels such that the two conditions (30) hold, the condition
Etrc(R,Q) > Erce(R,Q) cannot be satisfied.

In the last result, we develop a general condition for the
convergence in distribution of a random variable sequence to
the standard normal random variable. We have been unable to
specify for which specific channels and (random) codebook
ensembles these conditions hold.

Theorem 12: Let gn : [0, 1] → R be an arbitrary sequence
of functions. For channels and random codebook ensembles
satisfying

E
[∣∣∣∣gn(Pe(Cn))− E[gn(Pe(Cn))]√

Var(gn(Pe(Cn)))

∣∣∣∣]→ 0, (32)

and

E
[∣∣∣∣(gn(Pe(Cn))− E[gn(Pe(Cn))]√

Var(gn(Pe(Cn)))

)2

− 1
∣∣∣∣]→ 0, (33)

the sequence {gn(Pe(Cn))}∞n=1 satisfies

gn(Pe(Cn))− E[gn(Pe(Cn))]√
Var(gn(Pe(Cn)))

(d)−→N (0, 1). (34)

Proof: Sec. V-M.

V. PROOFS OF THEOREMS

Before proving our main results, we introduce some defi-
nitions related to the Stein’s method [25] used throughout the
proofs. We also propose a novel, modified Wasserstein metric
that is used throughout the section. Let V be the set of positive-
valued piece-wise functions h(u) given, for some c ≥ 0 and
a ∈ R, by

h(u) =


c u ≤ a

a + c− u a < u < a + c

0 u ≥ a + c.

(35)

We next define two probability metrics.
Definition 1: For two random variables X and Y , the

probability metrics have the following form:

dH(X, Y ) = sup
h∈H

∣∣E[h(X)]− E[h(Y )]
∣∣, (36)

d̄H(X,Y ) = sup
h∈H

min
{∣∣E[h(X)]− E[h(Y )]

∣∣,
∣∣E[h(−X)]− E[h(Y )]

∣∣}, (37)

where H is some family of “test” functions on R.
By taking H = {1{· ≤ u} u ∈ R} in (36) and the prob-

ability metric dH(X, Y ), we obtain the Kolmogorov metric,
which denote by dK [25]. By definition, the convergence in
the Kolmogorov metric means the convergence in distribution.
By taking H = {h : R → R : |h(u) − h(v)| ≤ |u − v|} and
the probability metric dH(X, Y ), we obtain the Wasserstein
metric, which we denote dW [25]. By taking H = {h ∈ V :
c ≤ 4

√
2π} and the probability metric dH(X, Y ), we obtain a

slightly modified Wasserstein metric d̃W,mod. Finally, by tak-
ing H = {h ∈ V : c ≤ 4

√
2π} and the probability metric

d̄H(X, Y ), we obtain a modified Wasserstein metric,1 which
we denote dW,mod.

The following auxiliary lemmas whose proof can be found
in the Appendix A-A, are key in deriving the convergence in
distribution results of this paper.

Lemma 1: Let {Un}∞n=1 be a sequence of random variables
such that Un

(d)−→U for some random variable U . Then, under
the condition that E[|Un|2+ε] < L for some ε > 0 and constant
L < ∞, it holds that

Un − E[Un]√
Var(Un)

(d)−→ U − E[U ]√
Var(U)

. (38)

Proof: Appendix A-A.
Lemma 2 (De Caen [26]): Let {Ai}i∈I be a finite family

of events in a probability space (Ω,F , P). Then2

P
(⋃

i∈I
Ai

)
≥
∑
i∈I

P2(Ai)∑
j∈I P[Ai ∩Aj ]

. (39)

A. Proof of Theorem 1

The proof of Theorem 1 is structured as follows. From (40)
to (42), we prove our theorem for the case that Etrc(R,Q) =
Erce(R,Q), while the rest of the proof is for Etrc(R,Q) >
Erce(R,Q). After introducing some definitions and auxiliary
lemmas from (43) to (57), the proof individually studies the
three terms of (58): the first term from (59) to (91), the
second term from (92) to (112) and the third term from (113)
to (115). We end the proof by adapting some of the steps to
the constant-composition ensemble in (116).

Lemma 3: Suppose that for the channel considered,
Etrc(R,Q) = Erce(R,Q). Then for the i.i.d. and constant-
composition ensembles, it holds that limn→∞ E

[
Pe(Cn)

λ
n

]
=

2−λEtrc(R,Q) for any λ > 0.
Proof: Appendix A-B.

For the case Etrc(R,Q) = Erce(R,Q), we let φ(λ) =
2−λEtrc(R,Q) for all λ > 0 be the Laplace transform of
the constant random variable −Etrc(R,Q), and let φn(λ)
be the Laplace transform of the distribution of 1

n log Pe(Cn),

1This definition of Wasserstein metric is a variant of the definition in [25],
where we constraint the set H to achieve a tighter bound.

2We make the convention 0
0

= 0, so that events of probability zero are not
counted in (39).
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that is, φn(λ) = E[2λ 1
n log Pe(Cn)] = E

[
Pe(Cn)

λ
n

]
. Then,

by Lemma 3, it holds that

lim
n→∞

φn(λ) = 2−λEtrc(R,Q). (40)

Applying the Levy’s continuity theorem [27, Sec. XIII.1],
we obtain from (40) that

− 1
n

log Pe(Cn)
(d)−→Etrc(R,Q). (41)

However, we know that the convergence in distribution to a
constant implies convergence in probability, i. e.

− 1
n

log Pe(Cn)
(p)−→Etrc(R,Q). (42)

We now switch to the range of rates for which Etrc(R,Q) >
Erce(R,Q). We first need some definitions and lemmas. For
this range of rates, the proof uses the union bound to the error
probability (4) and shows that it gives a good estimate of the
probability of error. The union bound is given by,

Pe(cn) ≤ P ub
e (cn), (43)

where P ub
e (cn) is defined in (15), and we define its

finite-length error exponent as

Eub
n (cn) = − 1

n
log P ub

e (cn). (44)

We denote by Etrc(R,Q) and Erce(R,Q) respectively the
typical error and the random coding error exponents for the
fixed underlying distribution Q, and we define

dB(x, x′) = − log
(∑

y

√
W (y|x)W (y|x′)

)
(45)

to be the Bhattacharyya distance between symbols x, x′ ∈ X .
We assume that the DMC is such that

0 < Db = max
x,x′

dB(x, x′) < ∞, (46)

that is, we leave the cases where W (y|x)W (y|x′) = 0 for for
some x and x′ and all y beyond the scope of the paper. This
case would correspond to a positive zero-error capacity, where
some symbols cannot be confused at the decoder.

We let Pn(X×X ) be the set of all joint types on X×X , and
P(X × X ) be the set of all possible probability distributions
on X × X . For each PXX′ ∈ Pn(X × X ), let N (PXX′) be
the number of codeword pairs in a specific code cn such that
their joint type is PXX′ . Let QX = Q′X = Q. Define

Vn =
{
N (PXX′) = 0, ∀PXX′ ∈ Pn(X × X ) :

D(PXX′∥QXQ′X) > 2R
}

(47)

which is the event that the (random) number of pairs
(i, j) ∈ [Mn] × [Mn] such that i ̸= j and (Xi, Xj) ∈
Tn(PXX′) is equal to zero for each n-joint type PXX′ with
D(PXX′∥QXQ′X) > 2R. In addition, define Ētrc(ν, R, Q)
in (49), as shown at the bottom of the next page, where
P ∗XX′ is an optimizer of minPXX′∈P D(PXX′∥QXQX′) +∑

x,x′ dB(x, x′)PXX′(x, x′)−R.

First, we introduce some auxiliary results about the expo-
nential decay of the pairwise error probability between two
codewords, using the method of types.

Lemma 4: For R < Rcrit, the pairwise codeword error
probability between two codewords xi, xj with joint type
PXX′ satisfies P[xi → xj |PXX′ ] = gn(PXX′) :=
2−n

∑
x,x′ dB(x,x′)PXX′ (x,x′).

Proof: Appendix A-C.
Lemma 5: Recall the definition of Vn in (47). Let Cn be a

given i.i.d. random codebook ensemble. Then, we have that
P
[
Vc

n

] .
≤ 2−nα(R) for some α(R) > 0 for all R ≥ 0.

Proof: Appendix A-D.
Lemma 6: Recall the definition of Ētrc(ν, R) in (49).

Assume that 0 < R < Rcrit. Take an arbitrary ν ≥ 0 such
that ν ≤ 2R. Let QX = QX′ = Q and define P =

{
PXX′ ∈

P(X × X ) : D(PXX′∥QXQ′X) ≤ 2R− ν
}

. Also let Dn be

Dn =
1
M

∑
PXX′∈P

N (PXX′)gn(PXX′) (50)

where the function gn : X ×X → R+ is defined in Lemma 4.
Then,

E[Dn] .= 2−nĒtrc(ν,R) (51)

and also, we have
Var(Dn)(
E[Dn]

)2 .
≤ 2−nν . (52)

Proof: Appendix A-E.
Lemma 7: Let

Eub
trc(R,Q) = lim

n→∞
− 1

n
E[log P ub

e (Cn)]. (53)

Then, for 0 < R < Rcrit, the following holds:

Eub
trc(R,Q)

= min
PXX′∈P(X×X ):D(PXX′∥QXQ′X)≤2R

D(PXX′∥QXQ′X)

+
∑
x,x′

dB(x, x′)PXX′(x, x′)−R (54)

= Ētrc(0, R, Q), (55)

where Ētrc is defined in (49), Lemma 6.
Proof: Appendix A-F.

Lemma 8: Consider the range of rates 0 ≤ R < Rcrit such
that Eub

trc(R,Q) > Erce(R,Q). Then, for any ε > 0, there
exists some κ > 0 such that

P
[
P ub

e (Cn) >
1
2
2−n(Eub

trc(R,Q)−ε)

]
+ P

[
P ub

e (Cn) < 2−n(Eub
trc(R,Q)+ε)

] .
≤ 1

n1+κ
. (56)

Proof: Appendix A-G.
Lemma 9: For all rate R such that 0 < R < Rcrit and for

some δ(R) > 0, it holds that

0 ≤ E[P ub
e (Cn)]

E[Pe(Cn)]
− 1 ≤ 2−n

(
δ(R)+Eub

trc(R,Q)−Erce(R,Q)
)
.

(57)

Proof: Appendix A-H.
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We are now equipped to prove Theorem 1 by observing that
for any ε > 0, the convergence in probability of En(Cn) to
Etrc(R,Q) can be written and upper bounded as

P
[
|En(Cn)− Etrc(R)| > 3ε

]
≤ P

[∣∣En(Cn)− Eub
n (Cn)

∣∣ > ε
]

︸ ︷︷ ︸
αn

+ P
[∣∣∣∣Eub

n (Cn)−
(
− 1

n
E
[
log P ub

e (Cn)
]) ∣∣∣∣ > ε

]
︸ ︷︷ ︸

βn

+ P
[∣∣∣∣ (− 1

n
E
[
log P ub

e (Cn)
])
− Etrc(R,Q)

∣∣∣∣ > ε

]
︸ ︷︷ ︸

γn

.

(58)

We next show that the terms αn, βn and γn in (58) tend to
zero as n →∞, implying the concentration in (12).

1) First Term of (58): The term αn quantifies the deviation
of the error exponent of the error probability (5) from the union
bound (15). By the symmetry of the pairwise-independent i.i.d.
random-coding ensemble, for any pair of codewords Xi and
Xj with i ̸= j we have that

E
[
P[Xi → Xj ]

]
= E

[
P[X1 → X2]

]
. (59)

Similarly, for any triplet of codewords Xi, Xj and Xk with
j, k ̸= i and j ̸= k, it holds that

E
[
P
[
{Xi → Xj} ∩ {Xi → Xk}

]]
= E

[
P
[
{X1 → X2} ∩ {X1 → X3}

]]
(60)

where in both (59) and (60), the expectations are calculated
with respect to the i.i.d. ensemble codeword distribution
Qn(x) =

∏n
k=1 Q(xk), where Q(x) is the single-letter input

distribution. We next provide separate convergence of αn for
R = 0 and for 0 < R < Rcrit(Q).

For the case of R = 0, we first observe that the union
bound (15) can be bounded from above as

P ub
e (Cn) =

1
Mn

Mn∑
i=1

∑
j ̸=i

P[xi → xj ] (61)

≤ (Mn − 1) max
i ̸=j

P[xi → xj ], (62)

while the probability of error (4) can be lower bounded by

Pe(Cn) ≥ 1
Mn

max
i ̸=j

P[xi → xj ]. (63)

From (62) and (63), we have that the first term in the
r.h.s. of (58) satisfies

αn = P
[
P ub

e (Cn) > 2nεPe(Cn)
]

(64)

≤ P
[
(Mn − 1) max

i ̸=j
P[Xi → Xj ] >

2nε 1
Mn

max
i ̸=j

P[Xi → Xj ]
]

(65)

= 1

{
(Mn − 1) > 2nε 1

Mn

}
. (66)

Since Mn is any sub-exponential sequence in n, the expression
in (66) vanishes as n →∞ for ε > 0.

We now consider the case of 0 < R < Rcrit(Q). We define
the sequence an ≜ 2−n(Eub

trc(R,Q)+ ε
2 ). Then, we have

P
[∣∣∣∣En(Cn)− Eub

n (Cn)
∣∣∣∣ > ε

]
= P

[
P ub

e (Cn)− an − 2εn
(
Pe(Cn)− an

)
> (2εn − 1)an

]
(67)

≤ P
[
P ub

e (Cn)− an >
1
2
(2εn − 1)an

]
+ P

[
− 2εn

(
Pe(Cn)− an

)
>

1
2
(2εn − 1)an

]
,

(68)

where (68) follows from

P[A + B > 2C] ≤ P[{A > C} ∪ {B > C}]
≤ P[A > C] + P[B > C]. (69)

Now, observe that

P
[
P ub

e (Cn)− an >
1
2
(2εn − 1)an

]
= P

[
P ub

e (Cn) >
1
2
(2εn + 1)2−n(Eub

trc(R,Q)+ε/2)

]
(70)

≤ P
[
P ub

e (Cn) >
1
2
2−n(Eub

trc(R,Q)−ε/2)

]
. (71)

On the other hand, from (69) we also have

P
[
− 2εn

(
Pe(Cn)− an

)
>

1
2
(2εn − 1)an

]
≤ P

[
2εn(P ub

e (Cn)− Pe(Cn)) >
1
4
(2εn − 1)an

]
+ P

[
− 2εn

(
P ub

e (Cn)− an

)
>

1
4
(2εn − 1)an

]
. (72)

Ētrc(ν, R, Q) := min
PXX′∈P(X×X ):D(PXX′∥QXQ′X)≤2R−ν

(
D(PXX′∥QXQ′X) +

∑
x,x′

dB(x, x′)PXX′(x, x′)−R
)

(48)

=

{
R +

∑
x,x′ dB(x, x′)P ∗XX′(x, x′), D(P ∗XX′∥QXQ′X) = 2R− ν,

Erce(R,Q) otherwise
, (49)
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Now, we have

P
[
− 2εn

(
P ub

e (Cn)− an

)
>

1
4
(2εn − 1)an

]
= P

[
P ub

e (Cn) <

(
1− 1

4

(
2εn − 1

2εn

))
2−n(Eub

trc(R,Q)+ε/2)

]
(73)

≤ P
[
P ub

e (Cn) < 2−n(Eub
trc(R,Q)+ε/2)

]
. (74)

In addition, we also have

P
[
2εn(P ub

e (Cn)− Pe(Cn)) >
1
4
(2εn − 1)an

]
.
≤ a−1

n E[P ub
e (Cn)− Pe(Cn)] (75)

= 2(Eub
trc(R,Q)+ε/2)nE[P ub

e (Cn)− Pe(Cn)], (76)

where (75) follows from P ub
e (Cn) ≥ Pe(Cn) and Markov’s

inequality, and (76) follows from the definition of the
sequence an.

Now, for R > 0 and Eub
trc(R,Q) > Erce(R,Q), from

Lemma 9, we have

E[P ub
e (Cn)− Pe(Cn)]

= E[Pe(Cn)]
(

E[P ub
e (Cn)]

E[Pe(Cn)]
− 1
)

(77)

.
≤ 2−nErce(R,Q)

(
2−n

(
δ(R)+Eub

trc(R,Q)−Erce(R,Q)
))

. (78)

From (76) and (78), we obtain

P
[
2εn(P ub

e (Cn)− Pe(Cn)) >
(2εn − 1)

4
an

]
.
≤ 2(Eub

trc(R,Q)+ ε
2 )n2−nErce(R,Q)

× 2−n
(
δ(R)+Eub

trc(R,Q)−Erce(R,Q)
)

(79)
.
≤ 2−n

(
δ(R)−ε/2

)
. (80)

Hence, from (72), (74), and (80), we have

P
[
− 2εn

(
Pe(Cn)− an

)
>

1
2
(2εn − 1)an

]
≤P
[
P ub

e (Cn) < 2−n(Eub
trc(R,Q)+ε/2)

]
+2−n

(
δ(R)−ε/2

)
. (81)

From (68), (71), and (81), we have

P
[∣∣∣∣En(Cn)− Eub

n (Cn)
∣∣∣∣ > ε

]
≤ P

[
P ub

e (Cn) >
1
2
2−n(Eub

trc(R,Q)−ε/2)

]
+ P

[
P ub

e (Cn) < 2−n(Eub
trc(R,Q)+ε/2)

]
+ 2−n

(
δ(R)−ε/2

)
(82)

≤ 1
n1+β

+ 2−n
(
δ(R)−ε/2

)
(83)

→ 0, (84)

for any 0 < ε < 2δ(R), where (83) follows from
Lemma 8 with β being a positive constant. Since P

[∣∣En(Cn)−
Eub

n (Cn)
∣∣ > ε

]
is a non-increasing function in ε, (84) must

hold for all ε > 0.

Furthermore, since P
[∣∣En(Cn) − Eub

n (Cn)
∣∣ > ε

]
is a

non-increasing function in ε, it holds that

P
[∣∣En(Cn)− Eub

n (Cn)
∣∣ > ε

]
≤ 1

n1+β
+ 2−nδ(R)/2 (85)

for any ε ∈ (0, 2δ(R)). It follows from (85) that∑∞
n=1 P

[∣∣En(Cn) − Eub
n (Cn)

∣∣ > ε
]

< ∞. Hence, by Borel-
Cantelli’s lemma [24, Th. 4.3], we have

En(Cn)− Eub
n (Cn)

(a.s.)−−−→ 0, (86)

where
(a.s.)−−−→ denotes almost sure convergence as n →∞, that

is, a sequence of random variables {An}∞n=1 converge almost
surely to A if P [limn→∞An = A] = 1. On the other hand,
observe that∣∣En(Cn)− Eub

n (Cn)
∣∣ ≤ −2 log Pe(Cn)

n
(87)

≤ 2Esp(R) + o(1), (88)

where (88) follows from the fact that the error exponent of any
sufficiently long code is upper bounded by the sphere-packing
bound Esp(R) [4, Th. 2].

Hence, from (86) and (88), by the bounded convergence
theorem [24, Th. 5.4], it holds that

lim
n→∞

E
[
En(Cn)− Eub

n (Cn)
]

= 0. (89)

This means that

Etrc(R,Q) = lim
n→∞

Eub
n (Cn) (90)

= Eub
trc(R,Q). (91)

2) Second Term of (58): Using Chebyshev’s inequality,
we have

P
[∣∣∣∣Eub

n (Cn)−
(
− 1

n
E
[
log P ub

e (Cn)
]) ∣∣∣∣ > ε

]
≤ 1

ε2
Var

(
− log P ub

e (Cn)
n

)
. (92)

Now, define ξ(p, n,R) ≜ 2−n(Eub
trc(R,Q)+R).

From (92), we obtain

P
[∣∣∣∣Eub

n (Cn)−
(
− 1

n
E
[
log P ub

e (Cn)
]) ∣∣∣∣ > ε

]
≤ 1

n2ε2
E
[(

− log(Mn − 1)− log ξ(p, n,R)

− log
(

P ub
e (Cn)

(Mn − 1)ξ(p, n,R)

))2]
− 1

ε2

(
E
[
− log P ub

e (Cn)
]

n

)2

. (93)

By Lemma 7, we know that

lim
n→∞

E
[
− log P ub

e (Cn)
]

n
= Eub

trc(R,Q), (94)

hence, it holds that

lim sup
n→∞

P
[∣∣∣∣Eub

n (Cn)−
(
− 1

n
E
[
log P ub

e (Cn)
]) ∣∣∣∣ > ε

]
= lim sup

n→∞

1
ε2

E
[(

Eub
trc(R,Q)
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− 1
n

log
(

P ub
e (Cn)

(Mn − 1)ξ(p, n,R)

))2]
−
(
Eub

trc(R,Q)
)2

ε2

(95)

≤ 1
ε2

(
(Eub

trc(R,Q))2 − 2Eub
trc(R,Q)

× lim inf
n→∞

E
[

1
n

log
(

P ub
e (Cn)

(Mn − 1)ξ(p, n,R)

)]
+ lim sup

n→∞
E
[(

1
n

log
(

P ub
e (Cn)

(Mn − 1)ξ(p, n,R)

))2])
−
(
Eub

trc(R,Q)
)2

ε2
, (96)

where (96) follows from the sub-additivity of lim sup. Now,
we need to estimate

lim inf
n→∞

E
[

1
n

log
(

P ub
e (Cn)

(Mn − 1)ξ(p, n,R)

)]
and

lim sup
n→∞

E
[(

1
n

log
(

P ub
e (Cn)

(Mn − 1)ξ(p, n,R)

))2]
.

First, we show that

1
n

log
(

P ub
e (Cn)

(M − 1)ξ(p, n,R)

)
(a.s.)−−−→ 0. (97)

Indeed, take an arbitrary ν > 0 and observe that

P
[∣∣∣∣ 1n log

(
P ub

e (Cn)
(Mn − 1)ξ(p, n,R)

)∣∣∣∣ > ν

]
= P

[
P ub

e (Cn)
Mn − 1

> 2−n(Eub
trc(R,Q)+R−ν)

]
+ P

[
P ub

e (Cn)
Mn − 1

< 2−N(Eub
trc(R,Q)+R+ν)

]
(98)

≤ P
[
P ub

e (Cn) >
1
2
2−n(Eub

trc(R,Q)−ν)

]
+ P

[
P ub

e (Cn) < 2−n(Eub
trc(R,Q)+ν)

]
(99)

≤ 1
n1+β

, (100)

for some constants β > 0, where (100) follows from Lemma 8.
From (100), we obtain

∞∑
n=1

P
[∣∣∣∣ 1n log

(
P ub

e (Cn)
(Mn − 1)ξ(p, n,R)

)∣∣∣∣ > ν

]
<

∞∑
n=1

1
n1+β

< ∞ (101)

by using D’Alembert criterion.
This means that (97) holds, or

1
n

log
(

P ub
e (Cn)

(Mn − 1)ξ(p, n,R)

)
(a.s.)−−−→ 0 (102)

by Borel-Cantelli lemma [24, Th. 4.3].
Now, since 0 ≤ P(Xi → Xj) ≤ 1 for all i, j ∈ [M ] : i ̸=

j, it holds that

1
n

log
(

P ub
e (Cn)

(Mn − 1)ξ(p, n,R)

)

=
1
n

log
(

1
Mn(Mn − 1)ξ(p, n,R)

∑
i ̸=j

P(Xi → Xj)
)
(103)

≤ 1
n

log
(

1
ξ(p, n,R)

)
(104)

≤ Eub
trc(R,Q) + R, (105)

where (105) follows from the definition of ξ(p, n,R). On the
other hand, from the sphere-packing bound,3 it holds almost
surely that

1
n

log
(

P ub
e (Cn)

(Mn − 1)ξ(p, n,R)

)
≥ 1

n
log
(

Pe(Cn)
(Mn − 1)ξ(p, n,R)

)
(106)

.
≥ 1

n
log
(

2−nEsp(R)

(Mn − 1)ξ(p, n,R)

)
(107)

= Eub
trc(R,Q)− Esp(R), (108)

where (107) follows from the sphere-packing bound
[4, Th. 2], and (108) follows from the definition of ξ(p, n,R)
and Mn = 2nR.

From (105) and (108), 1
n log

(
Pub

e (Cn)
(Mn−1)ξ(p,n,R)

)
is bounded

(both below and above). Hence, by the bounded convergence
theorem [24, Th. 5.4] and the continuous mapping theorem
[24, Th. 4.3], it holds that

E
[

1
n

log
(

P ub
e (Cn)

(Mn − 1)ξ(p, n,R)

)]
→ 0, (109)

E
[(

1
n

log
(

P ub
e (Cn)

(Mn − 1)ξ(p, n,R)

))2]
→ 0. (110)

From (96), (109), and (110), we finally have

lim sup
n→∞

P
[∣∣∣∣Eub

n (Cn)−
(
− 1

n
E
[
log P ub

e (Cn)
]) ∣∣∣∣ > ε

]
= 0

(111)

for any arbitrary ε > 0. This leads to

lim
n→∞

P
[∣∣∣∣Eub

n (Cn)−
(
− 1

n
E
[
log P ub

e (Cn)
]) ∣∣∣∣ > ε

]
= 0

(112)

by the fact that the probability measure is bounded from below
by zero.

3) Third Term of (58): By Lemma 7, it is known that

E
[
− log P ub

e (Cn)
n

]
→ Eub

trc(R,Q). (113)

On the other hand, from (91) in Step 1, we know that

Eub
trc(R,Q) = Etrc(R,Q). (114)

It follows from (113) and (114) that

P
[∣∣∣∣E[− log P ub

e (Cn)
n

]
− Etrc(R,Q)

∣∣∣∣ > ε

]
→ 0. (115)

3In case that the sphere packing bound diverges, we can use Eex(R = 0)
as an upper bound, which is finite at R = 0 unless the zero error capacity
C0 > 0.

Authorized licensed use limited to: CAMBRIDGE UNIV. Downloaded on November 29,2023 at 11:40:05 UTC from IEEE Xplore.  Restrictions apply. 



TRUONG et al.: CONCENTRATION PROPERTIES OF RANDOM CODES 7509

In conclusion, as anticipated, the three terms of (58) tend
to zero as n → ∞, showing (12) for rates below the
critical rate. Together with the case Etrc(R,Q) = Erce(R,Q)
in (42), we proved Theorem 1, which states the convergence in
probability of the error exponent of the codes in the ensemble
to the typical random-coding error exponent.

We end our proof with the extension to constant-
composition codes. For the constant-composition code, and
for all rates such that Rcrit ≤ R ≤ C, the proof of Theorem 1
holds by using the Levy’s continuity theorem since it is not
hard to see that Erce(R,Q) = Etrc(R,Q) for this case. At all
the rate 0 ≤ R ≤ Etrc(R,Q), Lemma 4 - Lemma 6 still
hold since 1{(Xi, Xj) ∈ Tn(QXX′)} and 1{(Xk, X l) ∈
Tn(Q̃XX′)} are still pairwise-independent for the constant-
composition code for all {i, j, k, l ∈ [M ] : i ̸= j, k ̸= l}.
In Lemma 7, the typical error exponent of the union bound
should be replaced by Eub

trc for the constant-composition code
in [9, Th. 1]. To show that Theorem 1 still holds for the
constant-composition code, we need to prove that the mapping
from the error probability and the union bound in Lemma 8
and Lemma 9 still work. It is not hard to see that the proof
of Lemma 8 still holds for the constant-composition code
since its correctness depends on Lemma 4, Lemma 6 and the
fact that Ṽij’s are pairwise-independent where Ṽij is defined
in (450). Lemma 9 still holds for the constant-composition
code, as stated as follows.

Lemma 10: For any constant-composition code with type
Q and for all rates such that 0 < R < Rcrit, we have

0 ≤ E[P ub
e (Cn)]

E[Pe(Cn)]
− 1 ≤ 2−n

(
δ(R)+Eub

trc(R,Q)−Erce(R,Q)
)

(116)

for some δ(R) > 0.
Proof: To prove Lemma 10, we use the same proof as

Lemma 9 in Appendix A-H. In fact, equation (520) still holds
for the constant-composition code. In addition, the pairwise
error probability only depends on the joint-type of the two
codewords as in the i.i.d .case.

B. Proof of Theorem 2

The proof of Theorem 2 is structured as follows. From (117)
to (150) we first prove (13), and then from (151) to (156) we
prove (14), both for the i.i.d. ensemble.

To prove (13), Under the condition that Erce(R,Q) =
Etrc(R,Q), we observe that

P
[
− 1

n
log Pe(Cn) < Etrc(R,Q)− ε

]
= P

[
Pe(Cn) > 2−n(Etrc(R,Q)−ε)

]
(117)

.= 2n(Etrc(R,Q)−ε)2−nErce(R,Q) (118)
= 2−nε, (119)

where (118) follows from Markov’s inequality and
E
[
Pe(Cn)

] .= 2−nErce(R,Q), (119) follows from Erce(R,Q) =
Etrc(R,Q).

Now, for any s > 0, observe that

P
[
− 1

n
log Pe(Cn) < Etrc(R,Q)− ε

]
= P

[
2

s
n log Pe(Cn) > 2−s(Etrc(R,Q)−ε)

]
(120)

≤ 2s(Etrc(R,Q)−ε)E
[
2

s
n log Pe(Cn)

]
(121)

≤ 2s(Etrc(R,Q)−ε)E
[(

P ub
e (Cn)

)s/n]
. (122)

On the other hand, for any 0 ≤ s ≤ n and λ > 0, we have

E
[(

P ub
e (Cn)

)s/n]
= E

[(
1
M

∑
i ̸=j

P(Xi → Xj)
)s/n]

(123)

≤ 1
Ms/n

∑
i ̸=j

E
[(

P(Xi → Xj)
)s/n]

(124)

=
M(M − 1)

Ms/n
E
[(

P(X1 → X2)
)s/n]

, (125)

where (124) follows from (x1 +x2 + · · ·+xn)α ≤ xα
1 +xα

2 +
· · ·+ xα

n for any x1, x2, · · · , xn ≥ 0 while α ∈ [0, 1].
On the other hand, by Lemma 4, the probability P(X1 →

X2) with joint type QXX′ satisfies

P(X1 → X2) = 2−n
∑n

k=1
∑

x,x′ dB(x,x′)1{(X1k,X2k)=(x,x′)}.

(126)

Hence, for any 0 ≤ s ≤ n, we have

E
[(

P(X1 → X2)
) s

n

]
= E

[
2

s
n log P(X1→X2)

]
(127)

= E
[
2−

s
n

∑n
k=1

∑
x,x′ dB(x,x′)1{(X1k,X2k)=(x,x′)}

]
. (128)

Now, since {
∑

x,x′ dB(x, x′)1{(X1k, X2k) = (x, x′)}}n
k=1

are i.i.d., by the SLLN, we have

1
n

n∑
k=1

∑
x,x′

dB(x, x′)1{(X1k, X2k) = (x, x′)}

(a.s.)−−−→
∑
x,x′

Q(x)Q(x′)dB(x, x′). (129)

On the other hand, we have

0 ≤ 1
n

n∑
k=1

∑
x,x′

dB(x, x′)1{(X1k, X2k) = (x, x′)}

≤ max
x,x′

dB(x, x′) < ∞. (130)

Hence, by the bounded convergence theorem [24, Th. 5.4],
we have

E
[
2−

s
n

∑n
k=1

∑
x,x′ dB(x,x′)1{(X1k,X2k)=(x,x′)}

]
→ 2−s

∑
x,x′ Q(x)Q(x′)dB(x,x′). (131)
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Similarly, for any fixed constant λ ≥ 0, we have

E
[
2−

s
n(1+λ)

∑n
k=1

∑
x,x′ dB(x,x′)1{(X1k,X2k)=(x,x′)}

]
→ 2−

s
1+λ

∑
x,x′ Q(x)Q(x′)dB(x,x′). (132)

Now, let

Jk :=
∑
x,x′

dB(x, x′)1{(X1k, X2k) = (x, x′)}. (133)

Then, from (131) and (132), for any fixed constant λ ≥ 0,
it holds that

E
[
2−

s
n

∑n
k=1

∑
x,x′ dB(x,x′)1{(X1k,X2k)=(x,x′)}

]
= (1 + o(1))

(
E
[
2−

s
n(1+λ)

∑n
k=1 Jk

])1+λ

(134)

= (1 + o(1))
(

E
[
2−

s
n(1+λ) J1

])n(1+λ)

. (135)

From (125) and (135), we obtain

E
[(

P ub
e (Cn)

)s/n]
≤ (1 + o(1))M2− s

n

(
E
[
2−

s
n(1+λ) J1

])n(1+λ)

. (136)

Now, observe that

E
[
2−

s
n(1+λ) J1

]
=
∑
x,x′

P((X11, X21) = (x, x′))

× E
[
2−

s
n(1+λ) J1

∣∣∣∣(X11, X21) = (x, x′)
]

(137)

=
∑
x,x′

Q(x)Q(x′)2−
s

n(1+λ) dB(x,x′). (138)

From (136) and (138), we obtain

E
[(

P ub
e (Cn)

) s
n
]

≤(1+o(1))M2− s
n

(∑
x,x′

Q(x)Q(x′)2−
s

n(1+λ) dB(x,x′)

)n(1+λ)

.

(139)

From (122) and (139), for any s such that 0 ≤ s ≤ n and any
fixed constant λ > 0, we have

P
[
− 1

n
log Pe(Cn) < Etrc(R,Q)− ε

]
≤ (1 + o(1))2s(Etrc(R,Q)−ε)M2− s

n

×
(∑

x,x′

Q(x)Q(x′)2−
s

n(1+λ) dB(x,x′)

)n(1+λ)

. (140)

From (140), by choosing s = n and using M = 2nR, we have

P
[
− 1

n
log Pe(Cn) < Etrc(R,Q)− ε

]
≤ (1 + o(1))2n

[
(1+λ) log

(∑
x,x′ Q(x)Q(x′)2

− dB(x,x′)
1+λ

)]
× 2n(Etrc(R,Q)+R−ε). (141)

Now, for Etrc(R,Q) ̸= Erce(R,Q), from (91) and Lemma 7,
observe that

Etrc(R,Q) = min
PXX′ :D(PXX′∥QXQX′ )≤2R

D(PXX′∥QXQX′)

+
∑
x,x′

dB(x, x′)PXX′(x, x′)−R. (142)

Given the distribution Q and QX = QX′ = Q, the optimiza-
tion problem in (142) is convex in {PXX′(x, x′)}x,x′ since
the KL divergence is convex. By using standard Karush-Kuhn-
Tucker conditions, it can be seen that (142) has as two optimal
solutions PXX′ ∈ {P 0

XX′ , P ∗XX′} given by

P 0
XX′(x, x′) =

Q(x)Q(x′)2−dB(x,x′)∑
x,x′ Q(x)Q(x′)2−dB(x,x′)

, (143)

P ∗XX′(x, x′) =
Q(x)Q(x′)2−

dB(x,x′)
1+λ∗∑

x,x′ Q(x)Q(x′)2−
dB(x,x′)

1+λ∗

, (144)

where λ∗ is the unique positive solution of 2R =
D(P ∗XX′(x, x′)∥QXQX′). For PXX′ = P 0

XX′ , we obtain,
after some algebra, that the following terms in the exponent
of the r.h.s. of (141) vanish. More specifically, that

Etrc(R,Q) + R + log
(∑

x,x′

Q(x)Q(x′)2−dB(x,x′)

)
= D(P 0

XX′∥QXQX′) +
∑
x,x′

dB(x, x′)P 0
XX′(x, x′)

+ log
(∑

x,x′

Q(x)Q(x′)2−dB(x,x′)

)
(145)

=
∑
x,x′

Q(x)Q(x′)2−dB(x,x′)∑
x,x′ Q(x)Q(x′)2−dB(x,x′)

× log
2−dB(x,x′)∑

x,x′ Q(x)Q(x′)2−dB(x,x′)

+
∑
x,x′

dB(x, x′)P 0
XX′(x, x′)

+ log
(∑

x,x′

Q(x)Q(x′)2−dB(x,x′)

)
(146)

= 0. (147)

For the case PXX′ = P ∗XX′ , by performing similarly manip-
ulations we obtain that

Etrc(R,Q) + R + (1 + λ∗) log
(∑

x,x′

Q(x)Q(x′)2−
dB(x,x′)

1+λ∗

)

≤ (1 + λ∗)
∑
x,x′

Q(x)Q(x′)2−
dB(x,x′)

1+λ∗∑
x,x′ Q(x)Q(x′)2−

dB(x,x′)
1+λ∗

× log
2−

dB(x,x′)
1+λ∗∑

x,x′ Q(x)Q(x′)2−
dB(x,x′)

1+λ∗

+
∑
x,x′

dB(x, x′)P ∗XX′(x, x′)

+ (1 + λ∗) log
(∑

x,x′

Q(x)Q(x′)2−
dB(x,x′)

1+λ∗

)
(148)

= 0, (149)
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The results in (147), and (149), after choosing λ = 0 for the
first case and λ = λ∗ for the second case, used in (141), imply
that

P
[
− 1

n
log Pe(Cn) < Etrc(R,Q)− ε

]
.= 2−nε. (150)

Finally, from (119) and (150), we obtain (13), concluding our
proof for the i.i.d. random codebook ensemble.

We finally prove (14). For any i.i.d. code the following
holds:

Pe(Cn) ≥ max
i ̸=j

P(Xi → Xj). (151)

Defining Vn = − 1
n log maxi ̸=j P(Xi → Xj), and setting

K1 =
∑
x,x′

d2
B(x, x′)Q(x)Q(x′), (152)

K2 =
∑
x,x′

dB(x, x′)Q(x)Q(x′). (153)

It follows from (151) that

P
[
− 1

n
log Pe(Cn) > Etrc(R,Q) + ε

]
≤ P

[
Vn − E[Vn]√

Var(Vn)
>

n
(
Etrc(R,Q) + ε− E[Vn]

n

)√
Var(Vn)

]
(154)

= Q

(
n
(
Etrc(R,Q) + ε− E[Vn]

n

)√
Var(Vn)

)
+ O

(
1√
n

)
(155)

= Q

(√
n
(
Etrc(R,Q) + ε− Etrc(Q, 0)

)√
K1 −K2

2

)
+ O

(
1√
n

)
(156)

as n → ∞ since Etrc(R,Q) ≥ Etrc(0, Q), where (155)
follows as a sub-result from the proof of Theorem 6, and
(156) follows from (353) and the Berry-Esseen theorem [16,
Th. 3.4.17].

C. Proof of Theorem 3

We start the proof of Theorem 3 with some auxiliary results
until (159), and then discuss the two terms in (160): the first
term from (162) to (178), and the second term from (179)
to (187).

Lemma 11: Let I{i, j} = I{(xi,xj) ∈ T (PXX′)},
where I{.} is the indicator function. Then, for 0 ≤ η ≤
D(PXX′∥QXQ′X), it holds that 2−n2D(PXX′∥QXQ′X) ≤
E[I{i, j}I{i, k}] ≤ 2−n[D(PXX′∥QXQ′X)+η].

Proof: Appendix A-I.
Lemma 12: For any ϵ > 0 and for any joint type PXX′

such that D(PXX′∥QXQ′X) ≤ R − ϵ, ∀ϵ > 0, the following
holds:

P
[
N (PXX′) ≤ 2−nϵE[N (PXX′)]

]
≤̇2−2nϵ

(157)

Proof: Appendix A-J.
Using Lemma 11 and Lemma 12 we prove the following
theorem, which states that the probability of finding a code for
which the exponent of P ub

e (Cn) is larger than the expurgated

exponent Eex(R) is double-exponentially decaying in n. Now
we can prove the main part of theorem 3. We have that

P ub
e (Cn) .= max

PXX′
N (PXX′)e−n[

∑
x,x′ dB(x,x′)PXX′ (x,x′)+R].

(158)

Let us refer to the maximizing joint type of (158) as P ∗XX′ .
We define the following complementary events:

A = {P ∗XX′ ∈ P} , A = {P ∗XX′ ∈ P} (159)

where P = {PXX′ |D(PXX′∥QXQ′X) ≤ 2R}, QXQ′X being
the theoretical joint type, while P is the complement to set P .
Consider a positive real number E2 > Etrc(R,Q). We have:

P
[
− 1

n
log P ub

e (Cn) ≥ E2

]
= P

[
− 1

n
log P ub

e (Cn) ≥ E2, A

]
+ P

[
− 1

n
log P ub

e (Cn) ≥ E2, A

]
. (160)

Now we proceed to bound from above both terms at the right
hand side of (160). Define

F (PXX′) =
∑
x,x′

dB(x, x′)PXX′(x, x′). (161)

1) First Term:

P
[
− 1

n
log P ub

e (Cn) ≥ E2, A

]
= P

[
P ub

e (Cn) ≤ 2−nE2 , A
]

(162)

= P

 1
Mn

∑
PXX′

N (PXX′)2−nF (PXX′ ) ≤ 2−nE2 , A

 (163)

.= P
[
max
PXX′

N (PXX′)2−nF (PXX′ ) ≤ 2−n(E2−R), A

]
(164)

≤ P
[

max
PXX′∈P

N (PXX′)2−nF (PXX′ ) ≤ 2−n(E2−R)

]
(165)

= P

 ⋂
PXX′∈P

[
N (PXX′) ≤ 2−n(E2−R−F (PXX′ )

] (166)

where (165) follows from the definition of A and from
removing the event A. Let us now define P ′:

P ′ = {PXX′ |D(PXX′∥QXQ′X) ≤ R}, (167)

and note that P ′ ⊂ P . Let us consider the term
2−n(E2−R−F (PXX′ )). We now look for a PXX′ ∈ P ′ such
that this is smaller than the mean of the enumerator function,
i.e, a PXX′ ∈ P ′ such that the following holds:

2−n(E2−R−F (PXX′ ) ≤ 2n[2R−D(PXX′∥QXQ′X)−ϵ] (168)
E2 ≥ −R + D(PXX′∥QXQ′X) + F (PXX′) + ϵ. (169)

Let us indicate the PXX′ that minimizes (169) with P ′XX′ .
Minimizing the term at the right hand side of (169) we can
set the value of E2 to:

E2 = min
PXX′∈P′

−R + D(PXX′∥QXQ′X) + F (PXX′) + ϵ.

(170)
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The right hand side of (170) is strictly larger than Etrc(R,Q).
To see this note the following:

min
PXX′∈P′

−R + D(PXX′∥QXQ′X) + F (PXX′) + ϵ (171)

> min
PXX′∈P

R− 2R + D(PXX′∥QXQ′X) + F (PXX′) + ϵ

(172)
= min

PXX′∈ZGGV

R− 2R + D(PXX′∥QXQ′X) + F (PXX′) + ϵ

(173)
= min

PXX′∈ZGGV

R + F (PXX′) + ϵ (174)

= Etrc(R,Q) + ϵ (175)

where (172) follows from the fact that P ′ ⊂ P , (173) follows
from the concavity of the objective function (minimum is on
the border) while (175) follows from the definition of ZGGV .
With this definition of E2 we ensure that for at least one joint
type the conditions for applying Lemma 12 (i.e., (168)) hold.
Using the definition in (166) together with the statement of
Lemma 12 we have:

P
[
− 1

n
log P ub

e (Cn) ≥ E2, A

]
.
≤ P

 ⋂
PXX′∈P

[
N (PXX′) ≤ 2−n(E2−R+F (PXX′ )

]
(176)

.
≤ 2−2

n[R−D(P ′
XX′ ∥QX Q′X )]

(177)

≤ 2−2nϵ′

(178)

with ϵ′ > 0.
2) Second Term:

P
[
− 1

n
log P ub

e (Cn) ≥ E2, A

]
= P

[
P ub

e (Cn) ≤ 2−nE2 , A
]

(179)

= P

 1
Mn

∑
PXX′

N (PXX′)2nF (PXX′ ) ≤ 2−nE2 , A

 (180)

.= P
[
max
PXX′

N (PXX′)2nF (PXX′ ) ≤ 2−n(E2−R), A

]
. (181)

Consider (181). The event A implies that the joint type
maximizing the expression at the left hand side lays outside P .
This implies that any PXX′ which lies inside P leads to a
value which is no greater than the maximum. Since this is
an implication of the events within brackets, its probability is
larger than or equal to the one of (181). Thus we have:

P
[
− 1

n
log P ub

e (Cn) ≥ E2, A

]
.= P

[
max
PXX′

N (PXX′)2nF (PXX′ ) ≤ 2−n(E2−R), A

]
(182)

≤ P
[

max
PXX′∈P

N (PXX′)2nF (PXX′ ) ≤ 2−n(E2−R)

]
(183)

≤ 2−2nϵ′

(184)

where (184) is because (182) has the same form as (165) and
thus the same inequalities as for the first term hold.

Finally, we note that from (170) we can further state the
following:

E2 = min
PXX′∈P′

−R + D(PXX′∥QXQ′X) + F (PXX′) + ϵ

(185)

= min
PXX′∈P′

−
∑
x,x′

dB(x, x′)PXX′(x, x′) + ϵ (186)

= Eex(R) + ϵ (187)

where (186) follows from the concavity of the objective
function, which implies that the minimum is on the border
of the region P ′, and from the definition of P ′ while (187) is
found by calculating the derivative of [22, eq. (5.7.11)] with
respect to the optimization variable ρ and, after some change
of variable, equating to zero.

D. Proof of Theorem 4
Now let us consider the following inequality

P ub
e (Cn) ≤ MnPe(Cn) (188)

which follows from upper-bounding the probability P[xi →
xj ] in (15) by P

[⋃
j ̸=i{xi → xj}

]
in (4). From Theorem 3

and using (188) we have

P
[
− 1

n
log P ub

e (Cn) ≥ Eex(R) + R + ϵ

]
≤ 2−2nϵ

(189)

and finally (18).

E. Proof of Theorem 5
This proof is split into two parts, the first part from (192)

to (219) is devoted to the i.i.d. ensemble, while the second
part from (220) to (264) deals with the constant-composition
ensemble.

1) i.i.d. Ensemble: Observe that

max
i ̸=j

P(Xi → Xj)

≤ Pe(Cn) (190)

≤
Mn∑
i=1

∑
j ̸=i

P(Xi → Xj) (191)

≤ Mn(Mn − 1) max
i̸=j

P(Xi → Xj). (192)

On the other hand, by Lemma 4, the pairwise codeword error
probability P(Xi → Xj) given PXX′ satisfies

P(Xi → Xj) = 2−n
∑

x,x′ dB(x,x′)P̂XiXj
(x,x′), (193)

where P̂XiXj
is the n-joint type of (X1, X2). Observe that

P̂XiXj
(x, x′) =

1
n

n∑
k=1

1{(Xik, Xjk) = (x, x′)}. (194)

It follows from (193) and (194) that

P(Xi → Xj) = 2−
∑n

k=1
∑

x,x′ dB(x,x′)1{(Xik,Xjk)=(x,x′)}

(195)
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for all i, j ∈ [Mn], i ̸= j. Since Mn sub-exponential in n,
from (192) and (195), we obtain

− 1
n

log Pe(Cn) ∼ Vn

n
, (196)

where X ∼ Y means that X and Y have the same asymptotic
distributions, and

Vn = min
i̸=j

Zij (197)

with

Zij =
n∑

k=1

∑
x,x′

dB(x, x′)1{(Xik, Xjk) = (x, x′)}, (198)

for all i, j ∈ [Mn] and i ̸= j. Now, observe that

E[Zij ] =
n∑

k=1

∑
x,x′

dB(x, x′)Q(x)Q(x′). (199)

In addition, we have, after some algebra, that

Var(Zij) = n

(∑
x,x′

d2
B(x, x′)Q(x)Q(x′)

−
(∑

x,x′

dB(x, x′)Q(x)Q(x′)
)2)

. (200)

for all i ̸= j. Now, define

Tij : =
Zij − E[Zij ]√

Var(Zij)
(201)

=
Zij − E[Z12]√

Var(Z12)
, (202)

where (202) follows from the fact that Zij’s are identically
distributed.

Then, by CLT, it holds that

Tij
(d)−→N (0, 1), ∀i ̸= j. (203)

On the other hand, let

Υij(k)

=
∑
x,x′

dB(x, x′)
(
1{(Xik, Xjk) = (x, x′)} −Q(x)Q(x′)

)
.

(204)

Then, for any fixed tuple ({αij} : i, j ∈ [M ], i ̸= j), we have

∑
i̸=j

αijTij =

∑
i̸=j αij

∑N
k=1 Υij(k)√

Var(Z12)
(205)

=
N∑

k=1

∑
i ̸=j αijΥij(k)√

Var(Z12)
. (206)

Now, by the i.i.d. random codebook generation, it holds that
{V̄k}n

k=1 are i.i.d. random variables, where

V̄k =

∑
i ̸=j αijΥij(k)√

Var(Z12)
. (207)

In addition, since (Xi1, Xj1)i̸=j’s are pairwise independent,
we have

Var(V̄1) =

∑
i̸=j α2

ij

n
. (208)

Hence, it holds from (206) and (208) that∑
i ̸=j

αijTij =
√∑

i ̸=j

α2
ij

( ∑n
k=1 V̄k√

n Var(V̄1)

)
(d)−→N

(
0,
∑
i ̸=j

α2
ij

)
, (209)

where (209) follows from the CLT. Hence, the distribution of
the vector {Tij : i, j ∈ [M ], i ̸= j} goes to the distribution
of a jointly Gaussian random vector by the Levy’s continuity
theorem [24, Th. 26.3].

Now, it is known that the distribution of any Gaussian
random vector (both p.d.f and c.d.f.) is defined by its mean
and covariance matrix. Since the covariance matrix of the
vector {Tij : i, j ∈ [M ], i ̸= j} is the identity matrix
by the pairwise independence of Tij , which originates from
the pairwise independence of P(Xi → Xj)′s, hence, the
limit distribution is the standard normal Gaussian vector with
dimension M(M − 1). This distribution is equal to the joint
distribution of M(M − 1) independent standard normal vari-
ables {Uij}i ̸=j . Hence, by the continuous mapping theorem
[24, Th. 25.6], it follows that

min
i ̸=j

Tij
(d)−→ min

i̸=j
Uij . (210)

Now, observe that

E
[∣∣min

i ̸=j
Tij

∣∣4] ≤ E
[∣∣∣∣∑

i ̸=j

|Tij |
∣∣∣∣4] (211)

≤
(∑

i ̸=j

14/3

)3(∑
i ̸=j

E
[
|Tij |4

])
(212)

= M4(M − 1)4
E
[
|Z12 − E[Z12|4

]
Var(Z12)2

(213)

≤ 8M4(M − 1)4
E
[
|Z12|4

]
Var(Z12)2

, (214)

where (212) and (214) follow from Hölder’s inequality for the
counting measure [28, Sec. 7.2].

Now, by (198), we have

Z12 =
n∑

k=1

∑
x,x′

dB(x, x′)1{(X1k, X2k) = (x, x′)}, (215)

which is the sum of n independent random variables. Hence,
we have

E[|Z12|4] = O(n2), Var(Z12) = Θ(n). (216)

Hence, from (214), we have

E
[∣∣min

i̸=j
Tij

∣∣4] ≤ E
[∣∣∣∣∑

i ̸=j

|Tij |
∣∣∣∣4] = O(1). (217)
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Hence, by Lemma 1 with ε = 2 and (210), we have

mini ̸=j Tij−E[mini̸=j Tij ]√
Var

(
mini ̸=j Tij

) (d)−→ mini̸=j Uij−E[mini̸=j Uij ]√
Var

(
mini ̸=j Uij

) .

(218)

From (202), (218) and (196) we obtain (20), i.e.,

En(Cn)− E[En(Cn)]√
Var(En(Cn))

(d)−→ mini ̸=j Uij − E[mini ̸=j Uij ]√
Var(mini ̸=j Uij)

.

(219)

2) Constant-Composition Ensemble: In this part, we use
Stein’s method to derive some criteria that provide sufficient
conditions for the convergence in distribution to the normal
random variable of the error probabilities and error exponents
for general random coding ensemble over general channels,
including the zero rate where Mn →∞ as we mentioned. This
includes other random codebooks than i.i.d. random codebook
ensembles.

We start by showing that Theorem 5 also holds for the
constant-composition codes. In order to do this, we need some
extra lemmas. First, we show the following fact which is based
our modification of the Stein’s criteria in [25, Th. 3.2] to
accommodate for the dependence among the random variables
in the following lemma.

Lemma 13: Let X1, X2, · · · , Xn be zero-mean random
variables on some alphabet X ⊂ R such that

∑n
i=1 E[X2

i ] =
n. In addition, assume there exist positive sequences {ξn}∞n=1

and {gn}∞n=1 and a set V ⊂ Rn with cardinality |V| such that(
1− ξn

) n∏
i=1

P[Xi = xi]

≤ P[X1 = x1, X2 = x2, · · · , Xn = xn]

≤
(
1 + ξn

) n∏
i=1

P[Xi = xi] (220)

for all x1, x2, · · · , xn ∈ V and

max
{

1,
1√
n

n∑
i=1

|xi|,
1
n

( n∑
i=1

xi

)2

,

1
n

n∑
i=1

x2
i ,

1
n3/2

n∑
i=1

|xi|3
}
≤ gn,∀(x1, · · · , xn) ∈ Vc.

(221)

Assume also that gnξn → 0 and

gn max{P(V c), PΠ(V c)} → 0 as n →∞, (222)

where PΠ is the product probability measure, i.e.,
PΠ

[
x1, x2, · · · , xn

]
=

∏n
i=1 P[Xi = xi] for all

(x1, x2, · · · , xn) ∈ Xn.
Let Sn = X1 + X2 + · · ·+ Xn and

T̃ =
Sn√

Var(Sn)
. (223)

Then, under the condition that

1
n3/2

n∑
i=1

E[|X3
i |] → 0, (224)

1
n2

n∑
i=1

E[|Xi|4] → 0, (225)

we have

T̃
(d)−→N (0, 1). (226)

This lemma can recover the original Stein’s criterion
[25, Th. 3.2] for independent random variables by setting
Vc = ∅ and ξn = 0.

Proof: Appendix B-A.
Now, we return to proof Theorem 5. As in the i.i.d. case,

Eq. (196) holds, where Zij in given in (198). Then,

Zij =
n∑

k=1

∑
x,x′

dB(x, x′)1{(Xik, Xjk) = (x, x′)} (227)

= n
∑

QXX′

∑
x,x′

QXX′(x, x′)dB(x, x′)ZQXX′ , (228)

where ZQXX′ = 1{(Xi, Xj) ∈ Tn(QXX′)}. Define

UQXX′ =

√
|Pn(X × X )|∑
QXX′

E[V 2
QXX′

]
, (229)

where

VQXX′ =
∑
x,x′

QXX′(x, x′)dB(x, x′)ZQXX′

−
∑
x,x′

QXX′(x, x′)dB(x, x′)E
[
ZQXX′

]
. (230)

Then, we have

Zij − E[Zij ]√
Var(Zij)

=

∑
QXX′

UQXX′√
Var

(∑
QXX′

UQXX′

) (231)

and also that E[UQXX′ ] = 0 and
∑

QXX′
E[U2

QXX′
] =

|Pn(X × X )|. Now, define the set

V0 =
{
{zQXX′}QXX′∈Tn(X×X ) : the only n-joint type QXX′

such that z∗QXX′
= 1 is Q∗XX′ = QXQX

}
. (232)

Then, for any {zQXX′}QXX′ ∈ V0, we have that following
probability, where QXX′ ∈ Tn(X × X ), satisifes

P
[ ⋂

QXX′

{ZQXX′ = zQXX′}
]

= P
[
{ZQ∗

XX′
= 1} ∩

⋂
QXX′ ̸=Q∗

XX′

{ZQXX′ = 0}
]

(233)

= P
[
{(Xi, Xj) ∈ Tn(Q∗XX′)}

× ∩
⋂

QXX′ ̸=Q∗
XX′

{(Xi, Xj) /∈ Tn(QXX′)}
]

(234)

= P
[
(Xi, Xj) ∈ Tn(Q∗XX′)

]
. (235)
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Similarly, for any sequence {zQXX′}QXX′ ∈ V0, we have∏
QXX′

P
[
ZQXX′ = zQXX′

]
= P

[
(Xi, Xj) ∈ Tn(Q∗XX′)

]
×

∏
QXX′ ̸=Q∗

XX′

P
[
(Xi, Xj) /∈ Tn(QXX′)

]
(236)

= P
[
(Xi, Xj) ∈ Tn(Q∗XX′)

]
×

∏
QXX′ ̸=Q∗

XX′

(
1− 2−nIQ

XX′
(X;X′)) (237)

≥ P
[
(Xi, Xj) ∈ Tn(Q∗XX′)

](
1− |Pn(X × X )|2−nImin

)
,

(238)

where (238) follows from the fact that
∏n

i=1(1 − ai) ≥
1−

∑n
i=1 ai for any a1, a2, · · · , an ∈ [0, 1]. Here,

Imin = min
QXX′ :QXX′ ̸=Q∗

XX′
IQXX′ (X; X ′) > 0. (239)

From (235) and (238), there is a positive sequence ξn :=
|Pn(X × X )|2−nImin → 0 as n →∞ such that

(1− ξn)
∏

QXX′

P
[
ZQXX′ = zQXX′

]
≤ P

[ ⋂
QXX′

{ZQXX′ = zQXX′}
]

(240)

≤ (1 + ξn)
∏

QXX′

P
[
ZQXX′ = zQXX′

]
. (241)

Furthermore, it follows from (235) and the definition of V0

in (232) that

P[{ZQXX′} ∈ V0] = P
[
(Xi, Xj) ∈ Tn(Q∗XX′)

]
. (242)

Therefore, we obtain

P[{ZQXX′} ∈ V
c
0 ] = 1− P

[
(Xi, Xj) ∈ Tn(Q∗XX′)

]
(243)

=
|Tn(QX)|2 − |Tn(Q∗XX′)|

|Tn(QX)|2
. (244)

In addition, from (238), we obtain

PΠ[{ZQXX′} ∈ V
c
0 ]

= 1− PΠ[{ZQXX′} ∈ V0] (245)

≤ 1− P
[
(Xi, Xj) ∈ Tn(Q∗XX′)

]
×
(
1− |Pn(X × X )|2−nImin

)
(246)

=
|Tn(QX)|2 − |Tn(Q∗XX′)|

|Tn(QX)|2

+ |Pn(X × X )|2 |Tn(Q∗XX′)|
|Tn(QX)|2

2−nImin . (247)

Since VQXX′ is linear in ZQXX′ (cf. (230)), the existence of
a set V as in Lemma 13 is guaranteed with the same P[Vc] =
P[{ZQXX′} ∈ V

c
0 ] and PΠ[Vc] = PΠ[{ZQXX′} ∈ V

c
0 ].

Now, since VQXX′ is bounded for all QXX′ ∈ Tn(X ×X ).
Hence, we have∑

QXX′

E[V 2
QXX′

] = Θ(|Pn(X × X )|). (248)

By the same fact, we also have

gn = O
(∣∣Tn(X × X )

∣∣). (249)

Hence, it holds that

gnξn → 0 (250)

by the sub-exponential number of possible n-joint type.
From (244), (247), and (249), we obtain

gn max{P[V c], PΠ[V c]}

= O

(
|Pn(X × X )|

(
|Tn(QX)|2 − |Tn(Q∗XX′)|

|Tn(QX)|2

+ |Pn(X × X )| |Tn(Q∗XX′)|
|Tn(QX)|2

2−nImin

))
(251)

= O

(
|Pn(X × X )|

(
|Tn(QX)|2 − |Tn(Q∗XX′)|

|Tn(QX)|2

))
. (252)

Under the regular condition of type in (19), it holds that
|Tn(QX)|2−|Tn(Q∗XX′)|

|Tn(QX)|2
= P[(Xi, Xj) /∈ Tn(Q∗XX′)] → 0.

(253)

The regular condition of types assumes that the rate of
convergence to zero of P[(Xi, Xj) /∈ Tn(Q∗XX′)] is faster
than O(1/(n + 1)|X |

2
). As a result, as n → ∞, gn =

O
(∣∣Tn(X × X )

∣∣)→ 0.
On the other hand, let dmax = maxx,x′ dB(x, x′). Then,

we also have∣∣VQXX′

∣∣4
≤ 8
(∣∣∣∣∑

x,x′

QXX′(x, x′)dB(x, x′)ZQXX′

∣∣∣∣4
+
∣∣∣∣∑

x,x′

QXX′(x, x′)dB(x, x′)P
(
ZQXX′ = 1

)∣∣∣∣4)
(254)

≤ 16 d4
max (255)

for all QXX′ ∈ Tn(X × X ), and

|VQXX′ |
3

≤ 4
(∣∣∣∣∑

x,x′

QXX′(x, x′)dB(x, x′)ZQXX′

∣∣∣∣3
+
∣∣∣∣∑

x,x′

QXX′(x, x′)dB(x, x′)P
(
ZQXX′ = 1

)∣∣∣∣3)
(256)

≤ 8 d3
max, (257)

where (254) and (256) follow from Hölder inequality for
counting measure [28, Sec. 7.2].

Hence, we have
1

|Pn(X × X )|2
∑

QXX′

E[U4
QXX′

]

=
(

|Pn(X × X )|∑
QXX′

E[V 2
QXX′

]

)
1

|Pn(X × X )|2
∑

QXX′

E[V 4
QXX′

]

(258)
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.
≤ 1
|Pn(X × X )|2

16|Pn(X × X )|d4
max (259)

→ 0 (260)

as n →∞, where (259) follows from (255).
Similarly, we have

1
|Pn(X × X )|3/2

∑
QXX′

E[|UQXX′ |
3]

≤ 1
|Pn(X × X )|3/2

8|Pn(X × X )|d3
max (261)

→ 0 (262)

as n →∞.
From the above facts and Lemma 13, we conclude that

Tij =
Zij − E[Zij ]√

Var(Zij)
(d)−→N (0, 1). (263)

Similarly, we can prove that if M is a constant, we have∑
i ̸=j

αijTij
(d)−→N (0, 1). (264)

for any sequence {αij}i,j∈[M ],i̸=j . Using the same arguments
as the proof of Lemma 5, we obtain (20).

F. Proof of Theorem 6

Our proof of this theorem is based on a modification of
the Wasserstein metric, inspired by the classical Kolmogorov
and Wasserstein metrics, that measures the distance between
the distribution of the error exponent and that of the standard
Gaussian. Such modification is needed to deal with an infinite
number of terms as n → ∞, a case where the classical
Wasserstein metric upper bound fails to work [25, Prop. 2.4].
After introducing important lemmas from (265) to (270),
we start our proof in (271) to obtain (283) and (289). The
asymptotics of the random variables Tij(n) in (283) and (289)
are studied in four steps: the first step is split into two sub-steps
in (290)–(308) and (309)–(327), the second step from (328)
to (343), the third step from (344) to (350) and the last step
to obtain (22) in (351)–(353).

Recall the definitions of probability metrics in Definition 1.
First, we prove the following fundamental lemma.

Lemma 14: If Z ∼ N (0, 1), then for any random vari-
able T , it holds that∣∣P(T ≤ x)− P(Z ≤ x)

∣∣ ≤ 2(8π)−1/4
√

dW,mod(T, Z)

+
∣∣P(T ≤ x)− P(T ≥ −x)

∣∣ (265)

for all x ∈ R. In addition, if the distribution of T is tight,4 for
any x → 0, which is a continuous point of the limit distribution
of T , as n →∞, we have

lim sup
n→∞

∣∣P(T ≤ x)− P(Z ≤ x)
∣∣

≤ 2(8π)−1/4 lim sup
n→∞

√
dW,mod(T, Z). (266)

Proof: Appendix B-B.

4A distribution on (R,B(R)) is tight if for any fixed ε > 0, there exists
u, v ∈ R such that P(u < T ≤ v) > 1− ε [24].

By using the definition of dW,mod and setting T = X ,
we obtain the following result, which is tighter than
(or at least equal to) the upper bound of dK(T, Z) in
[25, Prop. 2.4]. However, we note that the probability metric
here is the modified Wasserstein metric. See the same argu-
ments to achieve a similar result in [25, Prop. 2.4].

Lemma 15: For h ∈ H, let fh solve

f ′h(w)− wfh(w) = h(w)− E[h(Z)]. (267)

If T is a random variable and Z has the standard normal
distribution, then

dW,mod(T, Z) = sup
h∈H

min
{∣∣E[f ′h(T )− Tfh(T )

]∣∣,
∣∣E[f ′h(−T ) + Tfh(−T )

]∣∣}. (268)

Proof: Appendix B-C.
Now, we prove the following lemma.

Lemma 16: Assume that T = min{T1, T2, · · · , TL} for
some L ∈ Z+ and T1, T2, · · · , TL are identically distributed
random variables. Then, it holds that

dW,mod(T, Z) ≤ max
{

sup
h∈H

∣∣E[f ′h(T1)− T1fh(T1)]
∣∣,

sup
h∈H

∣∣E[f ′h(−T1) + T1fh(−T1)]
∣∣}

+ sup
h∈H

min
{

E[h(T )− h(T1)], E[h(−T1)− h(−T )]
}

.

(269)

Proof: Appendix B-D.
Lemma 17: [25, Th. 3.2] Let X1, X2, · · · , Xn be indepen-

dent mean zero random variables such that E[|Xi|4] < ∞ and
E[X2

i ] = 1. If T =
∑n

i=1 Xi/
√

n and Z has the standard
normal distribution, then

max
{

sup
h∈H

∣∣E[f ′h(T )− Tfh(T )
]∣∣,

sup
h∈H

∣∣E[f ′h(−T ) + Tfh(−T )
]∣∣}

≤ 1
n3/2

n∑
i=1

E[|Xi|3] +
√

2
n
√

π

√√√√ n∑
i=1

E[X4
i ]. (270)

We can observe the fact (270) since T and −T are both the
sums of independent random variables. Now, we are ready to
prove Theorem 6. Observe that

max
i ̸=j

P(Xi → Xj) ≤ Pe(Cn)

≤
Mn∑
i=1

∑
j ̸=i

P(Xi → Xj)

≤ Mn(Mn − 1) max
i̸=j

P(Xi → Xj). (271)

For Mn sub-exponential in n, Eq. (196) in Theorem 5 used for
a constant number of messages, is still a valid result here for
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Mn sub-exponential in n. We explicitly state the dependence
on n in Zij in (198) as Zij(n). We define

Tij(n) =
Zij(n)− E[Zij(n)]√

Var(Zij(n))
, (272)

we have

min
i ̸=j

Tij(n) = min
i ̸=j

Zij(n)− E[Zij(n)]√
Var(Zij(n))

. (273)

Now, for any ε > 0, let the event

En =
{

1
Mn(Mn − 1)

∣∣∣∣∑
i ̸=j

Tij(n)
∣∣∣∣ ≥ ε

}
(274)

for all n ∈ Z+. Then, we have
∞∑

n=1

P(En) ≤
∞∑

n=1

P
[

1
(Mn − 1)Mn

∣∣∣∣∑
i ̸=j

Tij(n)
∣∣∣∣ ≥ ε

]
(275)

≤
∞∑

n=1

1
ε2M2

n(Mn − 1)2
Var

(∑
i̸=j

Tij(n)
)

(276)

=
∞∑

n=1

1
ε2M2

n(Mn − 1)2
∑
i ̸=j

Var
(
Tij(n)

)
(277)

=
∞∑

n=1

1
ε2Mn(Mn − 1)

(278)

< ∞, (279)

where (276) follows from Chebyshev’s inequality, (277) fol-
lows from the pairwise independence of Zij’s, and (279)
follows from the condition (21).

Hence, by the Borel-Cantelli lemma, from (279), we have

P
[ ∞⋃

n=1

∞⋂
k=n

Ec
k

]
= 1. (280)

However, we have

P
[ ∞⋃

n=1

∞⋂
k=n

Ec
k

]
= P

[ ∞⋃
n=1

∞⋂
k=n

{
1

Mn(Mn − 1)

∣∣∣∣∑
i ̸=j

Tij(k)
∣∣∣∣ < ε

}]
.

(281)

It follows from (280) and (281) that

P
[ ∞⋃

n=1

∞⋂
k=n

{
1

Mn(Mn − 1)

∣∣∣∣∑
i̸=j

Tij(k)
∣∣∣∣ < ε

}]
= 1, (282)

or
1

Mn(Mn − 1)

∑
i ̸=j

Tij(n)
(a.s.)−−−→ 0, (283)

as n →∞.
Now, from Theorem 5, we have Tij(n), Ti′j′(n), T12(n) are

independent as n → ∞ if (i, j) ̸= (i′, j′) ̸= (1, 2). Then, for
any B1, B2 ∈ B(R) (Borel sets in R), as n →∞, we have

P
[{

Tij(n)− T12(n) ∈ B1

}
∩
{

Ti′j′(n)− T12(n) ∈ B2

}]

=
∫

R
P
[{

Tij(n)− T12(n) ∈ B1

}
∩
{

Ti′j′(n)−T12(n) ∈ B2

}∣∣∣∣T12(n) = α

]
fT12(n)(α)dα

(284)

=
∫

R
P
[{

Tij(n) ∈ α + B1

}
∩
{

Ti′j′(n) ∈ α + B2

}∣∣∣∣T12(n) = α

]
fT12(n)(α)dα

(285)

=
∫

R
P
[{

Tij(n) ∈ α + B1

}
∩
{

Ti′j′(n) ∈ α + B2

}]
fT12(n)(α)dα (286)

=
∫

R
P
[
Tij(n) ∈ α+B1

]
P
[
Ti′j′(n) ∈ α + B2

]
fT12(α)dα

(287)

= P
[
Tij(n)− T12(n) ∈ B1

]
× P

[
Ti′j′(n)− T12(n) ∈ B2

]
+ o(1), (288)

i.e., Tij(n)−T12(n) and Ti′j′(n)−T12(n) are asymptotically
independent. This means that {Tij(n) − T12(n)} are asymp-
totically pairwise independent. Hence, by using the same
arguments to achieve (283), we have

1
Mn(Mn − 1)

∑
i̸=j

Tij(n)− T12(n)
(a.s.)−−−→ 0, (289)

as n →∞ (point-wise convergence).
The first step consists of showing that max

{
E[h(mini ̸=j

Tij(n)) − h(T12(n))], E[h(−T12(n)) − h(−mini ̸=j Tij

(n))]
}
→ 0 as n → ∞. Since h(u)−a,−c = 1 − h(−u)a,c

where h(u)a,c is the h function in V with parameter a, c
defined in (35), it is enough to carry out with two sub-steps,
step 1a and step 1b.

1) Step 1a: To begin with, we prove that
E[h(mini ̸=j Tij(n)) − h(T12(n))] → 0 as n → ∞ for
all h ∈ {H : a ≥ 0}. We have two different cases based on
the value of a: that lim infn→∞ a > 0 and that limn→∞ a = 0.

For the first case, from (283), we have mini ̸=j Tij(n) < a
as n →∞. It follows that

h(min
i ̸=j

Tij(n)) = h

(
1

Mn(Mn − 1)

∑
i ̸=j

Tij(n)
)

= c (290)

by the definition of H. Then, we have

h(min
i ̸=j

Tij(n))− h(T12(n))

=
[
h(min

i ̸=j
Tij(n))− h

(
1

Mn(Mn − 1)

∑
i̸=j

Tij(n)
)]

+
[
h

(
1

Mn(Mn − 1)

∑
i ̸=j

Tij(n)
)
− h(T12(n))

]
(291)

= h

(
1

Mn(Mn − 1)

∑
i ̸=j

Tij(n)
)
− h(T12(n)) (292)
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≤
∣∣∣∣h( 1

Mn(Mn − 1)

∑
i̸=j

Tij(n)
)
− h(T12(n))

∣∣∣∣. (293)

For the second case, if mini ̸=j Tij(n) ≤ a as n → ∞,
we have

h(min
i̸=j

Tij(n))− h

(
1

Mn(Mn − 1)

∑
i̸=j

Tij(n)
)

= h(a)− h

(
1

Mn(Mn − 1)

∑
i ̸=j

Tij(n)
)

(294)

≤
∣∣∣∣a− 1

Mn(Mn − 1)

∑
i ̸=j

Tij(n)
∣∣∣∣ (295)

≤ max
{

a,
1

Mn(Mn − 1)

∑
i̸=j

Tij(n)
}

(296)

→ 0 (297)

as n →∞, where (295) follows from 1-Lipschitz property of
h for all h ∈ V . On the other hand, if a < mini̸=j Tij(n) ≤

1
Mn(Mn−1)

∑
i ̸=j Tij(n) and lim infn→∞ c > 0, we have

h(min
i ̸=j

Tij(n))− h

(
1

Mn(Mn − 1)

∑
i ̸=j

Tij(n)
)

=
1

Mn(Mn − 1)

∑
i ̸=j

Tij(n)−min
i̸=j

Tij(n) (298)

→ 0 (299)

as n →∞.
In addition, if a < mini ̸=j Tij(n) ≤ 1

Mn(Mn−1)

∑
i ̸=j

Tij(n) and limn→∞ c = 0, we have

h(min
i ̸=j

Tij(n))− h

(
1

Mn(Mn − 1)

∑
i̸=j

Tij(n)
)
≤ c (300)

→ 0 (301)

as n →∞.
From (297), (299), and (301), it holds that

lim sup
n→∞

h(min
i ̸=j

Tij(n))− h

(
1

Mn(Mn − 1)

∑
i ̸=j

Tij(n)
)
≤ 0.

(302)

Combining (293) and (302), we obtain

lim sup
n→∞

h(min
i̸=j

Tij(n))− h(T12(n))

≤ lim sup
n→∞

∣∣∣∣h( 1
Mn(Mn − 1)

∑
i ̸=j

Tij(n)
)
− h(T12(n))

∣∣∣∣
(303)

≤ lim sup
n→∞

∣∣∣∣ 1
Mn(Mn − 1)

∑
i ̸=j

Tij(n)− T12(n)
∣∣∣∣ (304)

= 0, (305)

where (305) follows from (289).
Now, since |

(
h(mini ̸=j Tij(n)) − h(T12(n))

)
| ≤ c ≤

4
√

2π for all h ∈ V , hence by the reverse Fatou’s lemma
[24, Th. 5.4], we have

lim sup
n→∞

E
[
h(min

i ̸=j
Tij(n))− h(T12(n))

]

≤ E
[

lim sup
n→∞

h(min
i ̸=j

Tij(n))− h(T12(n))
]

(306)

= 0, (307)

where (307) follows from (305). Since h(mini̸=j Tij(n)) −
h(T12(n)) ≥ 0, by the fact that h is non-increasing for all
h ∈ V , from (307), we obtain

lim
n→∞

E
[
h(min

i̸=j
Tij(n))− h(T12(n))

]
= 0. (308)

2) Step 1b: Next, we prove that E[h(−mini̸=j Tij(n)) −
h(−T12(n))] → 0 as n →∞ for all h ∈ {H : a < 0}.

For all h ∈ H, let h̃(x) = h(−x) for all x ∈ R. Then,
we have

h(min
i ̸=j

Tij(n))− h(T12(n)) = h̃(T12(n))− h̃(min
i ̸=j

{Tij}(n)).

(309)

Now, we show that E[h̃(T12(n)) − h̃(mini̸=j Tij(n))] →
0 as n → ∞. Similar to Step 1a, we divide into different
cases based on the value of a + c.

For lim supn→∞(a + c) < 0, from (283), as n → ∞,
we have

min
i ̸=j

Tij(n) ≤ 1
Mn(Mn − 1)

∑
i̸=j

Tij(n) < −(a + c). (310)

Hence, it holds that

h̃
(
max
i ̸=j

T̃ij(n)
)

= h̃

(
1

Mn(Mn − 1)

∑
i ̸=j

Tij(n)
)

= 0.

(311)

It follows that as n →∞, we have

h̃

(
1

Mn(Mn − 1)

∑
i ̸=j

Tij(n)
)
− h̃(min

i ̸=j
Tij(n)) = 0. (312)

For the second case where limn→∞ a + c = 0,
if mini̸=j Tij(n) ≤ −(a + c), as n →∞, we have

h̃

(
1

Mn(Mn − 1)

∑
i̸=j

Tij(n)
)
− h̃(min

i ̸=j
{Tij(n)})

= h̃

(
1

Mn(Mn − 1)

∑
i ̸=j

Tij(n)
)
− h̃(−(a + c)) (313)

≤
∣∣∣∣ 1
Mn(Mn − 1)

∑
i ̸=j

Tij(n) + (a + c)
∣∣∣∣ (314)

≤
∣∣∣∣ 1
Mn(Mn − 1)

∑
i ̸=j

Tij(n)
∣∣∣∣+ |a + c| (315)

→ 0 (316)

as n →∞.
In addition, if mini ̸=j Tij(n) ≥ −(a + c), we have

h̃

(
1

Mn(Mn − 1)

∑
i̸=j

Tij(n)
)
− h̃(min

i ̸=j
Tij(n))

≤ 1
Mn(Mn − 1)

∑
i ̸=j

Tij(n)−min
i ̸=j

Tij(n) (317)
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≤ 1
Mn(Mn − 1)

∑
i ̸=j

Tij(n) + (a + c) (318)

→ 0 (319)

as n →∞.
From (316) and (319), as n →∞, we have

lim sup
n→∞

h̃

(
1

Mn(Mn − 1)

∑
i̸=j

Tij(n)
)
−h̃(min

i ̸=j
{Tij(n)})≤0.

(320)

It follows from (312) and (320) that

lim sup
n→∞

h̃(T12(n))− h̃(min
i ̸=j

Tij(n))

≤ lim sup
n→∞

[
h̃(T12(n))− h̃

(
1

Mn(Mn − 1)

∑
i ̸=j

Tij(n)
)]

+ lim sup
n→∞

[
h̃

(
1

Mn(Mn − 1)

∑
i ̸=j

Tij(n)
)

− h̃(min
i ̸=j

Tij(n))
]

(321)

= 0, (322)

where (322) follows from (320) and (289).
Now, since |h̃(mini ̸=j Tij(n)) − h̃(T12(n))| ≤ c ≤ 4

√
2π

for all h ∈ V , hence by the reverse Fatou’s lemma [24, Th.
5.4], we have

lim sup
n→∞

E
[
h̃(T12(n))− h̃(min

i̸=j
Tij(n))−

]
≤ E

[
lim sup

n→∞
h̃(T12(n))− h̃(min

i ̸=j
Tij(n))

]
(323)

= 0, (324)

where (324) follows from (322). Since h(mini̸=j Tij(n)) −
h(T12(n)) ≥ 0, from (324), we obtain

lim
n→∞

E
[
h̃(T12(n))− h̃(min

i̸=j
Tij(n))

]
= 0, (325)

or

lim
n→∞

E
[
h(−T12(n))− h(−min

i ̸=j
Tij(n))

]
= 0. (326)

From (308) and (326), we finally have that, for all h ∈ H:

lim
n→∞

min
{

E
[
h(min

i̸=j
Tij(n))− h(T12(n))

]
,

E
[
h(−T12(n))− h(−min

i ̸=j
Tij(n))

]}
= 0. (327)

3) Step 2: In this step, we show that limn→∞ dW,mod

(mini ̸=j Tij , Z) = 0. Indeed, from Lemma 17, we have

sup
h∈H

∣∣E[f ′h(Tij(n))− Tij(n)fh(Tij(n))
]∣∣

≤ 1
n3/2

n∑
k=1

E[|Xk|3] +
√

2
n
√

π

√√√√ n∑
k=1

E[X4
k ] (328)

=
1√
n

E[|X1|3] +
√

2√
πn

√
E[X4

1 ] (329)

where

Xk :

=

∑
x,x′ dB(x, x′)

(
1{(Xik, Xjk) = (x, x′)}

)√
Var

(
−
∑

x,x′ dB(x, x′)1{(Xik, Xjk) = (x, x′)}
)

−
∑

x,x′ dB(x, x′)P
[
(Xik, Xjk) = (x, x′)

])√
Var

(
−
∑

x,x′ dB(x, x′)1{(Xik, Xjk) = (x, x′)}
)

(330)

for all k ∈ [n].
Now, observe that

Var(Zij(n))

= Var
( n∑

k=1

∑
x,x′

dB(x, x′)1{(Xik, Xjk) = (x, x′)}
)

(331)

=
n∑

k=1

Var
(∑

x,x′

dB(x, x′)1{(Xik, Xjk) = (x, x′)}
)

(332)

= n Var
(∑

x,x′

dB(x, x′)1{(Xik, Xjk) = (x, x′)}
)

, ∀k,

(333)

where (332) and (333) follow from the fact that (Xik, Xjk)
are i.i.d. given i, j.

Now, recall the definition of K1 and K2 in (152) and (153),
respectively. Then, we have

Var
(∑

x,x′

dB(x, x′)1{(Xik, Xjk) = (x, x′)}
)

= K1 −K2
2 = L2. (334)

In addition, we have

E
[∣∣∣∣∑

x,x′

dB(x, x′)
(
1{(Xik, Xjk) = (x, x′)}

− P
[
(Xik, Xjk) = (x, x′)

])∣∣∣∣3] (335)

≤ 4
(

E
[∣∣∣∣∑

x,x′

dB(x, x′)1{(Xik, Xjk) = (x, x′)}
∣∣∣∣3]

+
∣∣∣∣∑

x,x′

dB(x, x′)P
[
(Xik, Xjk) = (x, x′)

]∣∣∣∣3)
(336)

= 4
[∑

x,x′

d3
B(x, x′)Q(x)Q(x′)

+
(∑

x,x′

dB(x, x′)Q(x)Q(x′)
)3]

= L3, (337)

where (336) follows from (a + b)3 ≤ 4(|a|3 + |b3|).
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Similarly, we have

E
[∣∣∣∣∑

x,x′

dB(x, x′)
(
1{(Xik, Xjk) = (x, x′)}

− P
[
(Xik, Xjk) = (x, x′)

])∣∣∣∣4] (338)

≤ 8
[∑

x,x′

d4
B(x, x′)Q(x)Q(x′)

+
(∑

x,x′

dB(x, x′)Q(x)Q(x′)
)4]

= L4, (339)

where we use (a + b)4 ≤ 8(a4 + b4) in (339).
Hence, from (329), (334), (337), and (339), we obtain

sup
h∈H

∣∣E[f ′h(Tij(n))− Tij(n)fh(Tij(n))
]∣∣

≤ 1√
n

(
L3

L
3/2
2

)
+

√
2

πn

L4

L2
2

, ∀i ̸= j. (340)

Similarly, we also have

sup
h∈H

∣∣E[f ′h(−Tij(n)) + Tij(n)fh(−Tij(n))
]∣∣

≤ 1√
n

(
L3

L
3/2
2

)
+

√
2

πn

L4

L2
2

, ∀i ̸= j. (341)

Since Tij(n)’s (for i ̸= j) are identically distributed by the
random codebook generation, it follows from Lemma 16 and
(340) that for any x ∈ R,

dW,mod(min
i ̸=j

Tij , Z)

≤ max
{

sup
h∈H

∣∣E[f ′h(T12(n))− T12(n)fh(T12(n))
]∣∣,

sup
h∈H

∣∣E[f ′h(−T12(n)) + T12(n)fh(−T12(n))
]∣∣}

+ sup
h∈H

min
{

E[h(min
i ̸=j

Tij(n))− h(T12(n))],

E[h(−T12(n))− h(−min
i̸=j

Tij(n))]
}

(342)

≤ 1√
n

(
L3

L
3/2
2

)
+

√
2

πn

L4

L2
2

+ sup
h∈H

min
{

E[h(min
i ̸=j

Tij(n))− h(T12(n))],

E[h(−T12(n))− h(−min
i̸=j

Tij(n))]
}
→ 0, (343)

where (343) follows from (327).
4) Step 3: In the third step, we prove that limn→∞ |P

(mini ̸=j Tij(n) ≤ x) − P(mini ̸=j Tij(n) ≥ −x)
∣∣ = 0 for all

x ∈ R and x is a continuous point of the limiting distribution
of mini ̸=j Tij(n).

By the first step, we know that max
{
E[h(mini̸=j Tij(n))−

h(T12(n))], E[h(−T12(n)) − h(−mini̸=j Tij(n))]
}
→ 0 as

n →∞ for any h ∈ V . Hence, by the proof of [25, Prop. 1.2],
we have∣∣P(min

i ̸=j
Tij(n) ≤ x

)
− P(T12(n) ≤ x

)∣∣

≤ 1
ε

sup
h∈V

∣∣E[h(min
i̸=j

Tij(n))− h(T12(n))]
∣∣+ O(ε),

(344)∣∣P(min
i̸=j

Tij(n) ≥ −x
)
− P(T12(n) ≤ −x

)∣∣
≤ 1

ε
sup
h∈V

∣∣E[−h(T12(n))− h(−min
i ̸=j

Tij(n))]
∣∣+ O(ε).

(345)

Since ε is arbitrary chosen and the above limit fact, from (344)
and (345), we obtain

P
(
min
i ̸=j

Tij(n) ≤ x
)
− P(T12(n) ≤ x

)
→ 0, (346)

P
(
min
i ̸=j

Tij(n) ≥ −x
)
− P(T12(n) ≤ −x

)
→ 0. (347)

From (346) and (347), we obtain

lim
n→∞

P(min
i̸=j

Tij(n) ≤ x)− P(min
i̸=j

Tij(n) ≥ −x)

= lim
n→∞

P(T12(n) ≤ x)− P(T12(n) ≥ −x) (348)

= Q(x)−Q(x) (349)
= 0, (350)

where (349) follows from CLT. Note that the form of T12

is defined in (272) is the normalized sum of i.i.d. random
variables.

5) Step 4: The last step proves that Tn =
Vn−E[Vn]√

Var(Vn)

(d)−→N (0, 1). From (343), Lemma 14, and Step 3,

we have

P
[
min
i ̸=j

Tij(n) ≤ x
]
− P

[
Z ≤ x

]
→ 0 (351)

as n → ∞ for any continuous point x ∈ R of the limiting
distribution of mini ̸=j Tij(n), namely

min
i̸=j

Tij(n)
(d)−→Z = N (0, 1). (352)

Using Lemma 1 and the same arguments to achieve (219) from
(352) in the proof of Theorem 5, we obtain

Tn
(d)−→N (0, 1). (353)

Finally, from (196) and (353), by applying Slutsky’s theorem
[24, p. 334], we obtain (22).

G. Proof of Theorem 7

Consider first the case 0 ≤ R < C. Since the random
variable Pe(Cn) takes values in [0, 1], we have that

Var[Pe(Cn)] = E[Pe(Cn)2]− E[Pe(Cn)]2 (354)

≤ E[Pe(Cn)2] (355)
≤ E[Pe(Cn)] → 0 (356)

where (356) follows from the assumption that E[Pe(Cn)] →
0 for 0 ≤ R < C. Applying Chebyshev’s inequality we have
that

P
[
|Pe(Cn)− E[Pe(Cn)]| ≥ δ

]
≤ Var[Pe(Cn)]

δ2
(357)

≤ E[Pe(Cn)]
δ2

→ 0 (358)
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where (358) follows from (356) and is valid for any given
δ > 0.

Now let us consider the case R > C. The following hold:

E[Pe(Cn)] → 1 (359)

E[Pe(Cn)]2 → 1 (360)

E[Pe(Cn)2] ≥ E[Pe(Cn)]2 (361)

E[Pe(Cn)2] → 1 (362)
Var[Pe(Cn)] → 0 (363)

where (359) follows from the theorem assumption, (360) fol-
lows from (359), (361) follows from Jensen’s inequality, (362)
follows from (360) and (361) and the fact that E[Pe(Cn)2] ≤ 1,
while (363) follows from (362) and (360) and the additivity
of limits. Finally, using Chebyshev’s inequality again we find
that, for any δ > 0,

P
[
|Pe(Cn)− E[Pe(Cn)]| ≥ δ

]
≤ Var[Pe(Cn)]

δ2
→ 0. (364)

H. Proof of Theorem 9

From [15, Th. 1] and from (91), for n sufficiently large we
have:

P
[
Pe(Cn) ≥ γρ

n min
ρ∈[1,∞)

E[Pe(Cn)
1
ρ ]ρ
]

= P
[
Pe(Cn) ≥ 2−n(Etrc(R)−ϵn)

]
(365)

≤ 1
γn

(366)

where γn →∞, log γn

n → 0 and ϵn → 0. The Paley-Zygmund
inequality [23, p. 1] implies that, for large enough n:

P [Pe(Cn) ≥ δnE[Pe(Cn)]]

= P
[
Pe(Cn) ≥ 2−n(Erce(R)+ϵ′n)

]
(367)

≥ (1− δn)2
E[Pe(Cn)]2

E[Pe(Cn)2]
(368)

where we choose a sequence δn that goes to zero subexponen-
tially, i.e., ϵ′n → 0 and 0 < δn < 1 ∀n. Let n0 be such that
∆E > ϵn, ∀n > n0. Note that such an n0 must exist from the
definition of limit for ϵn. Now consider the following chain
of inequalities for a large enough n, n > n0:

2−n(Etrc(R)−ϵn) = 2−n(Erce(R)+∆E−ϵn) (369)

≤ 2−n(Erce(R)+∆E−ϵn0 ) (370)

< 2−n(Erce(R)+ϵ′n) (371)

where (369) is from the theorem statement, (370) is valid from
a certain n onwards from the definition of limit for ϵn, while
(371) is because ∆E−ϵn0 is a positive constant and, for large
enough n, ϵ′n < ∆E− ϵn0 . Now, using (371), (365) and (367)
we have:

(1− δn)
E[Pe(Cn)]2

E[Pe(Cn)2]
≤ P [Pe(Cn) ≥ δnE[Pe(Cn)]] (372)

= P
[
Pe(Cn) ≥ 2−n(Erce(R)+ϵ′n)

]
(373)

≤ P
[
Pe(Cn) ≥ 2−n(Etrc(R)−ϵn)

]
(374)

= P
[
Pe(Cn) ≥ γρ

n min
ρ∈[1,∞)

E[Pe(Cn)
1
ρ ]ρ
]

(375)

≤ 1
γn

(376)

where (374) follows from (371). Finally, notice that, by defi-
nition, (1− δn) → 1 and 1

γn
→ 0 that imply:

E[Pe(Cn)]2

E[Pe(Cn)2]
→ 0.

I. Proof of Theorem 8

First, by the condition (24), we observe that

Var(Pe(Cn))(
E[Pe(Cn)]

)2 =
E[P 2

e (Cn)]−
(
E[Pe(Cn)]

)2(
E[Pe(Cn)]

)2 (377)

=
E[P 2

e (Cn)](
E[Pe(Cn)]

)2 − 1 (378)

→ 0. (379)

On the other hand, by Theorem 9 we know that
Var(Pe(Cn))(
E[Pe(Cn)]

)2 →∞ if Erce(R) < Etrc(R). Hence, from (379),

we must have

Etrc(R) = Erce(R). (380)

Now, for any ε > 0, we have

P
[∣∣∣∣− log Pe(Cn)

n
− Etrc(R)

∣∣∣∣ > ε

]
= P

[{
Pe(Cn) < 2−n(Etrc(R)+ε)

}
∪
{

Pe(Cn) > 2−n(Etrc(R)−ε)

}]
(381)

= P
[
Pe(Cn) < 2−n(Etrc(R)+ε)

]
+ P

[
Pe(Cn) > 2−n(Etrc(R)−ε)

]
(382)

≤ P
[
Pe(Cn) < 2−n(Etrc(R)+ε)

]
+ 2n(Etrc(R)−ε)E[Pe(Cn)] (383)

≤ P
[
Pe(Cn) < 2−n(Etrc(R)+ε)

]
+ 2n(Etrc(R)−ε)2−n(Erce(R)−ε/2

)
(384)

= P
[
Pe(Cn) < 2−n(Etrc(R)+ε)

]
+ 2−nε/2 (385)

for n sufficiently large, where (383) follows from Markov’s
inequality, and (384) follows from E[Pe(Cn)] = 2−nErce(R),
so E[Pe(Cn)] ≤ 2−n(Erce(R)−ε/2) for n sufficiently large. Now,
observe that

P
[
Pe(Cn) < 2−n(Etrc(R)+ε)

]
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= P
[
Pe(Cn)− E[Pe(Cn)] < 2−n(Etrc(R)+ε) − E[Pe(Cn)]

]
(386)

= P
[
−
(
Pe(Cn)− E[Pe(Cn)]

)
> E[Pe(Cn)]− 2−n(Etrc(R)+ε)

]
. (387)

Now, since E[Pe(Cn)] = 2−nErce(R) = 2−nEtrc(R) by (380),
so E[Pe(Cn)] − 2−n(Etrc(R)+ε) > 0 for n sufficiently large.
It follows from (387) that

P
[
Pe(Cn) < 2−n(Etrc(R)+ε)

]
≤ P

[∣∣Pe(Cn)− E[Pe(Cn)]
∣∣ > E[Pe(Cn)]− 2−n(Etrc(R)+ε)

]
(388)

≤ Var(Pe(Cn))(
E[Pe(Cn)]− 2−n(Etrc(R)+ε)

)2 (389)

.=
Var(Pe(Cn))(
E[Pe(Cn)]

)2 (390)

→ 0, (391)

where (390) follows Markov’s inequality and the fact that
E[Pe(Cn)]− 2−n(Etrc(R)+ε) .= 2−nErce(R)− 2−n(Etrc(R)+ε) =
Θ
(
E[Pe(Cn)]

)
[29, eq. (28)], and (391) follows from (379).

From (385) and (391), we obtain the following result, which
is equivalent to (25):

P
[∣∣∣∣− 1

n
log Pe(Cn)− Etrc(R)

∣∣∣∣ > ε

]
→ 0, (392)

J. Proof of Theorem 10

Under the condition Etrc(R) > Erce(R), it holds by
Theorem 9

E[Pe(Cn)]√
VarPe(Cn)

→ 0. (393)

Now, assume that

Pe(Cn)− E[Pe(Cn)]√
Var(Pe(Cn))

(d)−→N (0, 1). (394)

Then, from (393) and (394) and Slutsky’s theorem [24, p. 334],
it holds that

Pe(Cn)√
Var(Pe(Cn))

(d)−→N (0, 1), (395)

which is a contradiction since the LHS of (395) is a
non-negative random variable.

K. Proof of Corollary 1

First, if lim infn→∞
E[P 2

e (Cn)](
E[Pe(Cn)]

)2 > 1, then it holds that

ν = lim sup
n→∞

E[Pe(Cn)]√
Var(Pe(Cn))

< ∞. (396)

Then, for n sufficiently large, we have

Pe(Cn)− E[Pe(Cn)]√
Var(Pe(Cn))

≥ Pe(Cn)√
Var(Pe(Cn))

− ν (397)

≥ −ν, (398)

which implies

Pe(Cn)− E[Pe(Cn)]√
Var(Pe(Cn))

(d)

−̸→N (0, 1). (399)

Hence, by contradiction, the condition (26) implies that

E[P 2
e (Cn)](

E[Pe(Cn)]
)2 → 1. (400)

Thanks to (400) we can apply Theorem (8), from which the
statement of Corollary 1 follows.

L. Proof of Theorem 11

Let Yij = P
[
{Xi → Xj}

]
− E

[
P
[
{Xi → Xj}

]]
for

i, j ∈ [Mn]× [Mn]. Then, we can write

P ub
e (Cn)− E[P ub

e (Cn)] =
1

Mn

Mn∑
i=1

∑
j ̸=i

Yij

=
2

Mn

Mn∑
i=1

∑
i<j≤Mn

Yij . (401)

For i.i.d. random coding ensembles, {Yij}1≤i<j≤Mn
are pair-

wise independent and identically distributed by the symmetry
of the random codebook ensemble. Hence, we have, after some
algebra, that

Var
( Mn∑

i=1

∑
j ̸=i

Yij

)
= 2Mn(Mn − 1)γ2. (402)

Hence, by [25, Th. 3.6] with D ≤ 2(Mn − 1), we have

dW

(
P ub

e (Cn)− E[P ub
e (Cn)]√

Var(P ub
e (Cn)

, Z

)
≤ 4(Mn − 1)2

(2Mn(Mn − 1)γ2)3/2

(
Mn(Mn − 1)

2

)
E
[
|Y12|3

]
+

√
28(2(Mn − 1))3/2

√
π(2Mn(Mn − 1)γ2)

√
Mn(Mn − 1)

2
E[|Y12|4]

(403)

≤ Mn

γ3
E[|Y12|3] +

√
28
π

√
MnE[|Y12|4], (404)

which tends to zero if conditions (30) happen simultaneously.

M. Proof of Theorem 12

We first state two auxiliary lemmas.
Lemma 18: If Z ∼ N (0, 1), then for any random variable

T , it holds that

dK(T, Z) ≤ 2(8π)−1/4
√

d̃W,mod(T, Z). (405)

Proof: The proof is similar to the first part of the proof
of Lemma 14 in Appendix B-B, so we omit this proof.
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Lemma 19: If T is a r.v. such that E[T ] = 0 and Var(T ) =
1, and Z has the standard normal distribution, then

dK(T, Z) < 14(8π)−1/4
√

E[|T |] + E
[
|T 2 − 1|

]
. (406)

Proof: Appendix C-A.
Theorem 12 is a direct application of Lemma 19 by setting

T = gn(Pe(Cn)), gives a criterion for the convergence in
distribution of the error exponent and any function of the error
probability, in general.

VI. CONCLUSION

In this paper, we have derived the typical error exponent for
the i.i.d. and constant composition random codebook ensem-
bles. We have shown that the random error exponent converges
in probability to the typical error exponent of the DMC
channel. While this convergence seems plausible for broader
families of channels, like finite-state channels, formally prov-
ing the result remains an open question. By modifying the
Wasserstein metric in Stein’s method, we have also shown that
the normalized error exponents converge in distribution to a
standard Gaussian for a sub-exponential number of codewords
or a Gaussian-like distribution at for a constant number of
codewords. An related open question is to investigate the
convergence in distribution of the normalized error exponent
at positive rates.

APPENDIX A

A. Proof of Lemma 1

Since Un
(d)−→U , by the Skorokhod’s representation theorem

[24, Th. 25.6], there exists a probability space (Ω,F , P ), a
sequence of random variables {Vn}n∈N and a random variable

V such that Vn ∼ Un ∀n and V ∼ U such that Vn
(a.s.)−−−→ V

on (Ω,F , P ). Now, for the given ε ∈ (0, 1) and any δ ∈ (0, ε),
we have

EP [|V 2+δ
n |] ≤

(
EP [|Vn|2+ε]

)(2+δ)/(2+ε)
(407)

=
(
EP [|Un|2+ε]

)(2+δ)/(2+ε)
(408)

< L(2+δ)/(2+ε) < ∞, (409)

where (407) follows from the concavity of the function f(x) =
x(2+δ)/(2+ε) for any ε ∈ (0, 1), (408) follows from Un ∼
Vn while (409) follows from the hypothesis of the lemma.
From (409), it follows that Vn and V 2

n are uniformly integrable
on (Ω,F , P ) [24, p. 216 and p. 218 (16.128)]. Hence, we have
that

E[U ] = EP [V ] (410)
= lim

n→∞
EP [Vn] (411)

= lim
n→∞

E[Un], (412)

where (411) follows from [24, Th. 16.14], and (412) follows
from Un ∼ Vn.

Similarly, we also have

E[U2] = EP [V 2] (413)

= lim
n→∞

EP [V 2
n ] (414)

= lim
n→∞

E[U2
n]. (415)

Hence, we obtain

Var(Vn) = E[V 2
n ]−

(
E[Vn]

)2
(416)

→ VarP (V ) (417)

as n →∞.
From (411) and (417), we obtain

Vn − EP [Vn]√
VarP (Vn)

(a.s.)−−−→ V − EP [V ]√
VarP (V )

. (418)

Since Un ∼ Vn and U ∼ V , from (418), we obtain

Un − E[Un]√
Var(Un)

(d)−→ U − E[U ]√
Var(U)

. (419)

B. Proof of Lemma 3

First, we prove that for any α > 1 and λ > 0, the following
holds:

E
[
Pe(Cn)

λ
αn

]αn
λ ≤ E

[
Pe(Cn)

λ
n

]n
λ . (420)

Indeed, let r = λ
αn , p = λ

n , and q = λ
(α−1)n , satisfying

1
r = 1

p + 1
q and p, q, r ∈ (0,∞) if α > 1. By applying the

generalized Hölder’s inequality [28, p. 140], we have(
E[Pe(Cn)r]

) 1
r ≤

(
E[Pe(Cn)p]

) 1
p
(
E[1q]

) 1
q (421)

=
(
E[Pe(Cn)p]

) 1
p , (422)

implying that (420) holds. Since (420) holds for any α > 1,
we have

E
[
Pe(Cn)

λ
n

]n
λ ≥ lim sup

α→∞
E
[
Pe(Cn)

λ
αn

]αn
λ (423)

= 2E[log Pe(Cn)] (424)

where (424) follows from the identity E[log X] =
limx→∞ log E[X

1
x ]x for any RV X > 0 which is not a

function of x. From the definition of Etrc(R,Q) in (9) and the
definition of limit, we have that for every ϵ > 0 there exists
an n0(ε) such that for n > n0(ε),∣∣∣− 1

n
E[log Pe(Cn)]− Etrc(R)

∣∣∣ < ϵ. (425)

Therefore, from (424) we have that

E
[
Pe(Cn)

λ
n

]n
λ ≥ 2−n(1−ε)Etrc(R,Q), ∀n ≥ n0(ε). (426)

Thus, from (426) and (420), it holds that

lim inf
n→∞

E
[
Pe(Cn)

λ
n

]
≥ 2−λ(1−ε)Etrc(R,Q) (427)

for all ε > 0. This means that

lim inf
n→∞

E
[
Pe(Cn)

λ
n

]
≥ 2−λEtrc(R,Q) (428)

by letting ε → 0.
Now, by the concavity of the function g(x) := x

λ
n on

(0,∞), we have by Jensen’s inequality that

lim sup
n→∞

E
[
Pe(Cn)

λ
n

]
≤ lim sup

n→∞
E
[
Pe(Cn)

] λ
n (429)

≤ 2−λErce(R,Q). (430)
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where (430) follows from the fact that E[Pe(Cn)]
.
≤

2−nErce(R,Q) [3, Th. 1], [30, Th. 8.7].
Finally, from (428) and (430), under the condition that

Etrc(R,Q) = Erce(R,Q), it holds that

lim
n→∞

E
[
Pe(Cn)

λ
n

]
= 2−λErce(R,Q). (431)

C. Proof of Lemma 4

The upper bound follows from Bhattacharyya bound. Now,
by [29, eq. (28)], it holds that

E
[
Pe(Cn)

] .= 2−nErce(R,Q) (432)

for R < Rcrit. In addition, at this range of rate, the Bhat-
tacharyya bound achieves the Gallager’s random coding bound
Erce(R,Q). Hence, from (432), we have

E
[
P ub

e (Cn)
] .= 2−nErce(R,Q) (433)

for R < Rcrit, where P ub
e (Cn) is the union bound on Pe(Cn).

Now, for all rate R < Rcrit, Erce(R,Q) = R0(Q) − R,
where R0 is the cut-off rate corresponding to the underlying
distribution Q, i.e.,

R0(Q) = − log
(∑

y

(∑
x

Q(x)
√

W (y|x)
)2)

. (434)

Let QX = Q′X = Q. By using standard KKT conditions
for convex optimization, it is not hard to prove that

R0(Q) = min
PXX′∈P(X×X )

D(PXX′∥QXQ′X)

+
∑
x,x′

PXX′(x, x′)dB(x, x′). (435)

Now, recall the definition of K2 in (153). From (435),
we obtain

E
[
P ub

e (Cn)
]

= Mn

∑
PXX′∈P(X×X )

2−nD(PXX′∥QXX′ )

× 2−n
∑

x,x′ PXX′ (x,x′)dB(x,x′). (436)

Now, let N (PXX′) be the number of codeword pairs which
have the same join type PXX′ . Then, it holds that

N (PXX′) =
Mn∑
i=1

∑
j ̸=i

1{(Xi, Xj) ∈ Tn(PXX′)}, (437)

which leads to

E[N (PXX′)] = Mn(Mn − 1)2−nD(PXX′∥QXX′ ). (438)

From (436) and (438), we have

(Mn − 1)E
[
P ub

e (Cn)
]

=
∑

PXX′∈P(X×X )

E[N (PXX′)]2−n
∑

x,x′ PXX′ (x,x′)dB(x,x′).

(439)

On the other hand, observe that

(Mn − 1)E
[
P ub

e (Cn)
]

= E
[ Mn∑

i=1

∑
j ̸=i

P
(
Xi → Xj

)]
. (440)

From (439) and (440), we obtain

E
[ Mn∑

i=1

∑
j ̸=i

P
(
Xi → Xj

)]
=

∑
PXX′∈P(X×X )

2−nD(PXX′∥QXX′ )

× 2−n
∑

x,x′ PXX′ (x,x′)dB(x,x′). (441)

Since (441) holds for all random i.i.d. codebook ensembles,
hence for any PXX′ ∈ P(X ×X ), by choosing a sub-random
codebook ensemble which contains all the codewords with the
same joint type PXX′ , we obtain

P
[
Xi → Xj

∣∣(Xi, Xj) ∈ Tn(PXX′)
]

= 2−n
∑

x,x′ PXX′ (x,x′)dB(x,x′). (442)

D. Proof of Lemma 5

Observe that

P[Vc
n]

= P
[ ∑

PXX′ :D(PXX′∥QXQ′X)>2R

N (PXX′) ≥ 1
]

(443)

≤ E
[ ∑

PXX′ :D(PXX′∥QXQ′X)>2R

N (PXX′)
]

(444)

=
∑

PXX′ :D(PXX′∥QXQ′X)>2R

Mn∑
i=1

∑
j ̸=i

P
[
(Xi, Xj) ∈ Tn(PXX′)

]
(445)

≤
∑

PXX′ :D(PXX′∥QXQ′X)>2R

Mn∑
i=1

∑
j ̸=i

2−nD(PXX′∥QXQ′X)

(446)
.
≤ 22nR

∑
PXX′ :D(PXX′∥QXQ′X)>2R

2−nD(PXX′∥QXQ′X)

(447)
.
≤ 22nR

∑
PXX′ :D(PXX′∥QXQ′X)>2R

2−n(2R+α(R))

(448)
.
≤ 2−nα(R) (449)

for some α(R) > 0, where (447) follows from Mn
.= 2nR,

and (449) follows from the fact that the number of possible
n-joint types on X × X is sub-exponential in n.

E. Proof of Lemma 6

Define

Ṽij =
∑

PXX′ :D(PXX′∥QXQ′X)≤2R−ν

1{(Xi, Xj) ∈ Tn(PXX′)}

× gn(PXX′).
(450)
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Then, we have

Dn =
1

Mn

∑
PXX′ :D(PXX′∥QXQ′X)≤2R−ν

N (PXX′)

× gn(PXX′) (451)

=
1

Mn

Mn∑
i=1

∑
j ̸=i

∑
PXX′ :D(PXX′∥QXQ′X)≤2R−ν

1{(Xi, Xj) ∈ Tn(PXX′)}gn(PXX′) (452)

=
1

Mn

Mn∑
i=1

∑
j ̸=i

Ṽij , (453)

where {Ṽij}Mn
i,j=1 is a sequence of independent random vari-

ables. Hence, from (453), we have

Var(Dn) =
1

M2
n

Mn∑
i=1

∑
j ̸=i

Var(Ṽij). (454)

Now, let

Aν :=
{
PXX′ ∈ Pn(X × X ) : D(PXX′∥QXQ′X)≤2R− ν

}
(455)

and recall the definition of F (PXX′) in (161).
Observe that

Var(Ṽij)

=
∑

PXX′∈Aν

(
E
[(

1{(Xi, Xj) ∈ Tn(PXX′)}
)2]

−
(

E
[
1{(Xi, Xj) ∈ Tn(PXX′)}

])2)
g2

n(PXX′)

(456)

=
∑

PXX′∈Aν

P
[
(Xi, Xj) ∈ Tn(PXX′)

]
×
(

1− P
[
(Xi, Xj) ∈ Tn(PXX′)

])
g2

n(PXX′) (457)

≤ 2n maxP
XX′PXX′∈Aν −F (PXX′ ))

×
∑

PXX′PXX′∈Aν

gn(PXX′)P
[
(Xi, Xj) ∈ Tn(PXX′)

]
,

(458)

where (458) follows from Lemma 4.
Hence, from (454) and (458), we obtain

Var(Dn)

= 2−2nR × 2n maxP
XX′∈Aν −F (PXX′ )

×
∑

PXX′∈Aν

Mn∑
i=1

∑
j ̸=i

P
[
(Xi, Xj) ∈ Tn(PXX′)

]
gn(PXX′)

(459)

= 2−2nR × 2n maxP
XX′∈Aν −F (PXX′ )

×
( ∑

PXX′∈Aν

E[N (PXX′)]gn(PXX′)
)

(460)

.= 2−nR × 2−n minP
XX′∈Aν F (PXX′ )E[Dn], (461)

where (461) follows from the fact that the optimizer of the
linear objective function over the convex constraint set is in
the boundary of the convex constraint set5

On the other hand, from (453), we have

E[Dn]

=
1

Mn

Mn∑
i=1

∑
j ̸=i

∑
PXX′∈Aν

P
[
(Xi, Xj) ∈ Tn(PXX′)

]
gn(PXX′)

(462)

=
1

Mn

Mn∑
i=1

∑
j ̸=i

∑
PXX′∈Aν

2−nD(PXX′∥QXQ′X)gn(PXX′)

(463)

= (Mn − 1)2−n minP
XX′∈Aν

(
D(PXX′∥QXQ′X)+F (PXX′ )

)
,
(464)

where (463) follows from [32, p. 2506], and (464) follows
from the definition of pairwise error probability given in
Lemma 4. Hence, we obtain (51).

Using a similar reasoning and the fact that Pn(X × X ) is
dense in P(X × X ), we obtain that

E[P ub
e (Cn)]

=
1

Mn

Mn∑
i=1

∑
j ̸=i

E
[
P[Xi → Xj ]

]
(465)

= 2−n minP
XX′

(
D(PXX′∥QXQ′X)+F (PXX′ )−R

)
, (466)

implying that

Erce(R,Q) + R

= min
PXX′∈P(X×X )

D(PXX′∥QXQ′X) + F (PXX′).

(467)

Using the Karush-Kuhn-Tucker conditions [31, Sec. 5.5.3],
we can show equation (468) at the bottom of the next page,

where P ∗XX′ minimizes minPXX′∈P D(PXX′∥QXQX′) +
F (PXX′)−R.

From (467) and (468), it holds that

2R− ν + F (P ∗XX′) ≥ Erce(R,Q) + R. (469)

From (464) and (468), we obtain (51).
Furthermore, from (461) and (51), we obtain

Var(Dn)(
E[Dn]

)2
.
≤


2−nν , D(P ∗XX′ |QXQ′X) = 2R− ν

2−n minP
XX′ :D(P

XX′ ∥QX Q′
X

)=2R−ν F (PXX′ )

×2n(R−Erce(R,Q)), otherwise

(470)
≤ 2−νn (471)

where (471) follows from (469).
This concludes our proof of Lemma 6.

5We can easily to check this fact by using the Karush-Kuhn-Tucker
conditions [31, Sec. 5.5.3]. Note that dB(x, x′) > 0 for all x, x′.
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F. Proof of Lemma 7

From the definitions of N (PXX′) in Lemma 5 and P ub
e (Cn)

in (15), we have

P ub
e (Cn) =

1
Mn

∑
PXX′

N (PXX′)gn(PXX′). (472)

First, we consider the case R > 0. Take an arbitrary ν such
that 0 < ν ≤ 2R. Let

Bn =
1

Mn

∑
PXX′∈Pn(X×X )

N (PXX′)gn(PXX′), (473)

D̃n =
1

Mn

∑
PXX′∈Pn(X×X ):D(PXX′∥QXQ′X)≤2R

N (PXX′)

× gn(PXX′),
(474)

Dn =
1

Mn

∑
PXX′∈Pn(X×X ):D(PXX′∥QXQ′X)≤2R−ν

N (PXX′)

× gn(PXX′).
(475)

Since E[D̃n] − E[Dn] → 0 as ν → 0 and that E[D̃n] and
E[Dn] are exponentially decaying in n, for ν small enough,
it holds that

E[Dn] ≤ E[D̃n] ≤ E[Dn]2εn/2. (476)

Recall the typical set Vn defined in Lemma 5. For any given
ε > 0, observe that

P
[∣∣∣∣− log P ub

e (Cn)
n

+
1
n

log
(

1
Mn

∑
PXX′∈Aν

E
[
N (PXX′)

]
gn(PXX′)

)∣∣∣∣ > ε

]
(477)

= P
[∣∣∣∣ log

Bn

E[D̃n]

∣∣∣∣ > εn

]
(478)

≤ P
[∣∣∣∣ log

Bn

E[D̃n]

∣∣∣∣ > εn

∣∣∣∣Vn

]
P[Vn] + P[Vc

n] (479)

= P
[∣∣∣∣ log

D̃n

E[D̃n]

∣∣∣∣ > εn

∣∣∣∣Vn

]
P[Vn] + P[Vc

n] (480)

≤ P
[∣∣∣∣ log

D̃n

E[D̃n]

∣∣∣∣ > εn

]
+ P[Vc

n] (481)

= P
[
D̃n > E[D̃n]2εn

]
+ P

[
D̃n < E[D̃n]2−εn

]
+ P[Vc

n]
(482)

≤ 2−εn + P
[
Dn < E[D̃n]2−εn

]
+ 2−nα(R) (483)

≤ 2−εn + P
[
Dn < E[Dn]2−(ε/2)n

]
+ 2−nα(R) (484)

where (479) follows from P(A) ≤ P(A|B)P(B) + P(Bc),
(480) follows from the fact that given Vn, it holds that Bn =

Dn, (481) follows from P(A|B)P(B) ≤ P(A), (483) follows
from Markov’s inequality and Lemma 5, and (484) follows
from Dn ≤ D̃n and E[D̃n] ≤ E[Dn]2εn/2 for ν sufficiently
small by (476).

Now, we have

P
[
Dn < E[Dn]2−(ε/2)n

]
≤ P

[∣∣Dn − E[Dn]
∣∣ > E[Dn]

(
1− 2−(ε/2)n

)]
(485)

.
≤ Var(Dn)(

E[Dn]
)2 (486)

.
≤ 2−nν , (487)

where (487) follows from Lemma 6.
From (484) and (487), for any ε > 0 and R > 0, we have

P
[∣∣∣∣− log P ub

e (Cn)
n

+
1
n

log
(

1
Mn

∑
PXX′∈A0

E
[
N (PXX′)

]
gn(PXX′)

)∣∣∣∣ > ε

]
(488)

.
≤ 2−εn + 2−nν + 2−nα(R) (489)

where A0 is defined in (455) at ν = 0.
It follows from (489) that
∞∑

n=1

P
[∣∣∣∣− log P ub

e (Cn)
n

+
1
n

log
(

1
Mn

∑
PXX′∈A0

E
[
N (PXX′)

]
gn(PXX′)

)∣∣∣∣ > ε

]
< ∞. (490)

Hence, by Borel-Cantelli’s lemma [24, Th. 4.3], we have

1
n

log
(

1
Mn

∑
PXX′∈A0

E
[
N (PXX′)

]
gN (PXX′)

)

− log P ub
e (Cn)
n

(a.s.)−−−→ 0 (491)

On the other hand, we have∣∣∣∣− log P ub
e (Cn))
n

+
1
n

log
(

1
Mn

∑
PXX′∈A0

E
[
N (PXX′)

]
gn(PXX′)

)∣∣∣∣
≤ − log P ub

e (Cn)
n

+
∣∣∣∣− 1

n
log
(

1
Mn

∑
PXX′∈A0

E
[
N (PXX′)

]
gn(PXX′)

)∣∣∣∣
(492)

≤ Esp(R) +
∣∣∣∣− 1

n
log
(

E[Dn]
Mn

)∣∣∣∣, (493)

min
PXX′∈Aν

D(PXX′∥QXQ′X) + F (PXX′) =

{
2R− ν + F (P ∗XX′), if D(P ∗XX′∥QXQ′X) = 2R− ν,

R + Erce(R,Q), otherwise.
(468)
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≤ Esp(R) + R + min
PXX′ :D(PXX′∥QXQ′X)=2R

F (PXX′)

(494)
≤ Esp(R) + R + Db < ∞, (495)

where (493) follows from [30, Th. 8.11], (494) follows from
Lemma 6, where (495) follows with the fact that dB(x, x′) ≤
Db < ∞ for all x, x′ by the condition (46).

From (491), (495), and the bounded convergence theorem
[24, Th. 5.4], we have

lim
n→∞

E
[
− log P ub

e (Cn)
n

+
1
n

log
(

1
Mn

∑
PXX′∈A0

E
[
N (PXX′)

]
gn(PXX′)

)]
= 0.

(496)

Now, by Lemma 6, we have

lim
n→∞

− 1
n

log
(

1
Mn

∑
PXX′∈A0

E
[
N (PXX′)

]
gn(PXX′)

)
= min

PXX′ :D(PXX′∥QXQ′X)≤2R

(
D(PXX′∥QXQ′X)

+ F (PXX′)−R
)
. (497)

Hence, we obtain (54) from (496) and (497). Note that (55)
can be achieved from (54) by using (468) with ν = 0.

G. Proof of Lemma 8

For any ε > 0, by Chebyshev’s inequality, we have

P
[∣∣∣∣P ub

e (Cn)− E[P ub
e (Cn)]

∣∣∣∣ ≥ 2−nεE[P ub
e (Cn)]

]
≤ Var(P ub

e (Cn))

2−2nε
(
E[P ub

e (Cn)]
)2 . (498)

On the other hand, we have

Var(P ub
e (Cn))

.
≤ 2−nR2−n minP

XX′ :D(P
XX′ ∥QX Q

X′ )=2R F (PXX′ )E[P ub
e (Cn)]

(499)

= 2−nEub
trc(R,Q)E[P ub

e (Cn)]. (500)

where (499) follows from (461), (500) follows from (49)
with ν = 0 and Eub

trc(R,Q) > Erce(R,Q) so Eub
trc(R,Q) =

minPXX′∈P(X×X ):D(PXX′∥QXQX′ )=2R F (PXX′).
On the other hand, for R < Rcrit, we have

E[P ub
e (Cn)] .= 2−nErce(R,Q). (501)

From (498), (500), and (501), we obtain

P
[∣∣∣∣P ub

e (Cn)− E[P ub
e (Cn)]

∣∣∣∣ ≥ 2−nεE[P ub
e (Cn)]

]
. (502)

Now, for the case Eub
trc(R,Q) > Erce(R,Q), observe that

P
[
P ub

e (Cn) ≥ 1
2
2−n[Eub

trc(R,Q)−ϵ]

]
+ P

[
P ub

e (Cn) ≤ 2−n[Eub
trc(R,Q)+ϵ]

]
(503)

≤ 1
n1+κ

+ P
[
P ub

e (Cn) ≤ 2−n[Eub
trc(R,Q)+ϵ]

]
(504)

where (504) follows from [15, eq. (22)] with γn = n1+κ′ for
some κ′ > 0. Next, we bound the second term in (504) for
large values of n.

Define

A :=
{∣∣∣∣P ub

e (Cn)− E[P ub
e (Cn)]

∣∣∣∣ ≥ 2−nεE[P ub
e (Cn)]

}
.

(505)

Then, on Ac, we have

P ub
e (Cn) ≥ E[P ub

e (Cn)]− 2−nεE[P ub
e (Cn)] (506)

.= 2−nErce(R,Q). (507)

Hence, we have

P
[
P ub

e (Cn) ≤ 2−n[Eub
trc(R,Q)+ϵ]

]
(508)

≤ P
[
P ub

e (Cn) ≤ 2−n[Eub
trc(R,Q)+ϵ]

∣∣Ac
]

+ P(A) (509)

≤ 1
{

2−nErce(R,Q) ≤ 2−n[Eub
trc(R,Q)+ϵ]

}
+ 2−n(Etrc(R,Q)−Erce(R,Q)−2ε) (510)

= 2−n(Eub
trc(R,Q)−Erce(R,Q)−2ε), (511)

where (509) follows from P(A) = P(A|E)P(E) +
P(A|Ec)P(Ec) ≤ P(A|E) + P(Ec) for any set E, (510)
follows from (502) and (507), and (511) follows from
Eub

trc(R,Q) > Erce(R,Q).
By choosing ε := (Etrc(R,Q)−Erce(R,Q))/4, from (504)

and (511), we obtain

P
[
P ub

e (Cn) ≥ 1
2
2−n[Eub

trc(R,Q)−ϵ]

]
+ P

[
P ub

e (Cn) ≤ 2−n[Eub
trc(R,Q)+ϵ]

]
≤ 1

n1+κ
+ 0 + 2−n(Etrc(R,Q)−Erce(R,Q))/2 (512)

.=
1

n1+κ
. (513)

From (513), our proof is concluded.

H. Proof of Lemma 9

Observe that equations (514)–(520), as shown at the bot-
tom of next page hold, where (517) follows from Caen’s
inequality in Lemma 2 by, for each fixed i, setting Ii =
{j ∈ [M ] \ {i} : j ̸= i}, A(i)

j = {Xi → Xj} with
the probability measure defined as P(A(i)

j ) = E[E[1{Xi →
Xj}]] = E[P[Xi → Xj ]], where the inner expectation is
over the channel randomness and the outer one is over the
random codebook ensemble. This is the probability of event
{Xi → Xj} on the a product probability space generated
from channel statistics and random codebook generations.
By the symmetry of the codebook generation, we have that
P(A(i)

j ) = E[P[Xi → Xj ]] = E[P[X1 → X2]] = P(A(1)
2 )

for all j ̸= i. From (520), it holds that

1 ≤ E[P ub
e (Cn)]

E[Pe(Cn)]
(521)
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≤ 1 + (Mn − 2)
E[P[{X1 → X2} ∩ {X1 → X3}]]

E[P[X1 → X2]]
.

(522)

Recall the definition of dB(x, x′) in (45). Assume that x1 ∈
Tn(PX) for some PX ∈ Pn(X ), which is a fixed vector. Then,
given (x1, x2) ∈ Tn(PXX′) and (x1, x3) ∈ Tn(PXX′′) where
PXX′ ∈ Pn(X × X ) and PXX′′ ∈ Pn(X × X ), it holds that

P{{x1 → x2} ∩ {x1 → x3}
|(x1, x2) ∈ Tn(PXX′), (x1, x3) ∈ Tn(PXX′′)}

≤ min
{

P{x1 → x2|(x1, x2) ∈ Tn(PXX′)},

P{x1 → x3|(x1, x3) ∈ Tn(PXX′′)}
}

(523)

≤ min
{

2−nF (PXX′ ), 2−nF (PXX′′ )

}
(524)

= 2−n max
{

F (PXX′ ,F (PXX′′
}
, (525)

which does not depend on x1, x2, x3, where (524) follows
from Lemma 4. In addition, we have

P
[
(x1, X2) ∈ Tn(PXX′)

]
=
∑
x2

P(x2)1{(x1, x2) ∈ Tn(PXX′)} (526)

= 2−n
(
H(P ′X)+D(PX′∥Q)

)∑
x2

1{(x1, x2) ∈ Tn(PXX′)}

(527)

= 2−n
(
H(P ′X)+D(PX′∥Q)

) |Tn(PXX′ |
|Tn(PX)|

(528)

= 2−n
(
IP (X;X′)+D(P ′X∥Q)

)
, (529)

where (527) and (529) follow from [32, p. 2056].

Similarly, we also have

P
[
(x1, X3) ∈ Tn(PXX′′)

]
= 2−n

(
IP (X;X′′)+D(PX

′′∥Q)
)
.

(530)

Hence, we have

P
[
{(x1, X2) ∈ Tn(PXX′)}

∩ {(x1, X3) ∈ Tn(PXX′′)}
∣∣∣∣X1 = x1

]
= P

[
{(x1, X2) ∈ Tn(PXX′)}

∩ {(x1, X3) ∈ Tn(PXX′′)}
]

(531)

= P
[
(x1, X2) ∈ Tn(PXX′)

]
P
[
(x1, X3) ∈ Tn(PXX′′)

]
(532)

= 2−n
(
IP (X;X′)+D(P ′X∥Q)

)
2−n

(
IP (X;X′′)+D(PX

′′∥Q)
)

(533)

= 2−n(IP (X;X′)+IP (X;X′′)+D(P ′X∥Q)+D(PX′′∥Q)), (534)

where (533) follows from (529) and (530). It follows from
(525) and (534) that

EX [P[{x1 → X2} ∩ {x1 → X3}]]

=
∑

PX′|X

∑
PX′′|X

E
[
P{{x1 → X2} ∩ {x1 → X3}

∣∣∣∣(x1, X2) ∈ TPXX′ , (x1, X3) ∈ TPXX′′ }

× P
[
{(x1, X2) ∈ Tn(PXX′)}

∩ {(x1, X3) ∈ Tn(PXX′′)}
∣∣∣∣X1 = x1

]]
(535)

E[P ub
e (Cn)] ≥ E[Pe(Cn)] (514)

=
1

Mn

Mn∑
i=1

E
[
P
(⋃

j ̸=i

{Xi → Xj}
)]

(515)

=
1

Mn

Mn∑
i=1

E
[
E
[
1

{⋃
j ̸=i

{Xi → Xj}
}]]

(516)

≥ 1
Mn

Mn∑
i=1

∑
j ̸=i

(
E
[
E[1{Xi → Xj}]

])2
E[E[1{Xi → Xj}]] +

∑
k ̸=i,j E[E[1{{Xi → Xj} ∩ {Xi → Xk}}]]

(517)

=
1

Mn

Mn∑
i=1

∑
j ̸=i

(
E
[
P[Xi → Xj ]

])2
E[P[Xi → Xj ]] +

∑
k ̸=i,j E[P[{Xi → Xj} ∩ {Xi → Xk}]

(518)

=
(Mn − 1)

(
E
[
P[X1 → X2]

])2
E[P[X1 → X2]] + (Mn − 2)E[P[{X1 → X2} ∩ {X1 → X3}]]

(519)

=
P ub

e (Cn)E
[
P[X1 → X2]

]
E
[
P[X1 → X2]

]
+ (Mn − 2)E

[
P[{X1 → X2} ∩ {X1 → X3}]

] . (520)
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≤
∑

PX′|X

∑
PX′′|X

2−n max{F (PXX′ ),F (PXX′′ )}

× 2−n(IP (X;X′)+IP (X;X′′)+D(P ′X∥Q)+D(PX
′′∥Q))

(536)

≤
∑

PX′|X

∑
PX′′|X

2−
n
2

(
F (PXX′ )+F (PXX′′ )

)
× 2−n(IP (X;X′)+IP (X;X′′)+D(P ′X∥Q)+D(PX′′∥Q))

(537)

=
( ∑

PX′|X

2−
n
2 F (PXX′

)
2−n

(
IP (X;X′)+D(P ′X∥Q)

))

×
( ∑

PX′′|X

2−
n
2 F (PXX′′ )2−n

(
IP (X;X′′)+D(PX′′∥Q)

))
(538)

=
( ∑

PX′|X

2−
n
2

(∑
x,x′ dB(x,x′)PXX′ (x,x′)

)

× 2−n
(
IP (X;X′)+D(P ′X∥Q)

))2

, (539)

where (537) follows from max{a, b} ≥ a+b
2 . It follows from

(539) that

E[P[{X1 → X2} ∩ {X1 → X3}]]

=
∑
x1

P(x1)E[P[{x1 → X2} ∩ {x1 → X3}]
∣∣X1 = x1]

(540)

=
∑
x1

P(x1)E[P[{x1 → X2} ∩ {x1 → X3}]] (541)

=
∑
PX

∑
x1∈Tn(PX)

P(x1)E[P[{x1 → X2} ∩ {x1 → X3}]]

(542)

=
∑
PX

∑
x1∈Tn(PX)

2−n(D(PX∥Q)+H(PX))

× E[P[{x1 → X2} ∩ {x1 → X3}]] (543)

≤
∑
PX

∑
x1∈Tn(PX)

2−n(D(PX∥Q)+H(PX))

×
( ∑

PX′|X

2−
n
2 F (PXX′ )2−n

(
IP (X;X′)+D(P ′X∥Q)

))2

(544)

≤
∑
PX

2−nD(PX∥Q)

( ∑
PX′|X

2−
n
2 F (PXX′ )

× 2−n
(
IP (X;X′)+D(P ′X∥Q)

))2

, (545)

where (541) follows from the independence of codewords in
the random codebook ensemble, while (543) follows from
[32, p. 2506].

Now, for all joint types PXX′ such that D(PXX′∥
QXQX′) > 2R, it holds:

∞∑
n=1

P
[
N (PXX′) ≥ 1

]
(546)

≤
∞∑

n=1

E
[
N (PXX′)

]
(547)

≤
∞∑

n=1

2−n
(
D(PXX′∥QXQ′X)−2R

)
< ∞. (548)

From (548) and Borel-Cantelli’s lemma [24, Th. 4.3], it holds
almost surely that N (PXX′) = 0 for all joint type PXX′ such
that D(QXX′∥QXQX′) > 2R.

Hence, from (539) and the above fact with noting the
number of types or conditional types are sub-exponential in N ,
we have

E[P[{X1 → X2} ∩ {X1 → X3}]]

= 2−n minP
XX′∈A0 D(PX∥Q)+2

(
IP (X;X′)+D(P ′X∥Q)

)
+F (PXX′ ),

(549)

where (549) follows from the sub-exponential number of
possible n-types in X × X [32, p. 2506]

Now, note that QX = Q′X = Q, so we have

IP (X; X ′)
= D(PXX′∥PXP ′X) (550)
= D(PXX′∥QXQ′X)−D(PX∥Q)−D(P ′X∥Q).

(551)

It follows that

D(PX∥Q) + 2
(
IP (X; X ′) + D(P ′X∥Q)

)
= D(PX∥Q) + 2

(
D(PXX′∥QXQ′X)−D(PX∥Q)

)
(552)

= 2D(PXX′∥QXQ′X)−D(PX∥Q) (553)
≥ D(PXX′∥QXQ′X), (554)

where (554) follows from the data processing for KL diver-
gence (or log-sum inequality [33, Th. 2.7.1]).

Hence, we have

min
PXX′∈A0

D(PX∥Q)+2
(
IP (X; X ′)+D(P ′X∥Q)

)
+F (PXX′)

≥ min
PXX′∈A0

D(PXX′∥QXQ′X) + F (PXX′) (555)

= Etrc(R,Q) + R, (556)

where (555) follows from (554), and (556) follows from
Lemma 7. Note that (555) becomes equality if and only if
PXX′(x, x′) = Q(x)Q(x′) for all x, x′ ∈ X × X . However,
at PXX′ = QXQ′X , we have

min
PXX′∈A0

D(PX∥Q) + F (PXX′)

+ 2
(
IP (X; X ′) + D(P ′X∥Q)

)
(557)

=
∑
x,x′

dB(x, x′)Q(x)Q(x′) (558)

= −
∑
x,x′

log
(∑

y∈Y

√
W (y|x)W (y|x′)

)
Q(x)Q(x′) (559)
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> − log
(∑

x,x′

∑
y∈Y

√
W (y|x)W (y|x′)Q(x)Q(x′)

)
(560)

= − log
(∑

y∈Y

(∑
x

√
W (y|x)Q(x)

)2)
(561)

= R0(Q) (562)
= Erce(R,Q) + R, (563)

where (560) follows from the convexity of the function − log x
noting that the equality does not happen by the condition if
dB(x, x′) is not a constant for all (x, x′), and (562) follows
from [30, eq. (8.45)] with R0(Q) is the cut-off rate of the
DMC at the distribution Q.

Therefore, from (556) and (563), we have

min
PXX′∈A0

D(PXX′∥QXQ′X) + F (PXX′) > Etrc(R,Q) + R

(564)

for the case Eub
trc(R,Q) = Erce(R,Q).

Now, for the case Eub
trc(R,Q) > Erce(R,Q), (556) happens

at the optimizer P ∗XX′ satisfying D(P ∗XX′∥QXQ′X) = 2R,
which leads to P ∗XX′ ̸= QXQ′X if R > 0, so the equality can
not happen in (554).

In summary, at R > 0 and a fixed underlying distribution Q,
it holds that

min
PXX′∈A0

D(PXX′∥QXQ′X) + F (PXX′) > Eub
trc(R,Q) + R.

(565)

Hence, it holds from (549) and (46) that, for some constant
δ(R) > 0:

E
[
P
[
{X1 → X2} ∩ {X1 → X3}

]
≤ 2× 2−

(
R+Eub

trc(R,Q)
)
n2−δ(R)n. (566)

Now, on the other hand, we know that

E[P[X1 → X2]]

=
1

Mn(Mn − 1)

Mn−1∑
i=0

∑
j ̸=i

E[P[Xi → Xj ]] (567)

=
E[P ub

e (Cn)]
Mn − 1

(568)

≥ E[Pe(Cn)]
Mn − 1

(569)

= 2−n(Erce(R,Q)−R). (570)

From (522), (566), and (570), we obtain (116).

I. Proof of Lemma 11

We have that

E[I{i, j}I{i, k}]
= P{(Xi, Xj) ∈ Tn(PXX′), (Xi, Xk) ∈ Tn(PXX′)}

(571)

=
∑
xi

P{Xi = xi}

× P{(xi, Xj) ∈ Tn(PXX′), (xi, Xk) ∈ Tn(PXX′)}
(572)

=
∑
xi

P{Xi = xi}P{(xi, Xj) ∈ Tn(PXX′)}2 (573)

=
∑
PX

N (PX)P{x ∈ Tn(PX)}

× P{(x, Xj) ∈ Tn(PXX′)|x ∈ Tn(PX)}2 (574)
.= max

PX

N (PX)P{x ∈ Tn(PX)}

× P{(x, Xj) ∈ Tn(PXX′)|x ∈ Tn(PX)}2 (575)

where in (572) we conditioned to codeword Xi being equal to
a given realization xi, (573) is because Xj and Xk are inde-
pendent, (574) is because they are also identically distributed,
we grouped codewords Xi according to their type PX and
used the fact that P{(xi, Xj) ∈ Tn(PXX′)} takes the same
value when xi has the same type. Expression (575) is hard to
calculate because of the term P{(x, Xj) ∈ Tn(PXX′)|x ∈
Tn(PX)}. Therefore we find a lower bound and an upper
bound on Eqn. (574). The lower bound is:∑

PX

N (PX)P{x ∈ Tn(PX)}

× P{(x, Xj) ∈ Tn(PXX′)|x ∈ Tn(PX)}2

≥
(∑

PX

N (PX)P{x ∈ Tn(PX)}

× P{(x, Xj) ∈ Tn(PXX′)|x ∈ Tn(PX)}
)2

(576)

= P{(Xi, Xj) ∈ Tn(PXX′)}2 (577)
.= 2−n2D(PXX′∥QXQ′X) (578)

while the upper bound is:∑
PX

N (PX)P{x ∈ Tn(PX)}

× P{(x, Xj) ∈ Tn(PXX′)|x ∈ Tn(PX)}2

≤
∑
PX

N (PX)P{x ∈ Tn(PX)}

× P{(x, Xj) ∈ Tn(PXX′)|x ∈ Tn(PX)}
×max

PX

P{(x, Xj) ∈ Tn(PXX′)|x ∈ Tn(PX)} (579)

= P{(Xi, Xj) ∈ Tn(PXX′)}
×max

PX

P{(x, Xj) ∈ Tn(PXX′)|x ∈ Tn(PX)} (580)

.= 2−n[D(PXX′∥QXQ′X)+η] (581)

where η = − 1
n log maxPX

P{(x, Xj) ∈ Tn(PXX′)|x ∈
Tn(PX)} ≤ D(PXX′∥QXQ′X), and the inequality follows
from (578).

J. Proof of Lemma 12

The proof is based on [34, Th. 10]. A similar proof of an
equivalent result is presented for the case of constant com-
position codes in [12]. Notice that, unlike [12] (for constant
composition codes), our Lemma 11 gives a bound rather than
a dot equality (for i.i.d. codes), which has implications on the
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minimum exponent starting from which a double exponential
decay is found. A full proof of Lemma 11 is available in [35]
and is not reported here for a matter of space. The proof is
obtained by following a similar approach as in [12, Th. 2],
using Lemma 11 to bound the corresponding terms Θ and

∆2

8Θ+2∆ in [12, Th. 2].

APPENDIX B

A. Proof of Lemma 13

The proof is based on Stein’s method in [25, Th. 3.2].
Let T = Sn/

√
n and

Ti =
1√
n

∑
j ̸=i

Xj , ∀i ∈ [n]. (582)

Let f be a bounded function with bounded first and second
derivative. Observe that

√
nE[Tf(T )]

= E
[ n∑

i=1

Xi(f(T )− f(Ti)− (T − Ti)f ′(T ))
]

+ E
[ n∑

i=1

Xi(T − Ti)f ′(T )
]

+ E
[ n∑

i=1

Xif(Ti)
]
.

(583)

Now, we have

E[Tf(T )− f ′(T )]

=
1√
n

E
[ n∑

i=1

Xi

(
f(T )− f(Ti)− (T − Ti)f ′(T )

)]
+

1√
n

E
[ n∑

i=1

Xi(T − Ti)f ′(T )
]

+
1√
n

E
[ n∑

i=1

Xif(Ti)
]
− E[f ′(T )] (584)

≤
∣∣∣∣ 1√

n
E
[ n∑

i=1

Xi

(
f(T )− f(Ti)− (T − Ti)f ′(T )

)]∣∣∣∣
+
∣∣∣∣ 1√

n
E
[ n∑

i=1

Xif(Ti)
]∣∣∣∣

+
∣∣∣∣E[f ′(T )

(
1− 1√

n

n∑
i=1

Xi(T − Ti)
)]∣∣∣∣ (585)

≤ ∥f ′′∥∞
2
√

n

n∑
i=1

E|Xi(T − Ti)2|

+
1√
n

∣∣∣∣E[ n∑
i=1

Xif(Ti)
]∣∣∣∣

+
∥f ′∥∞

n
E
∣∣∣∣ n∑

i=1

(1−X2
i )
∣∣∣∣ (586)

≤ ∥f ′′∥∞
2n3/2

n∑
i=1

E|X3
i |+

1√
n

∣∣∣∣E[ n∑
i=1

Xif(Ti)
]∣∣∣∣

+
∥f ′∥∞

n
E
∣∣∣∣ n∑

i=1

(1−X2
i )
∣∣∣∣. (587)

Now, observe that

1√
n

n∑
i=1

E[Xif(Ti)]

=
1√
n

∑
x1,x2,··· ,xn

P[X1 = x1, X2 = x2, · · · , Xn = xn]

×
n∑

i=1

xif(ti) (588)

=
1√
n

∑
x1,x2,··· ,xn∈V

P[X1 = x1, X2 = x2, · · · , Xn = xn]

×
n∑

i=1

xif(ti) (589)

+
1√
n

∑
x1,x2,··· ,xn∈Vc

P[X1 = x1, X2 = x2, · · · , Xn = xn]

×
n∑

i=1

xif(ti) (590)

=
∑

x1,x2,··· ,xn∈V

(
1± ξn

) 1√
n

n∏
i=1

P[Xi = xi]
n∑

i=1

xif(ti)

+
1√
n

∑
x1,x2,··· ,xn∈Vc

P[X1 = x1, X2 = x2, · · · , Xn = xn]

×
n∑

i=1

xif(ti) (591)

=
∑

x1,x2,··· ,xn∈Xn

(
1± ξn

) 1√
n

n∏
i=1

P[Xi = xi]
n∑

i=1

xif(ti)

−
∑

x1,x2,··· ,xn∈Vc

(
1± ξn

) 1√
n

n∏
i=1

P[Xi = xi]
n∑

i=1

xif(ti)

+
1√
n

∑
x1,x2,··· ,xn∈Vc

P[X1 = x1, X2 = x2, · · · , Xn = xn]

×
n∑

i=1

xif(ti) (592)

= 2ξngn∥f∥∞ −
∑

x1,x2,··· ,xn∈Vc

(
1± ξn

) 1√
n

n∏
i=1

P[Xi = xi]

×
n∑

i=1

xif(ti)

+
1√
n

∑
x1,x2,··· ,xn∈Vc

P[X1 = x1, X2 = x2, · · · , Xn = xn]

×
n∑

i=1

xif(ti), (593)

where (593) is because E
[∑n

i=1 Xif(Ti)
]

= 0 under the
product probability measure

∏n
i=1 P[Xi = xi] and

ξn√
n

∣∣∣∣ n∏
i=1

P[Xi = xi]
n∑

i=1

xif(xi)
∣∣∣∣

≤ ξn

(
1√
n

n∑
i=1

|xi|
)
∥f∥∞ (594)
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≤ ξngn∥f∥∞. (595)

From (593), we obtain∣∣∣∣ 1√
n

n∑
i=1

E[Xif(Ti)]
∣∣∣∣

≤
(
1 + ξn

) 1√
n

∑
x1,x2,··· ,xn∈Vc

n∏
i=1

P[Xi = xi]
∣∣∣∣ n∑

i=1

xif(ti)
∣∣∣∣

+
1√
n

∑
x1,x2,··· ,xn∈Vc

P[X1 =x1, · · · , Xn =xn]
∣∣∣∣ n∑

i=1

xif(ti)
∣∣∣∣.

(596)

From (596), we obtain∣∣∣∣ 1√
n

n∑
i=1

E[Xif(Ti)]
∣∣∣∣

≤
(
1 + ξn

)∥f∥∞√
n

∑
x1,x2,··· ,xn∈Vc

n∏
i=1

P[Xi = xi]
n∑

i=1

|xi|

+
∥f∥∞√

n

∑
x1,x2,··· ,xn∈Vc

P[X1 = x1, · · · , Xn = xn]
n∑

i=1

|xi|

(597)
≤ (1 + ξn)∥f∥∞gnPΠ[Vc] + ∥f∥∞gnP[Vc] → 0 (598)

as n →∞, where (598) follows from the assumption (222).
On the other hand, we have

1
n

E
[∣∣∣∣ n∑

i=1

(1−X2
i )
∣∣∣∣]

≤ (1 + ξn)
(

1
n

) ∑
x1,x2,··· ,xn

n∏
i=1

P(Xi = xi)
∣∣∣∣ n∑

i=1

(1− x2
i )
∣∣∣∣

+
1
n

P[V c] sup
(x1,x2,··· ,xn)∈Vc

∣∣∣∣ n∑
i=1

(1− x2
i )
∣∣∣∣ (599)

= (1 + ξn)
(

1
n

) ∑
x1,x2,··· ,xn

n∏
i=1

P(Xi = xi)
∣∣∣∣ n∑

i=1

(1− x2
i )
∣∣∣∣

+
1
n

P[V c] sup
(x1,x2,··· ,xn)∈Vc

max
{ n∑

i=1

x2
i , n

}
(600)

≤ (1 + ξn)
(

1
n

) ∑
x1,x2,··· ,xn

n∏
i=1

P(Xi = xi)
∣∣∣∣ n∑

i=1

(1− x2
i )
∣∣∣∣

+ P[V c]gn (601)

= (1 + ξn)
(

1
n

) ∑
x1,x2,··· ,xn

n∏
i=1

P(Xi = xi)

×
∣∣∣∣ n∑

i=1

(1− x2
i )
∣∣∣∣+ o(1) (602)

≤ (1 + ξn)
(

1
n

) ∑
x1,x2,··· ,xn

n∏
i=1

P(Xi = xi)

×
∣∣∣∣ n∑

i=1

x2
i −

n∑
i=1

E[X2
i ]
∣∣∣∣+ o(1) (603)

≤ (1 + ξn)
(

1
n

)√√√√VarΠ

[ n∑
i=1

X2
i

]
+ o(1) (604)

= (1 + ξn)
(

1
n

)√√√√ n∑
i=1

Var(X2
i ) + o(1) (605)

≤ (1 + ξn)

√∑n
i=1 E[|Xi|4]

n2
+ o(1), (606)

where (602) follows from (222), (603) follows from∑n
i=1 E[X2

i ] = n, (604) follows from Cauchy-Schwarz
inequality, and (606) follows from Var(X2

i ) ≤ E[|Xi|4].
Furthermore, we also have

1
n3/2

n∑
i=1

E
[
|Xi|3

]
≤ (1 + ξn)

(
1

n3/2

) ∑
x1,x2,··· ,xn

n∏
i=1

P[Xi = xi]
( n∑

i=1

|xi|3
)

+ P[V c] sup
(x1,x2,··· ,xn)∈Vc

(
1

n3/2

n∑
i=1

|xi|3
)

(607)

≤ (1 + ξn)
(

1
n3/2

) ∑
x1,x2,··· ,xn

n∏
i=1

P[Xi = xi]
( n∑

i=1

|xi|3
)

+ P[Vc]gn (608)

≤ (1 + ξn)
1

n3/2

n∑
i=1

E[|Xi|3] + o(1), (609)

where (609) follows from (222).
From (587), (598), (602), and (609), we obtain∣∣E[f ′(T )− Tf(T )]

∣∣
≤ (1 + ξn)

∥f ′′∥∞
2n3/2

n∑
i=1

E[|Xi|3]

+ (1 + ξn)∥f ′∥∞

√∑n
i=1 E[|Xi|4]

n2
+ o(1) → 0 (610)

as n → ∞ under the conditions (224) and (225). Then,
by [25, Th. 3.1], we conclude that T

(d)−→N (0, 1) under the
conditions (224) and (225).

Now, observe that

Var(Sn)

= E[(X1 + X2 + · · ·+ Xn)2] (611)

=
∑

(x1,x2,··· ,xn)∈V

P[X1 = x1, X2 = x2, · · · , Xn = xn]

× (x1 + x2 + · · ·+ xn)2

+
∑

(x1,x2,··· ,xn)∈Vc

P[X1 = x1, X2 = x2, · · · , Xn = xn]

× (x1 + x2 + · · ·+ xn)2 (612)

≤ (1 + ξn)
n∑

i=1

E[X2
i ]

+
∑

(x1,x2,··· ,xn)∈Vc

P[X1 = x1, · · · , Xn = xn]gnn

(613)

Authorized licensed use limited to: CAMBRIDGE UNIV. Downloaded on November 29,2023 at 11:40:05 UTC from IEEE Xplore.  Restrictions apply. 



TRUONG et al.: CONCENTRATION PROPERTIES OF RANDOM CODES 7533

≤ (1 + ξn)
n∑

i=1

E[X2
i ] + gnnP[Vc] (614)

= (1 + ξn)
n∑

i=1

E[X2
i ] + o(n), (615)

where (613) follows from (221), and (615) follows from (222).
From (615) and ξn → 0 (since gnξn → 0 and gn ≥ 1),
it holds that Var(Sn) = n+o(n). Hence, by Slutsky’s theorem
[24, p. 334], we finally obtain that

T̃ =
Sn√
Sn

→ N (0, 1). (616)

B. Proof of Lemma 14

This proof is based on the proof of [25, Prop. 1.2]. Consider
the function hx(w) = 1{w ≤ x}, and the ‘smooth’ hx,ε(w)
defined to be one for w ≤ x, zero for w > x + ε, and linear
between them. Then, it is clear that hx,ε ∈ V with a = x and
c = ε.

First, observe that εhx,ε(w) is 1-Lipschitz and∥∥εhx,ε

∥∥
∞ ≤ ε. (617)

Hence, it holds that

4
√

2πhx,4
√

2π ∈ H = {h ∈ V : c ≤ 4
√

2π}, (618)

so H in the definition of Wasserstein metric (cf. Definition 1)
is a non-empty set, and dW (T, Z) is well-defined.

Furthermore, by definition of dW,mod(T, Z), it holds that

dW,mod(T, Z) ≤ sup
h∈H

E[|h(Z)|] + E[|h(T )|] (619)

≤ 2∥h∥∞ (620)
= 2c (621)

≤ 8
√

2π. (622)

Now, by setting ε = (2π)1/4
√

2dW,mod(T, Z), it holds that∥∥εhx,ε

∥∥
∞ ≤ (2π)1/4

√
2dW,mod(T, Z) (623)

≤ 4
√

2π, (624)

where (623) follows from (617), and (624) follows from (622).
This means that εhx,ε ∈ H since εhx,ε ∈ V as mentioned
above. Then, we have

E[hx(T )]− E[hx(Z)]
= E[hx(T )]− E[hx,ε(Z)] + E[hx,ε(Z)]− E[hx(Z)]

(625)
≤ E[hx,ε(T )]− E[hx,ε(Z)] + E[hx,ε(Z)]− E[hx(Z)]

(626)

=
1
ε

(
E[εhx,ε(T )]− E[εhx,ε(Z)]

)
+
∣∣E[hx,ε(Z)]− E[hx(Z)]

∣∣ (627)

≤ 1
ε

∣∣E[εhx,ε(T )]− E[εhx,ε(Z)]
∣∣

+
∣∣E[hx,ε(Z)]− E[hx(Z)]

∣∣. (628)

Similarly, by choosing hx,ε(ω) to be 1 when ω ≤ x−ε, 0 when
ω ≥ x, and linear between them, which is also a function in
V , we can show that

E[hx(Z)]− E[hx(T )]

≤ 1
ε

∣∣E[εhx,ε(T )]− E[εhx,ε(Z)]
∣∣

+
∣∣E[hx,ε(Z)]− E[hx(Z)]

∣∣ (629)

≤ 1
ε

∣∣E[εhx,ε(T )]− E[εhx,ε(Z)]
∣∣

+
∫ x+ε

x

1√
2π

exp
(
− z2

2

)(
hx,ε(z)− hx(z)

)
dz

(630)

≤ 1
ε

∣∣E[εhx,ε(T )]− E[εhx,ε(Z)]
∣∣+ ε

2
√

2π
. (631)

From (628) and (629), we obtain∣∣P(T ≤ x)− P(Z ≤ x)
∣∣

≤ 1
ε

∣∣E[εhx,ε(T )]− E[εhx,ε(Z)]
∣∣+ ε

2
√

2π
. (632)

Similarly, we also have∣∣P(−T ≤ x)− P(Z ≤ x)
∣∣

≤ 1
ε

∣∣E[εhx,ε(−T )]− E[εhx,ε(Z)]
∣∣+ ε

2
√

2π
. (633)

It follows from (632) and (633) that

sup
x∈R

min{
∣∣P(T ≤ x)−P(Z ≤ x)

∣∣, ∣∣P(−T ≤ x)−P(Z ≤ x)
∣∣}

≤ sup
h∈H

min
{

1
ε

∣∣E[εhx,ε(T )]− E[εhx,ε(Z)]
∣∣,

1
ε

∣∣E[εhx,ε(−T )]− E[εhx,ε(Z)]
∣∣}+

ε

2
√

2π
(634)

=
1
ε
dW,mod(T, Z) +

ε

2
√

2π
(635)

= (8π)−1/4
√

dW,mod(T, Z), (636)

where (635) follows from εhx,ε ∈ H, and (636) follows from
our setting ε = (2π)1/4

√
2dW,mod(T, Z) above.

Now, for any x ∈ R, we have

sup
x∈R

min
{∣∣P(T ≤ x)− P(Z ≤ x)

∣∣,
∣∣P(T ≤ −x)− P(Z ≤ x)

∣∣}
≥ min

{∣∣P(T ≤ x)− P(Z ≤ x)
∣∣,∣∣P(T ≤ −x)− P(Z ≤ x)

∣∣} (637)

≥ min
{∣∣P(T ≤ x)− P(Z ≤ x)

∣∣,∣∣P(T ≤ x)−P(Z ≤ x)
∣∣−∣∣P(T ≤ x)− P(T ≥ −x)

∣∣}
(638)
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≥
∣∣P(T ≤ x)− P(Z ≤ x)

∣∣− ∣∣P(T ≤ x)−P(T ≥−x)
∣∣,

(639)

where (638) follows from the triangle inequality. From (636)
and (639), we obtain (265).

Now, if the distribution of T is tight, then there exists a
distribution Ỹ such that T

(d)−→ Ỹ [24, p. 337]. Then, if x is a
continuous point of P(Ỹ ≤ x) such that x → 0 as n → ∞,
we have

lim
n→∞

min
{∣∣P(T ≤ x)− P(Z ≤ x)

∣∣,
∣∣P(T ≤ −x)− P(Z ≤ x)

∣∣}
= lim

n→∞
min

{∣∣P(Ỹ ≤ x)− P(Z ≤ x)
∣∣,

∣∣P(Ỹ ≤ −x)− P(Z ≤ x)
∣∣} (640)

= min
{∣∣P(Ỹ ≤ 0)− P(Z ≤ 0)

∣∣,
∣∣P(Ỹ ≤0)−P(Z ≤ 0)

∣∣} (641)

= lim
n→∞

∣∣P(T ≤ x)−P(Z≤x)
∣∣, (642)

where (640) follows from limn→∞min{An, Bn} =
min{limn→∞An, limn→∞Bn} if both the limits limn→∞An

and limn→∞Bn exist. Hence, we obtain (266) from (642)
and (636).

C. Proof of Lemma 15

By definition 1, we have

dW,mod(T, Z) = sup
h∈H

min
{∣∣E[h(T )]− E[h(Z)]

∣∣,
∣∣E[h(−T )]− E[h(Z)]

∣∣}. (643)

Using (267), we obtain the following equalities

E[h(T )]− E[h(Z)] = E
[
f ′h(T )− Tfh(T )

]
(644)

E[h(−T )]− E[h(Z)] = E
[
f ′h(−T ) + Tfh(−T )

]
. (645)

Combining (643), (644), and (645), we obtain (268).

D. Proof of Lemma 16

By Lemma 15, we have

dW,mod(T, Z) = sup
h∈H

min
{∣∣E[f ′h(T )− Tfh(T )

]∣∣,
∣∣E[f ′h(−T ) + Tfh(−T )

]∣∣}. (646)

Now, observe that

E
[
f ′h(T )− Tfh(T )

]
= E[h(T )]− E[h(Z)] (647)
= E[h(T1)]− E[h(Z)] + E[h(T )− h(T1)] (648)

= E[f ′h(T1)− T1fh(T1)] + E[h(T )− h(T1)], (649)

where (647) and (649) follow from (267). It follows that∣∣∣∣E[f ′h(T )− Tfh(T )
]∣∣∣∣

=
∣∣∣∣E[f ′h(T1)− T1fh(T1)] + E[h(T )− h(T1)]

∣∣∣∣ (650)

≤
∣∣∣∣E[f ′h(T1)− T1fh(T1)]

∣∣∣∣+ ∣∣∣∣E[h(T )− h(T1)]
∣∣∣∣ (651)

=
∣∣∣∣E[f ′h(T1)− T1fh(T1)]

∣∣∣∣+ E[h(T )− h(T1)] (652)

where (652) follows from T ≤ T1 and h is non-increasing.
Similarly, we have∣∣∣∣E[f ′h(−T ) + Tfh(−T )

]∣∣∣∣
=
∣∣∣∣E[f ′h(−T1) + T1fh(−T1)] + E[h(−T )− h(−T1)]

∣∣∣∣
(653)

≤
∣∣∣∣E[f ′h(−T1) + T1fh(−T1)]

∣∣∣∣+ E[h(−T1)− h(−T )],

(654)

where (654) follows from T ≤ T1 and h is non-increasing.
From (652) and (654), for all h ∈ H, we have

min
{∣∣E[f ′h(T )− Tfh(T )

]∣∣, ∣∣E[f ′h(−T ) + Tfh(−T )
]∣∣}

≤ max
{∣∣E[f ′h(T1)− T1fh(T1)]

∣∣, ∣∣E[f ′h(T1)− T1fh(T1)]
∣∣}

+ min
{

E[h(T )− h(T1)], E[h(−T1)− h(−T )]
}

,

(655)

where (655) follows from min{a + c, b + d} ≤ max{a, b} +
min{c, d} for all a, b, c, d ∈ R.

Finally, we obtain (269) from (655).

APPENDIX C

A. Proof of Lemma 19

The proof of this lemma is based on the proof of the
[25, Th. 3.1]. Given h ∈ H, we choose fh be a solution of
the following ODE equation:

f ′h(w)− wfh(w) = h(w)− Φ(h) (656)

where Φ(h) = E[h(Z)] with Z ∼ N (0, 1), then we have

fh(w) = e
w2
2

∫ ∞

w

e−
t2
2
(
Φ(h)− h(t))dt (657)

= −e
w2
2

∫ w

−∞
e−

t2
2
(
Φ(h)− h(t))dt. (658)

Now, from (658) the facts listed below follow (see
[25, Lemma 2.5]):

∥fh∥∞ ≤ 2∥h′∥∞ = 2, (659)

∥f ′h∥∞ ≤
√

2
π
∥h′∥∞ =

√
2
π

, (660)

Authorized licensed use limited to: CAMBRIDGE UNIV. Downloaded on November 29,2023 at 11:40:05 UTC from IEEE Xplore.  Restrictions apply. 



TRUONG et al.: CONCENTRATION PROPERTIES OF RANDOM CODES 7535

∥fh
′′∥∞ ≤ 2∥h′∥∞ = 2. (661)

Now, assume that E[T ] = 0 and E[T 2 = 1].
Furthermore, for any h ∈ H, from (656), it holds that

|f ′h(T )− Tfh(T )| = |h(T )− Φ(h)| (662)
= |h(T )− E[h(Z)]| (663)
≤ 2∥h∥∞ (664)

≤ 8
√

2π. (665)

Furthermore, from (656), we also have

d̃W,mod(T, Z) = sup
h∈H

∣∣E[h(T )]− E[h(Z)]
∣∣ (666)

≤ sup
fh:h∈H

∣∣E[Tfh(T )− f ′h(T )
]∣∣. (667)

Now, for all fh : h ∈ H, observe that

Tfh(T )− f ′h(T )
= T

(
fh(T )− fh(0)− Tf ′h(0)

)
+ Tfh(0)

+
(
T 2 − 1

)
f ′h(0) +

(
f ′h(0)− f ′h(T )

)
. (668)

It follows from (668) that

E
[
Tfh(T )− f ′h(T )

]
= E

[
T
(
fh(T )− fh(0)− Tf ′h(0)

)]
+ fh(0)E[T ]

+ f ′h(0)E
[
T 2 − 1

]
+ E[f ′h(0)− f ′h(T )] (669)

= E
[
T
(
fh(T )− fh(0)− Tf ′h(0)

)]
+ E[f ′h(0)− f ′h(T )],

(670)

where (670) follows from the fact that E[T ] = 0 and E[T 2] =
1.

Hence, from (667) and (670), we have

d̃W,mod(T, Z)
≤ sup

fh:h∈H

∣∣E[Tfh(T )− f ′h(T )
]∣∣ (671)

≤ sup
fh:h∈H

E
[∣∣T (fh(T )− fh(0)− Tf ′h(0)

)∣∣]
+ E[

∣∣f ′h(0)− f ′h(T )
∣∣]. (672)

Now, observe that∣∣T (fh(T )− fh(0)− Tf ′h(0)
)∣∣

=
∣∣Tfh(T )− f ′h(T ) + f ′h(T )− Tfh(0)− T 2f ′h(0)

∣∣
(673)

=
∣∣Tfh(T )− f ′h(T ) + f ′h(T )

− Tfh(0)− f ′h(0) + (1− T 2)f ′h(0)
∣∣ (674)

≤
∣∣Tfh(T )− f ′h(T )

∣∣+ |f ′h(T )|+ |Tfh(0)|
+ |f ′h(0)|+ |f ′h(0)(T 2 − 1)|

)
(675)

≤ 8
√

2π + 2

√
2
π

+ 2|T |+
√

2
π
|T 2 − 1| (676)

=
(

8 +
2
π

)√
2π + 2|T |+

√
2
π
|T 2 − 1|, (677)

where (676) follows from (659), (660) and (665). Hence,
we have∣∣T (fh(T )− fh(0)− Tf ′h(0)

)∣∣

= min
{(

8 +
2
π

)√
2π + 2|T |,∣∣T (fh(T )− fh(0)− Tf ′h(0)

)∣∣} (678)

≤ min
{(

8 +
2
π

)√
2π,
∣∣T (fh(T )− fh(0)− Tf ′h(0)

)∣∣}
+ 2|T |+

√
2
π
|T 2 − 1|, (679)

where (679) follows from min{A+B, C} ≤ min{A, C}+B
for all A, B,C ≥ 0. It follows from (679) that

E
[∣∣T (fh(T )− fh(0)− Tf ′h(0)

)∣∣]
≤ E

[
min

{(
8 +

2
π

)√
2π,∣∣T (fh(T )− fh(0)− Tf ′h(0)

)∣∣}]+ 2E
[
|T |
]
. (680)

Now, by Taylor’s expansion, for some η ∈ (0,−|T |)∪(0, |T |),
we have∣∣T (fh(T )− fh(0)− Tf ′h(0)

)∣∣ = 1
2

∣∣T 3fh
′′(η)

∣∣ (681)

≤ 1
2
∥fh

′′|∞|T 3| (682)

≤ |T 3|. (683)

Hence, from (680) and (683), we obtain

E
[∣∣T (fh(T )− fh(0)− Tf ′h(0)

)∣∣]
≤ E

[
min

{(
8 +

2
π

)√
2π,
∣∣T ∣∣3}]

+ 2E
[
|T |
]
+

√
2
π
|T 2 − 1|. (684)

Similarly, by Taylor’s expansion, for some θ ∈ (0,−|T |) ∪
(0, |T |), we obtain

E
[∣∣f ′h(T )− f ′h(0)

∣∣] = E
[∣∣fh

′′(θ)T
∣∣] (685)

≤ E
[
|fh

′′(θ)∥T |
]

(686)

≤ ∥fh
′′∥∞E

[
|T |
]

(687)
≤ 2E[|T |]. (688)

Finally, from (679), (684), and (688), we have

d̃W,mod(T, Z)
≤ sup

fh:h∈H
E
[∣∣T (fh(T )− fh(0)− Tf ′h(0)

)∣∣]
+ E[

∣∣f ′h(0)− f ′h(T )
∣∣] (689)

≤ E
[

min
{(

8 +
2
π

)√
2π,
∣∣T ∣∣3}]

+ 2E
[
|T |
]
+

√
2
π
|T 2 − 1|. (690)

Now, observe that

E
[

min
{(

8 +
2
π

)√
2π,
∣∣T ∣∣3}]

= E
[

min
{(

8 +
2
π

)√
2π,
∣∣T ∣∣3}∥∥∥∥T | ≤ 1

]
P[|T | ≤ 1]
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+ E
[

min
{(

8 +
2
π

)√
2π,
∣∣T ∣∣3}∥∥T | > 1

]
P[|T | > 1]

(691)

≤ E
[

min
{(

8 +
2
π

)√
2π,
∣∣T ∣∣}∥∥∥∥T | ≤ 1

]
P[|T | ≤ 1]

+ E
[

min
{(

8 +
2
π

)√
2π,
∣∣T ∣∣}∥∥T | > 1

]
P[|T | > 1]

(692)

≤ E
[∣∣T ∣∣∥∥∥∥T | ≤ 1

]
P[|T | ≤ 1]

+ E
[

min
{(

8 +
2
π

)√
2π,
∣∣T ∣∣3}∥∥T | > 1

]
× P[|T | > 1] (693)

≤ E
[
|T |
]
+ E

[
min

{(
8 +

2
π

)√
2π,
∣∣T ∣∣3}∥∥T | > 1

]
× P[|T | > 1] (694)

≤ E
[
|T |
]
+
(

8 +
2
π

)√
2πP[|T | > 1] (695)

≤ E
[
|T |
]
+
(

8 +
2
π

)√
2πE[|T |] (696)

≤
(

10 +
1
π

)√
2πE[|T |], (697)

where (692) follows from |T |3 ≤ |T | for all |T | ≤ 1,
(694) follows from E[X] = E[X|A]P(A) + E[X|Ac]P(Ac) ≥
E[X|A]P(A) for all non-negative random variable X , and
(696) follows from Markov’s inequality.

From (690) it follows that

d̃W,mod(T, Z)

≤
((

10 +
1
π

)√
2π +

(
4 +

√
2
π

))
E[|T |]

+

√
2
π

E
[
|T 2 − 1|

]
(698)

< 40E[|T |] +

√
2
π

E
[
|T 2 − 1|

]
. (699)

By combining Lemma 14 and (699), we have

dK(T, Z) < 2(8π)−1/4

√
40E[|T |] +

√
2
π

E
[
|T 2 − 1|

]
(700)

≤ 14(8π)−1/4
√

E[|T |] + E
[
|T 2 − 1|

]
. (701)

This concludes the proof.
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