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Abstract—We propose a composite hypothesis test in the
Neyman-Pearson setting where the null distribution is known
and the alternative distribution belongs to a certain family of
distributions. The proposed test interpolates between Hoeffding’s
test and the likelihood ratio test and achieves the optimal error
exponent tradeoff for every distribution in the family. In addition,
the proposed test is shown to attain the type-I error probability
prefactor of n

d̄−1
2 , where d̄ is the dimension of the family of

distributions projected onto a relative entropy ball centered at
the null distribution. This can be significantly smaller than the
prefactor n

d−2
2 achieved by the Hoeffding’s test where d is the

dimension of the probability simplex. In addition, the proposed
test achieves the optimal type-II error probability prefactor for
every distribution in the family.

I. INTRODUCTION AND PRELIMINARIES

Consider the following composite binary hypothesis testing
problem where an observation x = (x1, . . . , xn) is generated
in an i.i.d. fashion from either of two possible distributions P0

or P1 defined on a probability simplex P(X ) with alphabet
size |X | < ∞. The type of x is defined as T̂x(a) = N(a|x)

n ,
where N(a|x) is the number of occurrences of symbol a ∈ X
in sequence x. The set of all sequences of length n with type
P , denoted by T nP . The set of types formed with length n
sequences on the simplex P(X ) is denoted as Pn(X ). We
assume that the first hypothesis is known and that distribution
P1 belongs to a known family of distributions denoted by P1

and characterized by

P1 =
{
P1(θ) : θ ∈ Θ,Θ ⊆ Rd̃

}
, (1)

where d̃ ≤ d, and d = |X | − 1, which is the dimension
of probability simplex in Rd+1. Therefore, P1 is uniquely
characterized by the choice of parameter θ. Also, assume that
Θ is a compact set and P1(θ) be a continuous function of θ.
Let φ : Xn → {0, 1} be a hypothesis test that decides which
distribution generated the observation x. We also assume
that both P0(x) > 0, P1(x) > 0 for each x ∈ X . We
consider deterministic tests φ that decide in favor of P0 if
x ∈ A0, where A0 ⊂ Xn is the decision region for the
first hypothesis. We define A1 = Xn \ A0 to be the decision
region for the second hypothesis. The two possible pairwise
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error probabilities measure the test performance. The type-I
and type-II error probabilities are defined as

ε0(φ) =
∑
x∈A1

Pn0 (x), ε1(φ|P1(θ)) =
∑
x∈A0

Pn1 (θ)(x). (2)

The optimal error exponent tradeoff (E0, E1) is defined as

E∗1 (E0, θ) , sup
{
E1 ∈ R+ : ∃φ, ∃n0 ∈ Z+ s.t. ∀n > n0

ε0(φ) ≤ e−nE0 and ε1(φ|P1(θ)) ≤ e−nE1
}
.
(3)

Assuming P1(θ) is known, the likelihood ratio test defined
as

φlrt(T̂x) = 1
{
D(T̂x‖P0)−D(T̂x‖P1(θ)) ≥ γ

}
. (4)

achieves the optimal error exponent trade-off in (3) [1], [2].
For composite hypothesis testing, Hoeffding proposed the
following generalized likelihood ratio test [3]

φglrt(T̂x) = 1
{
D(T̂x‖P0) > E0

}
. (5)

It is known that Hoeffding’s test can achieve the best error
exponent trade-off in (3) for any family of distributions P1 [3],
[4]. By Sanov’s theorem [5], the error exponent of Hoeffding’s
test is given by

E0(φglrt) = E0, (6)

E1(φglrt) = min
Q∈P(X ),

D(Q‖P0)≤E0

D(Q‖P1), (7)

where the minimizing distribution in (7) is given by

Qµ(x) =
P

µ
1+µ

0 (x)P
1

1+µ

1 (x)∑
a∈X P

µ
1+µ

0 (a)P
1

1+µ

1 (a)
, µ ≥ 0, (8)

and the µ is the solution to D(Qµ‖P0) = E0 [2]. Using large
deviations refinement [6]–[8], the type-I error probability of
the likelihood ratio test is

ε0(φlrt) =
1√
n
e−nE0

(
c+ o(1)

)
, (9)

while, Hoeffding’s test type-I error probability is given by [7],
[9]

ε0(φglrt) = n
|X|−3

2 e−nE0
(
c′ + o(1)

)
, (10)



where c, c′ are constants that only depend on P0, P1, and the
corresponding test thresholds. As a result, when the alphabet
size is large, Hoeffding’s test, although attaining the optimal
error exponent tradeoff, suffers in prefactor when compared
to the likelihood ratio’s 1√

n
for observation alphabets such

that |X | > 2. In this paper, we propose a test which exploits
the geometry of the family of alternative distributions P1 to
reduce this gap between likelihood ratio test and Hoeffding’s
test pre-factors.

II. MAIN RESULTS

We show that if there is some low dimensional structure on
the family P1, the prefactor can be controlled by the dimension
of the family d̃ instead of the dimension of probability
simplex d. Our proposed test is the intersection of the decision
regions A0 of all likelihood ratio test between P0 and every
distribution P1 in the family P1(θ). To introduce the main
idea, we give the following example.

Example 1. Assume that the first hypothesis is distributed by
P0 and the family of the distributions P1 is the union of two
exponential families generated by P0, P1 and P0, P

′
1, i.e.,

P1 =

{
P : P =

Pλ0 (x)P 1−λ
1 (x)∑

a∈X P
λ
0 (a)P 1−λ

1 (a)
, λ ⊂ [0, 1]

}

∪

{
P : P =

Pλ0 (x)P ′1−λ1 (x)∑
a∈X P

λ
0 (a)P ′1−λ1 (a)

, λ′ ⊂ [0, 1]

}
. (11)

In this case, one can use a test combining the result of two
likelihood ratio tests and achieves the optimal prefactor 1√

n
.

Let the test be

φ(T̂x) =1

{
D(T̂x‖P0)−D(T̂x‖P1) > γ or

D(T̂x‖P0)−D(T̂x‖P ′1) > γ′
}
, (12)

where γ, γ′ are chosen such that for each likelihood ratio test,
the error exponent under the first hypothesis is some fixed
exponent E0. This test is the intersection of two hyperplanes
between P0, P1, and P0, P

′
1 such that both hyperplanes are

tangent to the Hoeffding’s decision region. The optimality of
the test in the prefactor is the direct result of the union bound.
Figure 1 illustrates the decision region.

Let the relative entropy ball defined as

B(E0) = {Q ∈ P(X ) : D(Q‖P0) < E0}, (13)

and P∗1 to be the I-projection of P1 into the relative entropy
ball B(E0) [10], i.e.,

P∗1 = {P ∗1 (θ) : θ ∈ Θ}, (14)

where

P ∗1 (θ) = arg min
Q:D(Q‖P0)≤E0

D
(
Q‖P1(θ)

)
. (15)

tilted of P0, P1

tilted of P0, P
′
1

P0

P1

P ′
1

P(X )

E0

Fig. 1. Composite hypothesis testing with second hypothesis restricted to the
union of two exponential families

Note that P ∗1 (θ) is a continuous function of θ by the Berge’s
maximum theorem [11]. We propose the following hypothesis
test

φ(T̂x) = 1

{
∃θ ∈ Θ s.t. D(T̂x‖P0)−D(T̂x‖P ∗1 (θ)) ≥ E0

}
.

(16)

The proposed test is the intersection of the likelihood ratio
tests, such that the resulting hyperplane of the likelihood ratio
test is tangent to the relative entropy ball of radius E0 centered
at P0 for every P1(θ). We note that the test proposed in [12]
is different from the test in (16). The next theorem shows that
the type-I error exponent of the proposed test equals E0, i.e.,
it is independent of P1(θ).

Theorem 1. For every P1 ∈ P1, the type-I error exponent of
the proposed test φ in (16) satisfies

lim
n→∞

− 1

n
log ε0(φ) = E0. (17)

Proof. Using Sanov’s Theorem [1] the type-I error exponent
of the proposed test is given by

E0(φ) = min
Q∈Qc0

D(Q‖P0), (18)

where

Q0 =
⋂
θ∈Θ

{
Q : D(Q‖P0) < E0 +D(Q‖P ∗1 (θ))

}
. (19)

From the definition, we get that Q0 ⊂ B(E0) since for
every Q ∈ B(E0) we have D(Q‖P0) < E0, thus Q ∈ Q0.
Therefore, we have that

E0(φ) ≥ min
Q∈B(E0)c

D(Q‖P0) (20)

= E0. (21)

Moreover, for every θ, P ∗1 (θ) ∈ Qc0 and D(P ∗1 (θ)‖P0) =
E0, hence the type-I error exponent lower bound in (20) is
achievable and the minimum in (18) equals to E0.

We next show that the type-II error probability of the
proposed test achieves the optimal type-II error exponent and



a prefactor that equals that of the likelihood ratio test for every
P1(θ) ∈ P1 [6], [8].

Theorem 2. For every P1(θ), the type-II probability of error
of the proposed test (16) satisfies

ε1(φ|P1(θ)) ≤ 1√
n
e−nE

∗
1 (E0,P1(θ))(c(θ) + o(1)), (22)

where

E∗1 (E0, P1(θ)) = min
D(Q‖P0)≤E0

D(Q‖P1(θ)) (23)

is the optimal type-II error exponent under the probability
distribution P1(θ) for the fixed type-I error exponent.

Proof. We first show that the test achieves the optimal expo-
nent under each P1(θ) ∈ P1. For every P1(θ), consider the
following set

Q1(θ) =
{
Q ∈ P(X ) : D(Q‖P0)−D(Q‖P ∗1 (θ)) ≥ E0

}
.

(24)

Then for every T̂x ∈ Q1(θ) we have φ(T̂x) = 1. Hence,
Q1(θ) ⊆ A1, and by Sanov’s theorem we have

E1(E0, P1(θ)) ≥ inf
Q∈Qc1(θ)

D(Q‖P1(θ)). (25)

We show that the optimization in (25) equals to E∗1 (E0, P1(θ))
as letting Q = P ∗1 (θ) satisfy the KKT conditions, and since
the optimization problem is convex, the KKT conditions are
also sufficient. Writing the Lagrangian we obtain

L(Q,λ, ν) =D(Q‖P1(θ)) + λ
(
D(Q‖P0)−D(Q‖P ∗1 (θ))

− E0

)
+ ν
(∑
x∈X

Q(x)− 1
)
. (26)

Differentiating with respect to Q(x) and setting to zero we
have

1 + log
Q(x)

P1(θ)(x)
+ λ log

P ∗1 (θ)(x)

P0(x)
+ ν = 0. (27)

Solving equation (27) for every x ∈ X , Q ∈ P(X ) we obtain

Qλ(x) =
Pλ0 (x)P1(θ)(x)P ∗1 (θ)−λ(x)∑
a∈X P

λ
0 (a)P1(θ)(a)P ∗1 (θ)−λ(a)

. (28)

It can be shown that P ∗1 (θ) is the tilted distribution of
P0, P1(θ), therefore Qλ(x) will also be the tilted distribu-
tion of P0, P1(θ) [2]. Furthermore, by the complementary
slackness condition [13] D(Qλ‖P0) − D(Qλ‖P ∗1 (θ)) = E0,
hence the solution to the optimization is Qλ = P ∗1 (θ), and
the infimum in (25) is equal to E∗1 (E0, P1(θ)). Finally, by
Theorem 1, for every θ the type-I error exponent is E0,
therefore the type-II error exponent cannot be larger than
E∗1 (E0, P1(θ)) as E∗1 (E0, P1(θ)) is the optimal error exponent
tradeoff in (3) for every θ ∈ Θ; hence (25) satisfies with
equality.

Next, we show the prefactor decay relation in (22). As
Q1(θ) ⊆ A1 we have

ε1(φ|P1(θ)) =
∑
x∈Ac1

Pn1 (θ)(x) ≤
∑

x∈Qc1(θ)

Pn1 (θ)(x). (29)

Furthermore, the decision region in (24) is equal to the
likelihood ratio test between P0 and P ∗1 (θ). By [6], [8],
the prefactor of likelihood ratio test is 1√

n
for any pair of

distributions P0, P1 hence we can further upper bound (29) to
get (22).

So far, we have shown that the proposed test achieves the
optimal error exponent tradeoff. Also, for every θ, the type-II
prefactor is 1√

n
which is the same as if the parameter θ was

known and the likelihood ratio test which achieves the optimal
error tradeoff is used. We next show that the test in (16)
achieves an improved prefactor with respect to Hoeffding’s
test. In particular, the power of n in the prefactor is a function
of the dimension of P∗1 ; this can be much smaller than the
dimension of the probability space.

Theorem 3. Let Q1 = Qc0 have a minimally smooth boundary.
Then for every P1(θ), the type-I error probability satisfies

ε0(φ) ≤ n
d̄−1

2 e−nE0(c+ o(1)), (30)

where d̄ is the dimension of the manifold P∗1 .

Example 2. We present a numerical example to illustrate the
performance of the proposed hypothesis test in (16). Consider
the distribution P0 = [0.25, 0.25, 0.25, 0.25], and let

P1 =

{
P1 : P1(x) =

P 1−λ
0 (x)P ∗1

λ(x)∑
a∈X P

1−λ
0 (a)P ∗1

λ(a)
,

λ ⊂ [1.2, 1.5], P ∗1 ∈ P∗1

}
, (31)

P∗1 =

{
P ∗1 : D(P ∗1 ‖P0) = 0.001

4∑
i=1

P ∗1 (i) = 1, P ∗1 (1) + P ∗1 (2) = 0.5

}
. (32)

It can be shown that P∗1 is the I-projection of P1 onto the
relative entropy ball B(E0 = 0.001), and that the boundary of
the decision region is a smooth manifold. We also assume
P1 = [0.3244, 0.1766, 0.1862, 0.3128] ∈ P1 is generating
the samples from the family P1. Each point in the figure
is obtained by estimating the average error probability as
follows. For each length of the test sequence n, we estimate
the type-I and type-II error probabilities of the test in (16) as
well as optimal likelihood ratio test assuming the knowledge
of P1, and the Hoeffding’s generalized likelihood ratio test
over 106 independent experiments. In Figure 2, we have
plotted log ε0(φ)

(
√
n)k(φ)e−nE1

where k(φ) equals to −1, 0, 1 for
the likelihood ratio test, the proposed test, and Hoeffding’s test
respectively. It can be observed that all three curves converge
to constants, hence the type-I error probability of the proposed
test outperforms the Hoeffding’s test as ε0 � e−nE0 while
εH
0 �
√
ne−nE0 . In addition, in Figure 3 we plot log ε1(φ)

1√
n
e−nE1

and we observe that the all three tests achieve the 1√
n

prefactor,
though with different constants.
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APPENDIX A
PROOF OF THEOREM 3

We find refined asymptotics of the type-I probability of error
the proposed test (16). To find the polynomial decay of the
error probability, we use the following theorem from [6], to
approximate the summation by an integral and then use the
saddlepoint approximation [14]–[16]. Also, we take similar
steps to [7] to calculate the integral. We use the shorthand
notation an � bn for any two positive real sequences such
that log an

bn
= O(1).

Theorem 4. [6] Suppose ψ : Rd → R is a Lipschitz
continuous function and the open set D ⊆ Rd has minimally

smooth boundary. Then∑
q∈D∩Pn(X )

e−nψ(q) � nd
∫
D
e−nψ(q) dq. (33)

The exact definition of minimally smooth boundary can be
found in [6]. In this paper, we give examples of sets with
smooth boundaries and hence minimally smooth.

Using the method of types, the type-I probability of error
can be written as

ε0(φ) =
∑

x:φ(T̂x)=1

P0(x) (34)

=
∑

Q∈Q1∩Pn(X )

P0(T nQ ) (35)

=
∑

Q∈Q1∩Pn(X )

·n
−|X|+1

2 e−nD(Q‖P0)(c′ + o(1)) (36)

where (35) is because the test is only depending on the type
of the samples and in (36) we have used that [10]

P0(T nQ ) � n
−|X|+1

2 e−nD(Q‖P0). (37)

By the continuous differentiability of ψ(q) = D(q‖P0) in
q and the minimally smoothness of the boundary of Q1 by
the assumption, the conditions of the theorem 4 are satisfied
and we can approximate the summation in (36) by the integral∑

q∈Q1

e−nD(q‖P0) � n|X |−1

∫
q∈Q1

e−nD(q‖P0)dq, (38)

where we restrict the space to the probability simplex by
writing P (|X |) = 1 −

∑|X |−1
x=1 P (x) for any probability

distribution. To calculate the integral in the d = |X | − 1
dimensional space over the set Q1, for every point q in P∗1
which is also in the decision region Q1, we define a local
coordinate system centered at q such that dth coordinate wd
is parallel with

n(q) = ∇qD(q‖P0), (39)

the normal direction to the level surface D(q‖P0) = E0.
Furthermore, In this local coordinate system we denote the
boundaries of B(E0), Q1 by wd = fq(w), wd = gq(w)
respectively where w = (w1, . . . , wd−1) . Also let W‖ be
the tangent space of P∗1 at point q = P∗1 (θ) defined as the
span of the Jacobian matrix Jq = ∇θP∗1 (θ), i.e.,

W‖(q) =

{
v ∈ R|X |−1 : v =

d̃∑
i=1

αi
∂P ∗1 (θ)

∂θi
, αi ∈ R

}
.

(40)
Note that if the Jacobian matrix is full rank then dim(W‖) = d̃
which is equal to the dimension of the family of the distri-
butions P1. However, in the case of rank deficient Jacobian
matrix d̄ , dim(W‖) < d̃, which means the projection of P1

into B(E0) has less degrees of freedom than P1. Also, it can
be shown that d̄ ≥ d̃ − 1. For every q ∈ P∗1 , we also define
the orthogonal subspace W⊥ as

W⊥(q) =
{
v ∈ R|X |−1 : ∀w ∈ W‖(q),

vTw = 0,vTn(q) = 0
}
. (41)



Hence every point in the tangent space of B(E0) can be written
as the direct sum of W‖,W⊥, i.e.,

W‖(q)⊕W⊥(q) =
{
v ∈ R|X |−1 : vTn(q) = 0

}
. (42)

We can also decompose w = (w‖,w⊥) such that w‖ ∈
W‖(q),w⊥ ∈ W⊥(q). Note that the decision region Q1 is
union of hyperplanes tangent to the q ∈ P∗1 , and we have

Q1 ⊆
⋃

q∈P∗1

W⊥(q)⊕Wd(q), (43)

where Wd(q) = span{n(q)}. For every q ∈ P∗1 , let

Γ(q) =
{

(w, wd) : w ∈ Λ(q), wd ≥ gq(w)
}
, (44)

where

Λ(q) =
{
w :

1

2
‖n(q)‖wTH(q)w ≤ s log n

n

}
, (45)

and
H(q) = ∇2gq(w)|w=0 −∇2fq(w)|w=0, (46)

and s = d−d̄−2
2 chosen large enough such that the integral

(38) over Γ(q) dominates the integral over Γc(q) for large n.
Also note that in a neighbourhood ofW‖(q) we have f(w) =
g(w), and for w‖ = 0, gq(w) = 0 for w⊥ ∈ W⊥(q). We
limit the integral on the set Γ =

⋃
q∈P∗1

Γ(q) and further
expand the integral (38) to get∫

q∈Q1∩Γ

e−nD(q‖P0)dq ≤
∫
q∈P∗1

dw‖
∫
w∈W⊥(q)∩Γ(q)

dw⊥∫ ∞
wd=gq(w)

e−nD(q‖P0)dwd, (47)

where we have dropped the dependence of dw‖(q), dw⊥(q)
on q for ease of notation. Next by Taylor expanding D

(
q +(

w, wd
)
‖P0

)
for q ∈ P∗1 in the d’th coordinate direction

which is parallel to n(q) around q +
(
w, fq(w)

)
we get

D
(
q +

(
w, wd

)
‖P0

)
≥ D

(
q +

(
w, fq(w)

)
‖P0

)
+∇qD(q‖P0)T

∣∣
q+(w,fq(w))

(0, wd − fq(w)) (48)

=E0 + n
(
q + (w, fq(w))

)T
(0, wd − fq(w)) (49)

=E0 + nd(v)(wd − fq(w)), (50)

where nd(v) is the projection of normal vector at point
q + (w, fq(w) onto the d’th coordinate, and in (48) we have
used the convexity of relative entropy and hence convexity of
relative entropy in all directions. Substituting the expansion in
(47) we get∫

w∈Q1∩Γ

e−nD(w‖P0)dw ≤ e−nE0

∫
q∈P∗1

dw‖×∫
w∈W⊥∩Γ(q)

dw⊥
∫ ∞
wd=gq(w)

e−nnd(v)(wd−fq(w))dwd

(51)

=
1

n
e−nE0

∫
q∈P∗1

dw‖×∫
w⊥∈W⊥∩Γ(q)

1

nd(v)
e−nnd(v)(gq(w)−fq(w))dw⊥ (52)

Taylor expanding nd(v) and gq(w)− fq(w) over w = 0 we
get

gq(w)− fq(w) =
1

2
(w⊥)THw⊥(q)w⊥ + o(‖w‖2)

(53)
nd(q + (w, fq(w)) = ‖n(q)‖+ o(‖w‖), (54)

where

Hw⊥(q) = ∇2
w⊥

(
gq(w)− fq(w)

)∣∣
w=0

, (55)

is the (d − d̄ − 1) × (d − d̄ − 1) positive definite Hessian
matrix of gq(w) − fq(w) in subspace W⊥(q), and we used
the fact that f(w) = g(w) in a neighbourhood w = (w‖,0)
for ‖w‖‖ ≤ ε for some positive ε. Therefore,

nd(v)(gq(w)− fq(w)) =
1

2
‖n(q)‖(w⊥)THw⊥(q)w⊥

+ o(‖w‖2). (56)

Substituting in the integral (52), and by (45) we get∫
w∈Q1∩Γ

e−nD(w‖P0)dw ≤ 1

n
e−nE0

∫
q∈P∗1

dw‖×∫
w⊥∈W⊥∩Γ(q)

1

‖n(q)‖
e−n

1
2‖n(q)‖(w⊥)TH

w⊥ (q)w⊥dw⊥

× (1 + o(1)).
(57)

By change of variable u =
√
nw⊥, and hence du =

n
d−d̄−1

2 dw⊥, we have∫
w∈Q1∩Γ

e−nD(w‖P0)dw ≤ n
d̄−d−1

2 e−nE0

∫
q∈P∗1

1

‖n(q)‖
dw‖

×
∫
Rd−d̄−1

e−
1
2‖n(q)‖uTH

w⊥ (q)udu(1 + o(1)), (58)

Where we have substituted the limits of the second integral to
the whole space. The second integral in (58) is now a Gaussian
integral for every q, therefore∫

w∈Q1∩Γ

e−nD(w‖P0)dw ≤ n
d̄−d−1

2 e−nE0×

∫
q∈P∗1

√
2πdet(H−1

w⊥
(q))

‖n(q)‖ 3
2

dw‖(q)(1 + o(1)) (59)

= n
d̄−d−1

2 e−nE0(c+ o(1)), (60)

where in (60) we used that the integrand is independent of n
and c is the integral of a function of the hessian matrix over
the family P∗1 . Approximating the remainder term, we have∫

w∈Q1∩Γc
e−nD(w‖P0)dw ≤

∫
w∈B(E0+s logn

n )

e−nD(w‖P0)dw

(61)

= n
d̄−d−1

2 e−nE0O(n−1). (62)

Finally, by (36), (38), and (60) we get (30).
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