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Abstract—We derive a lower bound on the typical random-
coding (TRC) exponent of pairwise-independent codeword en-
sembles used over a finite-state channel (FSC) at rates below ca-
pacity. Under some conditions, we also show that the probability
of selecting a code from the ensemble with an error exponent
larger than our lower bound tends to one as the codeword length
tends to infinity. Our result, presented here for the FSC, also
applies to compound channels.

I. INTRODUCTION

We consider reliable transmission of information using
a code Cn = {x1, . . . ,xMn

}, a set of Mn equiprobable
codewords of length n, over a discrete channel with joint
transition probability Wn(y|x), where x ∈ Xn and y ∈ Yn
are respectively the transmitted and received sequences.

The error probability of the code, denoted as Pe(Cn), is
a fundamental quantity in information theory. Most of the
analysis of the error probability has been centred around
discrete memoryless channels (DMC). In a DMC, conditioned
on x, the channel output sequence y is a sequence of
independent random variables, an observation that provides
great simplifications in the analysis. A less considered class
of channels are channels with memory, such as finite-state
channels (FSC), that exhibit great practical importance for
example in the modelling of fading [1, Sec. 5.6]. In a FSC, the
channel output sequence depends on the current and previous
states of the channel [2]. Such dependence due to channel
memory poses additional challenges in the analysis of the error
probability compared to that in a DMC [3].

We assume that the channel can be in one of a finite set
of A possible states {1, 2, . . . , A}. The statistical behavior of
the channel is described by a common conditional probability
p(yt, st|xt, st−1) that links the current channel state st and
output yt to the current input xt and previous state st−1,
recursively. Following [1, Section 4.6], our results are based
on the probability of the channel output y, given the channel
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input x and initial state s0 after summing all the possible state
sequences (s1, . . . , sn), that is

Wn(y|x, s0) =

A∑
sn=1

pn(y, sn|x, s0), (1)

where the probability pn(y, sn|x, s0) can be obtained using
the recursion

pt(yt, st|xt, s0) =
A∑

st−1=1

p(yt, st|xt, st−1)pn−1(yt−1, st−1|xt−1, s0), (2)

for t = 1, . . . , n. In (2), xt and yt are respectively the channel
input and output sub-sequences given by xt = (x1, . . . , xt)
and yt = (y1, . . . , yt), while for t = 1 we have the initial
relation p1(y1, s1|x1, s0) = p(y1, s1|x1, s0). Equation (1) rep-
resents a family of channel transition probabilities, indexed by
the initial state s0, that also encompasses compound channels
since s0 can be considered as an index that determines the
channel from the compound set.

In next section, we use random-coding arguments to study
the existence of codes with vanishing error probability Pe(Cn)
as n → ∞ when used over a FSC with transition probabil-
ity (1). In particular, we discuss achievable random coding
and typical random coding (TRC) error exponents of pairwise-
independent ensembles for rates below the channel capacity.

II. TYPICAL RANDOM CODING

We characterize the error probability of an ensemble of
randomly generated codes Cn using the exponent of Pe(Cn),
defined as

En(Cn) = − 1

n
logPe(Cn). (3)

An exponent E is achievable when there exists a sequence
of codes {Cn}∞n=1 such that lim infn→∞En(Cn) ≥ E. Let
Cn be the random variable representing a code randomly
generated with some probability distribution. In ensembles
with pairwise-independent codewords, Mn codewords are gen-
erated independently with probability distribution Qn(x). The
random-coding error (RCE) exponent is given by the exponent
of the limiting expected error probability in the ensemble, that
is

Er(R,Q) = lim
n→∞

− 1

n
logE[Pe(Cn)], (4)



where R = limn→∞
1
n logMn is the code rate and Q is the

limiting distribution of Qn, which is assumed to exist. The
random-coding exponent for FSC was studied in [4] and [5]
and further developed in [1, Sec. 5.9]. The channel coding
theorem for finite-state indecomposable channels was first
proved by Blackwell, Breiman and Thomasian [6]. Among
recent works on error exponent for FSC, most deal with
FSC in the presence of feedback. In [7] it is shown that
a universal decoder over finite-state channels can achieve
an error exponent equal to the one obtained by maximum
likelihood (ML) decoding despite channel statistics being not
known. In [8] an algorithm to estimate the information rates
in channels with memory by using finite-state approximations
is presented.

Instead of the random-coding exponent, the typical error
exponent has emerged as the error exponent of the random-
coding ensemble [9], [10]. The TRC exponent is defined as
the limiting expected error exponent in the ensemble

Etrc(R,Q) = lim
n→∞

− 1

n
E[logPe(Cn)]. (5)

The importance of the TRC is argued in [10] based on the fact
that the code is selected randomly only once and then kept
fixed, hence the interest in the error exponent of a typical
random code rather than the exponent of the average error
probability across the ensemble. For the independently and
identically distributed (i.i.d.) [9] and the constant composition
(CC) [10] [11, Lemma 3] ensembles, the typical error exponent
satisfies Etrc(R,Q) = Eex(2R,Q) + R ≤ Eex(R,Q), Q
being the asymptotic single-letter version of Qn, with equality
for R = 01. In [13] (resp. [14]) it is shown that, for the
i.i.d. (resp. constant composition) code ensemble over discrete
memoryless channel (DMC), the exponent concentrates around
Etrc(R,Q).

In [15], we studied the probability of selecting a code Cn
from the ensemble with an error exponent (3) larger than a
finite-length lower bound version of the TRC exponent (5). We
showed that such probability converges to one as the codeword
length n tends to infinity for channels with arbitrary alphabets
or memory, with the only assumption of pairwise-independent
codewords. We next state a refinement of [15, Th. 1], the proof
of which is provided in [16], using a tighter TRC lower bound.

Theorem 1. Consider any channel Wn and pairwise-
independent ensemble with codeword distribution Qn and rate
R = lim infn→∞

1
n logMn. For all such channels and code

ensembles it holds that

P
[
lim inf
n→∞

En(Cn) > lim inf
n→∞

Etrc,lb(R,Qn)
]

= 1, (6)

where Etrc,lb(R,Qn) is a TRC lower bound given by

Etrc,lb(R,Qn) = max {Etrc,x(R,Qn), Etrc,r(R,Q
n)} , (7)

being Etrc,x(R,Qn) and Etrc,r(R,Q
n) two error exponents

given in terms of the expurgated and the random-coding
exponents, respectively.

1In [10] an inequality sign is used, but this is only because the improved
expurgated presented in [12, Section 1, point 4.] is used instead of Gallager’s.

In the next section, we give closed-form expressions for the
TRC lower bounds Etrc,x(R,Qn) and Etrc,r(R,Q

n), again
valid for channels with arbitrary alphabets and memory, and
specialize such bounds to FSCs.

III. TRC LOWER BOUNDS FOR FINITE-STATE CHANNELS

For FSCs, the relevant channel probability is Wn(y|x, s0)
given in (1). However, since the receiver may not know
in advance what the initial state s0 is, we consider a
maximum-metric decoder with decoding metric the average
over equiprobable states, that is

Wn(y|x) =

A∑
s0=1

1

A
Wn(y|x, s0). (8)

The results in this section are valid for all rates below
capacity. For FSC, we use the notion of channel capacity
of indecomposable channels in [1, Eq. (4.6.3)], the value C
such that the ensemble-average error probability vanishes as
n→∞ for all rates R such that R < C.

A. Lower Bound Etrc,x(R,Qn)

The first lower bound used in (7), meaningful for low rates
and based on our previous work in [15], is given by

Etrc,x(R,Qn) = Enex(2R,Qn) +R− δn, (9)

where Enex(R,Qn) is the multi-letter version of the expurgated
exponent [1, Eq. (5.7.7)], that is

Enex(R,Qn) = Enx (λ̂n, Q
n)− λ̂nR, (10)

with λ̂n the parameter yielding to the highest exponent,

λ̂n = arg max
λ≥1

{
Enx (λ,Qn)− λ2R

}
(11)

and δn is a backoff given by δn = λ̂n
n log γn, where γn is a

positive-defined sequence such that γn → ∞ and log γn
n → 0

as the code length n→∞.
Following the footsteps in the proof of [15, Th. 1] using (8)

as the decoding metric, we obtain that with high probability
[16] a code randomly selected from an ensemble has an error
probability, averaged over all initial states, upper bounded by

Pe(Cn) ≤ 1

Mn
(γnMn(Mn − 1))

λ ·

·

(∑
x

∑
x′

Qn(x)Qn(x′)Zn(x,x′)
1
λ

)λ
, (12)

where for convenience we defined the Bhattacharyya coeffi-
cient Zn(x,x′) for FSC as

Zn(x,x′) =
∑
y

√√√√ A∑
s0=1

1

A
Wn(y|x, s0)

A∑
s′0=1

1

A
Wn(y|x′, s′0).

(13)

From (12) it is possible to find a bound that holds for any given
initial state, useful in case a distribution over s̄0 is unknown.



Referring to the error probability for code Cn given an initial
state s̄0 as Pe(Cn, s̄0), we have the bounds

Pe(Cn) =
∑
s̄0

q(s̄0)Pe(Cn, s̄0) (14)

≥ max
s̄0

q(s̄0)Pe(Cn, s̄0) (15)

≥ 1

A
Pe(Cn, s̄0). (16)

From (16) we obtain

Pe(Cn, s̄0) ≤ APe(Cn), (17)

a bound that holds independently of the initial state distribution
or on whether such distribution exists or not. Plugging (12)
into (17) and using the same arguments in [15, Th. 1], we
have that with high probability and for any initial state s̄0, the
error probability of a code in the ensemble satisfies

Pe(Cn, s̄0) ≤ 1

Mn
(γnMn(Mn − 1))

λ ·

·

(∑
x

∑
x′

Qn(x)Qn(x′) (AZn(x,x′))
1
λ

)λ
, (18)

where we note that the outer A simplifies with the 1
A in (13).

Taking the negative normalized logarithm of (18) we obtain
a lower bound on the exponent of a typical code from an
ensemble over a finite state channel with initial state s̄0 for a
given n. That is,

− 1

n
logPe(Cn, s̄0) ≥ Etrc,x(R,Qn), (19)

where Etrc,x(R,Qn) is the TRC lower bound given in (9)
and (10), with the following expression of the expurgated
function Enx (λ̂n, Q

n) for FSC,

Enx (λ,Qn) = − 1

n
log

(∑
x

∑
x′

Qn(x)Qn(x′)·

· (AZn(x,x′))
1
λ

)λ
(20)

Next we show that, under some conditions, the limit of
(20) as n tends to infinity exists and is finite. We start with
the following lemma (the proof of which is provided in [16])
which is the equivalent for TRC of [1, Lemma (5.9.1)].

Lemma 1. For any finite-state channel the following holds:

Enx (λ,Qn) ≥ k

n
Ekx (λ,Qk) +

l

n
Elx(λ,Ql) (21)

where k and l are positive integers and k + l = n.

The next accessory lemma is the equivalent for the TRC of
[1, Lemma (5.9.2)].

Lemma 2. Let us define:

E∞x (λ,Q) = sup
n
Enx (λ,Qn). (22)

Let also ζ(x,x′) be the tilted joint distribution

ζ(x,x′) =
Qn(x)Qn(x′) (AZn(x,x′))

1
λ∑

x̄

∑
x̄′ Q

n(x̄)Qn(x̄′) (AZn(x,x′))
1
λ

, (23)

and consider the normalized relative entropy:

1

n
D (ζn(x,x′)‖Qn(x)Qn(x′)) . (24)

Then, for λ ≥ 1, all pairwise-independent ensembles and
all FSC for which (24) exists and is finite from a certain n
onwards, we have that Enx (λ,Qn) converges to the limiting
expurgated function E∞x (λ,Q) in (22), that is,

lim
n→∞

Enx (λ,Qn) = E∞x (λ,Q). (25)

Furthermore, for 1 ≤ λ <∞ the convergence is uniform in λ
and E∞x (λ,Q) is uniformly continuous in λ.

Proof: Let us start considering the case 1 ≤ λ < ∞. It
can be easily shown that (24) is the derivative of Enx (λ,Qn)
with respect to λ. The boundedness and positiveness of the
derivative, specialized to the case of FSC, for any finite λ
together with the fact that Enx (1, Qn) is finite (see proof
of Lemma 3 below and [1, Lemma (5.9.2)]) implies that
Enx (λ,Qn) is positive and bounded. This fact together with
Lemma 1 allows us to apply [1, Lemma (4A.2)], which implies
(25). Furthermore, the finiteness of the derivative in λ for each
n implies uniform convergence and uniform continuity. When
λ is a sequence that diverges with n, that is λn →∞, we have
that limn→∞Enx (λn, Q

n) exists and is either finite or infinite.
This follows from the fact that the derivative of Enx (λ,Qn)
with respect to λ exists for any n and is positive.

An important implication of Lemma 2 is that it guarantees
that the limit of [1, Eq. (5.7.7)] for n→∞ exists. This means
that Theorem 1 gives a result which is non trivial and in fact
practically relevant. Yet, it remains to consider the important
case that λ̂n →∞, since Enx (λ,Qn) may diverge. Taking the
limit of (20) as λ→∞, we obtain

lim
λ→∞

Enx (λ,Qn) = − 1

n

∑
x

∑
x′

Qn(x)Qn(x′)·

· log (AZn(x,x′)) (26)

Let us consider expression of λ̂n in (11). For some rate R, it
can happen that the optimal λ̂n grows unbounded as n→∞.
While this observation is trivial for R = 0, since the derivative
of Enx (λ,Qn) is positive, for FSC there might exist a positive
limiting threshold rate, denoted by R∞(Q), such that λ̂n →∞
for any R < R∞(Q). We next find expression for R∞(Q)
following a similar reasoning as in [1, Sec. 5.7].

Let us consider the function Enex(2R,Qn) +R in the right-
hand side of (9). Using (10), we observe that Enex(2R,Qn)+R
is a linear function in R, with R-axis intercept Rn given by

Rn =
Enx (λn, Q

n)

2λn − 1
. (27)



Let φx,x′ be the indicator function given by

φx,x′ =

{
1 Zn(x,x′) > 0

0 otherwise
(28)

Applying l’Hôpital’s rule to (27) and using the expression of
Enx (λn, Q

n) in (20), we obtain

R∞(Q) = lim
n→∞

Rn (29)

= lim
n→∞

− 1

2n
log
∑
x

∑
x′

Qn(x)Qn(x′)φx,x′ (30)

= lim
n→∞

− 1

2n
logP [Zn(x,x′) > 0] . (31)

For all rates smaller than R∞(Q) as given in (31), the quantity
Enx (λn, Q

n) − 2λnR goes to infinite. Notice that this is
achieved using a λ̂n that goes to infinity as n grows. In order
to assess the behaviour of the TRC exponent we need to study
the term δn in 9 as λ̂n → ∞. Recalling that δn = λ̂n

n log γn
and repeating the derivation of R∞(Q) including such term
in the calculation, (27) now becomes

Rn =
Enx (λn, Q

n)− λn log γn
n

2λn − 1
. (32)

Taking the limit in (32) we obtain R∞(Q) for this case is
again given by (31), since γn grows sub-exponentially.

To sum up, if R∞(Q) > 0, the TRC exponent is infinite for
all rates R < R∞(Q). The cases in which R∞(Q) = 0 and
the analysis of the optimal λ̂ for R = 0 can be derived in a
similar fashion as done here and in [15], respectively, and are
not reported here for a matter of space. As a final remark, we
complement Lemma 2 by noticing that from the discussion
above it follows that limn→∞Enx (λn, Q

n) is always ∞ for
R > 0 (the dependency on R is hidden in λ̂n, which is a
function of the rate), since λ̂n →∞ for a positive rate R only
if R < R∞(Q), while it can be finite in R = 0.

B. Lower Bound Etrc,r(R,Q
n)

The second lower bound used in (7), meaningful at high
rates, is the random-coding error exponent with an asymptot-
ically vanishing back-off ιn = 1

n log γn → 0, namely

Etrc,r(R,Q
n) = Enr (R,Qn)− ιn (33)

where

Enr (R,Qn) = En0 (ρ̂n, Q
n)− ρ̂nR (34)

is the multi-letter version of Gallager’s random coding expo-
nent [1, Eq. (5.6.16)],

ρ̂n = arg max
0≤ρ≤1

{
En0 (ρ,Qn)− ρR

}
(35)

is the bound parameter that yields the highest exponent. The
specialization of Enr (R,Qn) to the case of finite-state channels
has been carried out in [1, Section 5.9], where the following
bound is derived:

Er(R,Q) = max
0≤ρ≤1

F∞0 (ρ,Q)− ρR (36)

where

F∞0 (ρ,Q) = −ρ logA

n
+ min

s0
E∞0 (ρ,Q, s0) (37)

and E∞0 (ρ,Q, s0) is the limit of [1, Eq. (5.9.8)] for n→∞.

C. Maximization Step in Theorem 1

In the following we show that there exists a rate R∗ below
which our TRC lower bound is dominated by the expurgated
lower bound Etrc,x(R,Qn), while dominated by the random-
coding lower bound Etrc,r(R,Q

n) for larger rates.
We start by pointing out that Er(R,Q) is convex and strictly

decreasing in R for R < C, as shown in [1], and the optimal ρ
is a decreasing function of R so that for R that goes to C the
optimal ρ gets close to 0 while it takes value 1 in a continuous
interval that includes the point R = 0. As for Enx (λn, Q

n),
we can see that R and λ play the same roles as in Ex(λ, (Q))
as defined in [1, Section 5.7], and thus Enx (λn, Q

n)−λnR is
convex and strictly decreasing in R and the optimal λ is also
a decreasing function in R. Note, however, that such quantity
(which is a bound on the expurgated exponent for finite-state
channels) can reach 0 at a rate which is much smaller than
the capacity. Now let us call Rcr the largest rate at which the
maximum of Er(R,Q) is obtained for ρ = 1.

The following lemma (see [16] for a proof) is instrumental
to prove Theorem 2, where the TRC exponent for all rates is
presented.

Lemma 3. For finite-state channels:

En0 (1, Qn)− logA

n
≤ Enx (1, Qn) ≤ En0 (1, Qn) +

logA

n
.

(38)

Furthermore, if En0 (1, Qn) is finite Enx (1, Qn) is also finite.

The following theorem shows that, for finite-state channels,
the limits in Theorem 1 exist and, if δn → 0, the result of
the theorem is non-trivial, i.e., the typical exponent exists and
is strictly positive. Furthermore, it provides the result to the
maximization in Theorem 1 for each rate below capacity.

Theorem 2. For all FSC for which δn → 0 the following
holds:

lim inf
n→∞

max {Etrc,x(R,Qn), Etrc,r(R,Q
n)}

=

{
Eex(2R,Q) +R R ≤ R∗

Er(R,Q) R > R∗
(39)

where R∗ = Rcr

2 . Furthermore, Eex(2R,Q) + R is positive
for the indicated range while Er(R,Q) is positive in R∗ <
R < C if a maximization over Q is carried out.

Proof: Using Lemma 3, the fact that both Enx (λ,Qn)
and En0 (ρ,Qn) are increasing in λ and ρ, respectively, and
the fact that λ ≥ 1 while 0 < ρ ≤ 1, we have that for
enough large n, Enex(R,Qn) ≥ Er(R,Q

n) when R ≤ Rcr,
while Enex(R,Qn) < Er(R,Q

n) when R > Rcr, where Rcr is
the critical rate [1, Eq. (5.6.30)]. Finally, using Etrc,x(R,Qn)
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Fig. 1. TRC and RCE exponents for FSC described in [1, Figure 5.9.2] obtained with Monte Carlo for n = 200 and 106 iterations. The TRC and the RCE
exponents over memoryless channel are also shown for comparison. The latter is obtained by setting the state transition probability in [1, Fig. 5.9.2] to 1/2.

in (9) and assuming that δn → 0 as n → ∞, the limit in the
left-hand side of the inequality in (6) satisfies

lim inf
n→∞

max {Etrc,x(R,Qn), Etrc,r(R,Q
n)} =lim inf

n→∞
Etrc,x(R,Qn) = Eex(2R,Q) +R 0 ≤ R ≤ R∗

lim inf
n→∞

Etrc,r(R,Q
n) = Er(R,Q) R > R∗.

(40)

We obtained (40) by equating Eex(2R,Q)+R and Er(R,Q),
from the definition of Rcr and setting R∗ = Rcr

2 . At the right-
hand side of (40), the quantity Eex(2R,Q) +R is positive in
the indicated range, while Gallager’s exponent Er(R,Q) can
be made positive up to capacity by maximizing over the input
distribution, which gives the theorem statement.

A discussion about the condition δn → 0 of Theorem 2 is
provided in [16].

We conclude the paper with a numerical example of the
TRC exponent for a FSC. We consider the two-state model
presented in [1, Figure 5.9.1]. As in [1, Figure 5.9.1], we
assume a uniform i.i.d. input distribution. The bound in (39)
is plotted against the rate in Fig. 1. The term Er(R,Q) given
in (36) is evaluated in closed form as in [1, Figure 5.9.2], while
Etrc,x(R,Qn), given in (9), is evaluated using the Monte Carlo
method with 106 iterations for a codeword length of n = 200.
Specifically, Monte Carlo was used to evaluate the statistical
mean inside square brackets in Eq. (18). The TRC for the
DMC channel derived from this FSC (see [1, Figure 5.9.3]) is
also shown for comparison. The result is consistent with the
behaviour of the random coding exponent (RCE) presented in
[1]. Note that, for this channel, the memory does not decrease
the capacity with respect to its i.i.d. counterpart. This can be
seen in Fig. 1 (c) noting that the smallest rates for which the
two curves are zero coincide.
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