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University of Cambridge
Universitat Pompeu Fabra

guillen@ieee.org

Abstract—We study the typical error exponent of con-
stant composition generalized random Gilbert-Varshamov (RGV)
codes over discrete memoryless channels (DMC) channels with
generalized likelihood decoding. We show that the typical error
exponent of the RGV ensemble is equal to the expurgated
error exponent, provided that the RGV codebook parameters
are chosen appropriately. We also prove that the exponent
of a randomly chosen RGV code converges in probability to
the typical error exponent; the lower tail is shown to decay
exponentially while the upper tail decays double-exponentially
above the expurgated exponent.

I. INTRODUCTION

Random coding is the key technique employed in infor-
mation theory in order to show that a code with low error
probability exists without explicitly constructing it. Codes are
constructed at random, and the average error probability over
all randomly generated codes is bounded. Then, it follows
that there must exist a code with error probability at least
as low as the ensemble average error probability over the
codes. In particular, for discrete memoryless channel (DMC),
Shannon [1] showed that there exists a code of rate smaller
than the channel capacity with vanishing probability of error
as the codeword length increases. For rates below capacity,
Fano [2] characterized the exponential decay of the error
probability defining the random coding exponent (RCE) as the
negative normalized logarithm of the ensemble-average error
probability. In [3], Gallager derived the RCE in a simpler
way and introduced the idea of expurgation resulting in an
improved exponent the at low rates.

Most proofs invoking random coding arguments, assume
that codewords are independent. Random Gilbert-Varshamov
(RGV) codes [4] are a family of random codes inspired by
the basic code construction attaining the Gilbert-Varshamov
bound in Hamming spaces. The code construction is based on
drawing codewords recursively from a fixed type class, in such
a way that a newly generated codeword must be at a certain
minimum distance from all previously chosen codewords,
according to some generic distance function. For suitably
optimized distance functions, RGV codes attain Csiszár and
Körner’s (CK) exponent [5], which is known to be at least as
high as both the random-coding and expurgated exponents.
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In [6], Barg and Forney studied i.i.d. random coding over
the binary symmetric channel (BSC) with maximum likeli-
hood decoding and showed that the error exponent of most
random codes is close to the so-called typical random coding
(TRC) exponent, strictly larger than the RCE at low rates.
Upper and lower bounds on the TRC for constant-composition
codes and general DMCs were provided in [7]; Merhav
[8] determined the exact TRC exponent with generalized
likelihood decoders (GLD) for constant composition codes.
Tamir et al. [9] studied the upper and lower tails of the
error exponent around the TRC exponent for random pairwise-
independent constant-composition codes with GLD. It was
shown that the tails behave in a non-symmetric way: the
lower tail decays exponentially while the upper tail decays
doubly-exponentially. By studying the behavior of both tails,
work in [9] proves concentration in probability. For pairwise-
independent ensembles and arbitrary channels, Cocco et al.
showed in [10] that the probability that a code in the ensemble
has an exponent smaller than a lower bound on the TRC
exponent is vanishingly small. Truong et al. showed that, for
DMCs, the error exponent of a randomly generated code with
pairwise-independent codewords converges in probability to
its expectation – the TRC exponent [11].

This work focusses on the RGV code ensemble and dis-
cusses concentration properties of error exponents around its
TRC. We find the exact typical error exponent TRC for the
RGV ensemble by proving matched upper and lower bounds
on the TRC and show it is equal to its RCE, i.e., to the
maximum of the expurgated and random-coding exponent.
We characterize the rates of the above convergence and show
that it is exponential for the lower tail and double-exponential
for the upper tail under some technical conditions. We show
that the random error exponent converges in probability to the
TRC. Compared with constant-composition codes with inde-
pendent codewords, the dependence among RGV codewords
causes standard concentration inequalities such as Hoeffding’s
inequality not to hold. In this work, we develop new techniques
to overcome the challenges presented by RGV codeword
dependence. Proofs of our results can be found in [12].

A. Notation

Random variables will be denoted by capital letters, and
their realizations will be denoted by the corresponding lower



case letters. Random vectors and their realizations will be
denoted, respectively, by boldfaced capital and lower case
letters. Their alphabets will be superscripted by their dimen-
sions. For a generic joint distribution PXY = {PXY (x, y), x ∈
X , y ∈ Y}, which will often be abbreviated by P , information
measures will be denoted in the conventional manner, but with
a subscript P , that is IP (X;Y ) is the mutual information
between X and Y , and similarly for other quantities. Natural
logarithms are assumed in the derivations; examples will
employ base 2. The probability of an event E will be denoted
by P(E), the indicator function of event E will be denoted by
1{E}, and the expectation operator will be denoted by E[·].
The notation [t]+ will stand for max{t, 0}.

For two positive sequences, {an} and {bn}, the nota-
tion an

.
= bn will stand for exponential equality, that is

limn→∞
1
n log(anbn ) = 0. Exponential inequalities an

.
≤ bn

and an
.
≥ bn are defined as limn→∞

1
n log(anbn ) ≤ 0 and

limn→∞
1
n log(anbn ) ≥ 0, respectively. Accordingly, the nota-

tion an
.
= e−n∞ means that an decays super-exponentially.

For two positive sequences, {an} and {bn}, whose elements
are both smaller than one for all large enough n, the notation
an =̊ bn will stand for double-exponential equality, that is

lim
n→∞

1

n
log

(
log bn
log an

)
= 0. (1)

A sequence of random variables {An}∞n=1 is said to con-
verge to A in probability, denoted as An

(p)−→A if for all δ > 0
[13, Sec. 2.2],

lim
n→∞

P[|An −A| > δ] = 0. (2)

The empirical distribution, or type, of a sequence x ∈ Xn,
which will be denoted by P̂x, is the vector of relative frequen-
cies, P̂x(x), of each symbol x ∈ X in x. The set of all possible
empirical distributions of sequences of length n on alphabet
X is denoted by Pn(X ). The joint empirical distribution of a
pair of sequences, denoted by P̂xy , is similarly defined. The
set of all possible joint empirical distributions of sequences of
length n on alphabets X and Y is denoted by Pn(X × Y).
The type class of QX , denoted by T (QX), is the set of all
vectors x ∈ Xn with P̂x = QX . The joint type class of
PXY , denoted by T (PXY ), is the set of pairs of sequences
(x,y) ∈ Xn × Yn with P̂xy = QXY . In addition, we also
define Q(QX) ,

{
PXX′ ∈ Pn(X ×X ) : PX = PX′ = QX

}
.

Finally, [M ] denotes the set {1, 2, · · · ,M}, and [M ]2∗ ,
{(m,m′) ∈ [M ]2 : m 6= m′}.

II. PRELIMINARIES

We assume that a code Cn = {x1,x2, . . . ,xM} ∈
Xn,M = enR is employed for transmission over a DMC
channel with law W (y|x) for x ∈ X , y ∈ Y . More specifically,
when the transmitter wishes to convey a message m ∈
{1, 2, · · · ,M}, it sends codeword xm = (xm,1, . . . , xm,n) ∈

Xn over the channel. The channel produces an output vector
y = (y1, y2, . . . , yn) ∈ Yn as

W (y|xm) =

n∏
i=1

W (yi|xm,i). (3)

At the decoder side, we assume that a GLD [14] is used
to infer what the transmitted message was. The GLD [14]
extends the likelihood decoder in [15] and [16], and is a
stochastic decoder that randomly selects the message estimate
m̂ according to the posterior probability distribution given the
channel output y as follows

Pr(m̂ = m|y) =
exp{ng(P̂xm,y)}∑M

m=1 exp
{
ng(P̂xm′ ,y)

} , (4)

where g(·), the decoding metric, is an arbitrary continuous
function of a joint distribution PXY on X × Y . It can be
shown that maximum likelihood and the well-known univer-
sal maximum mutual information (MMI) [17] decoders are
particular instances of this GLD [14].

The average probability of error, associated with a given
code cn and the GLD, is given by

Pe(cn) =
1

M

M∑
m=1

∑
m′ 6=m

∑
y∈Yn

W (y|xm)

×
exp{ng(P̂xm′ ,y)}∑M
m̃=1 exp{ng(P̂xm̃,y)}

. (5)

The error exponent of code cn is defined as

En(cn) = − 1

n
logPe(cn). (6)

Let R = lim infn→∞
1
n logMn be the rate of the code in

bits per channel use. An error exponent E(R) is said to be
achievable when there exists a sequence of codes {cn}∞n=1

such that lim infn→∞En(cn) ≥ E(R).

III. RGV CODEBOOK ENSEMBLE AND PROPERTIES

A. RGV Codebook Ensemble

In this section, we describe basic RGV codebook con-
struction, channel model and GLD. The RGV codebook was
first introduced in [4], which extended code constructions that
attain the Gilbert-Varshamov bound on the Hamming space.
The RGV construction is a randomized constant composition
counterpart of such codes for arbitrary DMCs and arbitrary
distance functions.

Definition 1: Let Ω be the set of bounded, continuous, sym-
metric, and type-dependent functions d(·, ·) : Xn ×Xn → R,
i.e., bounded functions that satisfy d(x,x′) = d(x′,x) for
all x,x′ ∈ Rn, that depend on (x,x′) only through the joint
distribution P̂xx′ , and that are continuous on the probability
simplex.

We refer to d ∈ Ω as a distance function, although it need
not to be a distance in the topological space (e.g., it may be
negative). Some examples of such distance function include



Hamming distance, Bhattacharyya distance, and equivocation
distance [4].

An RGV code Cn = {x1,x2, . . . ,xM} ∈ Xn with M
codewords of length n is constructed such that any two distinct
codewords x,x′ ∈ Cn satisfy d(x,x′) > ∆ for a given
distance function d(·, ·) ∈ Ω and ∆ ∈ R. This guarantees that
the minimum distance of the codebook exceeds the minimum
distance ∆. The construction depends on the input distribution
QX ∈ Pn(X ) and is described by the following steps:

1) The first codeword, x1, is drawn equiprobably from
T (QX);

2) The second codeword, x2, is drawn equiprobably from

T (QX ,x1) ,
{
x̄ ∈ T (QX) : d(x̄,x1) > ∆

}
(7)

= T (QX) \
{
x̄ ∈ T (QX) : d(x̄,x1) ≤ ∆

}
,

(8)

i.e., the set of sequences with composition QX whose
distance to x1 exceeds ∆;

3) Continuing recursively, the i-th codeword xi is drawn
equiprobably from

T (QX ,x
i−1
1 ) ,

{
x̄ ∈ T (QX) : d(x̄,xj) > ∆,

j = 1, 2, . . . , i− 1
}

(9)

= T (QX ,x
i−2
1 ) \

{
x̄ ∈ T (QX ,x

i−2
1 ) : d(x̄,xi−1) ≤ ∆

}
(10)

where for j < k, xkj = (xj , . . . ,xk) is a shorthand
notation to denote previously drawn codewords.

For a given RGV code with rate R, type QX , distance
function d, and minimum distance ∆ and decoding metric g,
we define the random coding exponent (RCE)

Ergv
rce (R,QX , d,∆) , lim

n→∞
− 1

n
logE[Pe(Cn)] (11)

and the typical random coding (TRC) error exponent as

Ergv
trc (R,QX , d,∆) , lim

n→∞
− 1

n
E[logPe(Cn)], (12)

provided that these limits exist, where the expectation is with
respect to the randomness of the code Cn.

Let QX ∈ P(X ),∆ ∈ R, d ∈ Ω, and define the following
quantity

Γ(PXX′ , R) , min
PY |XX′

{
D(PY |X‖W |QX) + IP (X ′;Y |X)

+ [max{g(PXY ), α(R,PY )} − g(PX′Y )]+

}
, (13)

where

α(R,PY ) , max
P
X′|Y :P

X′=QX,

IP (X′;Y )≤R

(
g(PX′Y )− IP (X ′;Y )

)
+R.

(14)

The main result of [4] is that for ML decoding, and
suitably optimized distance function and minimum distance,
the constant composition RGV ensemble attains a random

coding exponent equal to the CK exponent [5]. For GLD, we
define the expurgated exponent as

Eex(R,QX)

= min
P
X′|X :IP (X;X′)≤R

P
X′=QX

{Γ(PXX′ , R) + IP (X;X ′)−R}.

(15)

is the expurgated exponent of the independent constant
composition ensemble with composition QX and GLD.
In this paper, we study the TRC of the RGV ensem-
ble Ergv

trc (R,QX , d,∆) as well as the concentration of
the exponent around the TRC. Specifically, we derive a
generic expression of Ergv

trc (R,QX , d,∆) and show that
Ergv

trc (R,QX , d,∆) = Eex(R,QX) for suitably optimized
minimum distance and distance functions. In addition, we
provide bounds on the exponential and double-exponential
concentration rates of the lower and upper tails of the error
exponent of RGV codes.

IV. MAIN RESULTS

In this section, we state some of our results. The first result
is the typical error exponent.

Theorem 1: Let QX ∈ P(X ),∆ ∈ R, d ∈ Ω. Then, for any
R satisfying

R ≤ min
PXX′∈Q(QX):d(PXX′ )≤∆

I(X;X ′)− 2δ (16)

for some δ > 0, the typical random coding exponent of the
RGV code ensemble with the GLD is given by

Ergv
trc (R,QX , d,∆)

= min
P
X′|X :P

X′=QX,

IP (X;X′)≤2R,d(P
XX′ )>∆

{
Γ(PXX′ , R) + IP (X;X ′)−R

}
.

(17)

Similarly to [4], if we choose the distance function and
minimum distance as d(PXX′) = −IP (X;X ′) and ∆ = −R,
respectively, we have that Ergv

trc (R,QX , d,∆) = Eex(R,QX).
In the following, we derive exponential upper and lower

bounds to the lower tail probability. Before proceeding, we
define the following sets

L(R,E0) , {PXX′ ∈ Q(QX) : d(PXX′) > ∆,

[2R− IP (X;X ′)]+ ≥ Γ(PXX′ , R) +R− E0},
(18)

M(R,E0) ,
{
PXX′ ∈ Q(QX) : d(PXX′) > ∆,

[2R− IP (X;X ′)]+ ≥ Λ(PXX′ , R) +R− E0

}
(19)

where

Λ(PXX′ , R) = min
PY |XX′

{
D(PY |X‖W |QX) + IP (X ′;Y |X)

+ β(R,PY )− g(PX′Y )
}
, (20)

β(R,PY ) = max
PX̃|Y :PX̃=QX

{
g(PX̃Y ) + [R− IP (X̃;Y )]+

}
.

(21)



We have the following result.
Theorem 2: Consider the ensemble of RGV codes Cn of

rate R and composition QX satisfying condition (16). Then,
it holds that

P
[
− 1

n
logPe(Cn) ≤ E0

]
.
≤ exp

{
− nEub

lt (R,E0)
}
, (22)

P
[
− 1

n
logPe(Cn) ≤ E0

]
.
≥ exp

{
− nElb

lt (R,E0)
}
. (23)

where

Eub
lt (R,E0) , min

PXX′∈L(R,E0)
[IP (X;X ′)− 2R]+, (24)

Elb
lt (R,E0) , min

PXX′∈M(R,E0)
[IP (X;X ′)− 2R]+, (25)

respectively.
Next, we derive double-exponential upper and lower bounds

to the upper tail probability. To begin with, we introduce
additional notation. Let

V(R,E0) =
{
PXX′ ∈ Q(QX) : d(PXX′) > ∆,

IP (X;X ′) ≤ 2R,Λ(PXX′ , R) + IP (X;X ′)−R ≤ E0

}
,

(26)

U(R,E0) =
{
PXX′ ∈ Q(QX) : d(PXX′) > ∆,

IP (X;X ′) ≤ 2R,Γ(PXX′ , R) + IP (X;X ′)−R ≤ E0

}
.

(27)

Define

A1 =

{
PXX′ ∈ Q(QX) : d(PXX′) > ∆, IP (X;X ′) > 2R

}
,

(28)

A2 =

{
PXX′ ∈ Q(QX) : d(PXX′) > ∆, IP (X;X ′) ≤ 2R,

Γ(PXX′ , R− ε) + IP (X;X ′)−R ≤ E0 + ε

}
, (29)

and

A3 =
{
PXX′ ∈ Q(QX) : d(PXX′) > ∆, IP (X;X ′) ≤ 2R,

Γ(PXX′ , R− ε) + IP (X;X ′)−R > E0 + ε
}
. (30)

Theorem 3: Consider the RGV ensemble Cn of rate R and
composition QX satisfying condition (16). Then, the upper tail
can be bounded as

P
[
− 1

n
logPe(Cn) ≥ E0

]
≤̊ exp

{
− exp

{
nEub

ut (R,E0)
}}

(31)

where

Eub
ut (R,E0) = max

PXX′∈V(R,E0)
min

{
2R− IP (X;X ′),

E0 − Λ(PXX′ , R)− IP (X;X ′) +R,R
}
. (32)

In addition, under the conditions

max
PXX′∈A3

IP (X;X ′) ≤ min
PXX′∈A2

IP (X;X ′) (33)

min
PXX′ :d(PXX′ )≤∆

IP (X;X ′) ≥ max
PXX′ :d(PXX′ )>∆

IP (X;X ′),

(34)

and

min
PXX′∈V(R,E0,σ)

IP (X;X ′)− 2δ ≤ R

≤ min
PXX′∈Q(QX):d(PXX′ )≤∆

IP (X;X ′)− 2δ, (35)

or

R ≤ min

{
min

PXX′∈V
(R,E0, σ)IP (X;X ′)

− min
PXX′∈Q(QX):d(PXX′ )≤∆

IP (X;X ′),

min
PXX′∈Q(QX):d(PXX′ )≤∆

IP (X;X ′)

}
− 2δ (36)

for some δ > 0, we have that

P
[
− 1

n
logPe(Cn) ≥ E0

]
≥̊ exp

{
− exp

{
nElb

ut(R,E0)
}}

(37)

for all E0 < Eex(R,QX), where

Elb
ut(R,E0) = max

PXX′∈U(R,E0)

{
2R− IP (X;X ′)}. (38)

V. NUMERICAL RESULTS

In Fig. 1, we plot various error exponents for the Z-channel
with crossover probability 0.001 with QX(0) = QX(1) =
1/2. This example was considered in [9], [14]. Specifically,
for reference we plot the random coding exponent Er(R),
the expurgated exponent Eex(R), and the TRC Etrc(R) for
constant composition codes. For the RGV ensemble exponents,
we choose d(PXX′) = −IP (X;X ′) and ∆ = −R so as to
achieve the largest possible exponents. We plot the correspond-
ing random coding exponent Ergv

rce (R) and its corresponding
TRC Ergv

trc (R) and illustrate that they both coincide with the
expurgated exponent Eex(R).

Fig. 2 shows exponential bounds for the lower tail for
constant composition and the RGV ensemble with d(PXX′) =
−IP (X;X ′) and ∆ = −R. We observe that the lower and
upper tails for RGV code ensemble decay faster than the lower
and upper tails for the constant composition code. This can be
explained by the the fact that, thanks to the structure of RGV
codes, its error probability is expected to be smaller than that
of constant composition codes.

In Figure 3 we show the double-exponential bounds for the
upper tail for constant composition and the RGV ensemble
with d(PXX′) = −IP (X;X ′) and ∆ = −R. We observe
that for constant composition the decay is indeed double-
exponential even if the bounds only coincide for high values of
E0 (above the TRC exponent). Since Eub

ut (R,E0) is double-
exponential, we have that the upper tail decays at least double-
exponentially above the expurgated exponent. The fact that
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Fig. 1. Error Exponents for the Z-channel with crossover probability 0.001.
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Fig. 2. Lower tail exponents for constant composition and RGV codes for
the Z-channel with crossover probability 0.001.

Elb
ut(R,E0) = 0 below the expurgated exponent does not

affect the double-exponential decay of the upper tail. Figure. 3
also shows that the decay rate of RGV code is slower than the
constant composition code.
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