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ABSTRACT

Shannon’s channel coding theorem characterizes the max-
imal rate of information that can be reliably transmitted
over a communication channel when optimal encoding and
decoding strategies are used. In many scenarios, however,
practical considerations such as channel uncertainty and
implementation constraints rule out the use of an optimal
decoder. The mismatched decoding problem addresses such
scenarios by considering the case that the decoder cannot
be optimized, but is instead fixed as part of the problem
statement. This problem is not only of direct interest in
its own right, but also has close connections with other
long-standing theoretical problems in information theory.

In this monograph, we survey both classical literature and
recent developments on the mismatched decoding problem,
with an emphasis on achievable random-coding rates for
memoryless channels. We present two widely-considered
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achievable rates known as the generalized mutual informa-
tion (GMI) and the LM rate, and overview their derivations
and properties. In addition, we survey several improved rates
via multi-user coding techniques, as well as recent develop-
ments and challenges in establishing upper bounds on the
mismatch capacity, and an analogous mismatched encoding
problem in rate-distortion theory. Throughout the mono-
graph, we highlight a variety of applications and connections
with other prominent information theory problems.



Notation

(Introduced in Section 1)

X , Y Input and output alphabets
m, m̂ Message and its estimate
M Number of codewords
n Block length
R Coding rate

W , Wn Channel transition law and its n-letter extension
q, qn Decoding metric and its n-letter extension
C Codebook

x(m) m-th codeword
pe Average error probability

pe,max Maximal error probability
Cm Mismatch capacity
C Matched capacity

(Introduced in Section 2)

H2 Binary entropy function
X, Y Transmitted codeword and received sequence

X Non-transmitted codeword
PX Codeword distribution for random coding
P̂x Empirical distribution of x

Igmi, Ilm Generalized mutual information (GMI) and LM rate
Cgmi, Clm Rates with optimized input distributions
QX Input distribution
P Set of all distributions on a given alphabet
Pn Set of all empirical distributions on a given alphabet
P̃XY Auxiliary distribution in primal rates
s, a Auxiliary parameters in dual rates
b Auxiliary function on the output alphabet
T n Type class
QX,n Type approximating QX
pe Random-coding error probability
ins Information density quantity used in proofs

C
(k)
gmi , C

(k)
lm Multi-letter achievable rates

C
(∞)
gmi , C

(∞)
lm Limiting multi-letter achievable rates
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152 Notation

(Introduced in Section 3)

c, Γ System cost function and threshold
a, al Auxiliary cost functions

cn, an, anl Additive multi-letter extensions of cost functions
φc, φa, φl Means of cost functions

Ωn Normalizing constant for cost-constrained ensemble
Dn Constraint set for cost-constrained ensemble
I ′lm Fixed-cost LM rate
rl, rl Auxiliary parameters for cost-constrained ensemble
L Number of auxiliary costs

µ, σ2 Noise mean and variance in additive channels

(Introduced in Section 4)

ΠX , ΠnX Source distribution and n-letter extension
x̂(m) Codeword in rate-distortion theory
d0, d1 Encoding metric and true distortion measure
dn0 , dn1 Additive n-letter extensions of distortion functions
D1, D∗1 Distortion threshold and distortion-rate function
Q
X̂

Auxiliary distribution in rate-distortion theory
D1, D(k)

1 Achievable distortion and multi-letter version
P̃ Constraint set in achievable distortion expression
d, D Distortion measure and level when d0 = d1

R∗Matched, D∗Matched Matched rate-distortion function and distortion-rate function
Dmin, Dprod Extreme values of distortion level
Riid, Rcc Random coding rate-distortion functions

σ2 Source variance

(Introduced in Section 5)

M1, M2 Multiple-access channel codebook sizes
R1, R2 Multiple-access channel rates
Q1, Q2 Multiple-access channel input distributions

PX1 , PX2 Multiple-access channel codeword distributions

(Introduced in Section 6)

M0, M1, {M1u} Superposition coding codebook sizes
R0, R1, {R1u} Superposition coding rates

{nu} Refined superposition coding sub-block lengths
QUX Superposition coding input distribution
PUX Superposition coding codeword distribution
U Auxiliary alphabet for superposition coding
U Auxiliary codeword for superposition coding

pe,ν , pe,ν Multi-user coding error probabilities
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(Introduced in Section 7)

Eiid
r , Eiid

0 i.i.d. exponent and Gallager function
Ecc

r , Ecc
0 Constant-composition exponent and Gallager function

Ecost
r , Ecost

0 Cost-constrained exponent and Gallager function
Ecc

ex, Ecc
x Constant-composition expurgated exponent and Gallager function

ρ Dual error exponent parameter
Eck Csiszár-Körner exponent
Ergv Random Gilbert-Varshamov exponent
d, ∆ RGV distance function and parameter

(Introduced in Section 8)

εk Error probability with block length k
ηk Minimal difference of k-letter log-metric values
qmax Maximal metric value

qkmax(yk) Maximal metric value for fixed output sequence
B Upper bound on | log q(x, y)|
Ak Output vectors with a unique metric maximizer
Φk Conditional probability of random codeword exceeding metric value
X ∗q Set of inputs with maximal metric difference

Mmax,Mmax,n Set of maximal conditional joint distributions and type-based variant
R Single-letter mismatch capacity upper bound
Gx Bipartite graph associated with two channels
Ex Edge set associated with two channels



1
Introduction

Shannon’s channel coding theorem [87] characterizes the conditions un-
der which reliable communication is possible over a noisy channel. This
groundbreaking result spawned decades of research on the theory and
practice of communication, and still continues to shape the development
of practical communication systems.

One of the key assumptions of the channel coding theorem is that the
encoder and decoder can be optimized for the specific channel model
under consideration. In particular, the achievability part is usually
proved used decoding methods such as maximum-likelihood decoding or
joint typicality decoding, both of which directly depend on the channel
transition law.

In many practical scenarios, however, one does not have accurate
knowledge of the channel. In addition, even if the channel model is
assumed to be known, the implementation of its corresponding optimal
decoding rule may be hindered by practical issues such as computational
limitations. As a result, there is substantial motivation to develop a
theory of communication that explicitly accounts for channel uncertainty
and decoding constraints.

154



1.1. Problem Setup 155

This monograph surveys the topic of mismatched decoding, in which
the decoder is fixed and possibly suboptimal, and only the codebook
can be optimized. As well as addressing pertinent practical issues such
as channel uncertainty and complexity limitations, this problem has
strong connections with other fundamental problems in information
theory, including zero-error communication.

In this introductory section, we first formally introduce the problem
of reliable communication under mismatched decoding in Section 1.1.
In Section 1.2, we outline several applications in which mismatched
decoding is encountered, as well as formalizing the connections to other
theoretical problems in information theory. In Section 1.3, we briefly
overview other prominent approaches to addressing model uncertainty
in information theory, including universal decoding, channels with a
state, and adversarial channel models, and we discuss their connections
and differences to the mismatched decoding perspective. Section 1.4
outlines the remainder of the monograph.

1.1 Problem Setup

In this subsection, we formally introduce the problem of point-to-point
channel coding (see Figure 1.1) with mismatched decoding, which will
be studied throughout the monograph.

We consider a communication channel defined on an input alphabet
X and an output alphabet Y . For a given use of the channel, if the input
is given by x ∈ X , then the output y ∈ Y is randomly generated accord-
ing to some channel transition law W (y|x). It is useful to initially think
of X and Y being finite, in which case W (y|x) is a conditional proba-
bility mass function. However, when we turn to continuous-alphabet
channels, we will use the same notation to represent a probability density
function.

We focus our attention on memoryless channels used without feed-
back, meaning that different uses of the channel are independent: if
we input x = (x1, . . . , xn) in n channel uses, then the output sequence
y = (y1, . . . , yn) is generated according to Wn(y|x) ,

∏n
i=1W (yi|xi).

The goal is to reliably transmit a message m ∈ {1, . . . ,M} over
the channel in n uses. We assume that m is uniformly random over
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Figure 1.1: Illustration of channel coding with message m, channel input x ∈ Xn,
channel output y ∈ Yn, and estimate m̂.

the M possibilities. The encoding scheme is represented by a codebook
C = {x(1), . . . ,x(M)}; when the message is m, the encoder transmits
the corresponding codeword x(m) ∈ X n.

Naturally, the defining feature of the mismatched decoding problem
is at the decoder. In the regular (i.e., matched) channel coding problem,
one may consider an optimized decoding rule for producing the estimate
m̂ as a function of y and C. In the mismatched decoding problem,
however, the decoder is fixed as follows:

m̂ = arg max
j=1,...,M

qn(x(j),y), with qn(x,y) =
n∏
i=1

q(xi, yi), (1.1)

where q(x, y) is a non-negative function called the decoding metric. As a
result, our only freedom is in designing the codebook C. We will shortly
discuss the issue of tie-breaking (i.e., the possibility of a non-unique
maximum in (1.1)); see Remark 1.1 below.

Given the message estimate as in (1.1), the error probability associ-
ated with the codebook C is given by

pe(C) = P[m̂ 6= m], (1.2)

where the probability is with respect to the randomness of the message
and the channel. We seek to characterize the trade-off between the error
probability pe, the coding rate R = 1

n logM , and the block length n.
We briefly mention that (1.1) can be generalized to the maximization

of a metric qn(x(j),y) that need not factorize according to a product
over the symbols. The consideration of (1.1) is analogous to the memory-
lessness assumption of the channel, namely, Wn(y|x) =

∏n
i=1W (yi|xi).

The consideration of memoryless channels and product-wise decoding
metrics permits analytical tractability, while already coming with many
interesting challenges and having several applications (see Section 1.2).
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Nevertheless, the study of mismatched decoding is by no means limited
to this setting, e.g., see [8, 47, 57].

For any given codebook, the decoding rule minimizing pe is
maximum-likelihood (ML) decoding, corresponding to (1.1) with
q(x, y) = W (y|x). Accordingly, we will refer to this case as matched
decoding. The standard Shannon capacity (henceforth called the matched
capacity), denoted by C(W ), is defined to be the supremum of all rates
such that one can achieve arbitrarily small error probability under
matched decoding, and the following definition generalizes this notion
to the mismatched case.

Definition 1.1 (Mismatch Capacity). For a mismatched memoryless
channel described by (W, q), we say that R is an achievable rate if, for
all δ > 0, there exists a sequence of codebooks Cn with M ≥ en(R−δ)

codewords such that pe(Cn) → 0 under the decoding rule (1.1). The
mismatch capacity Cm = Cm(W, q) is defined to be the supremum of all
achievable rates.

We consider M ≥ en(R−δ) instead of M ≥ enR in this definition in
order to ensure that the limit of any achievable rate is also achievable.
This will allow to safely use the compact terminology “achievable rate”
in place of “lower bound on the mismatch capacity”.

Remark 1.1 (Tie Breaking). In general, it is possible for multiple mes-
sages to simultaneously achieve the maximum in (1.1); in such cases,
we adopt a pessimistic approach and assume that an error always oc-
curs when there is a tie. However, the mismatch capacity is unchanged
regardless of the tie-breaking rule, since breaking ties as errors increases
the error probability by at most a factor of two [31].

Remark 1.2 (Maximal vs. Average Error Probability). While we consider
the average error probability in (1.2), the mismatch capacity is also
unchanged when we consider the maximal error probability, defined as

pe,max(C) = max
m=1,...,M

P[m̂ 6= m|x(m) sent]. (1.3)

This claim follows via a standard expurgation argument [38, Sec. 5.6]:
For any codebook C of size M satisfying pe(C) ≤ ε for some ε > 0,
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we can consider a sub-codebook C′ of size M
2 whose codewords have

the smallest conditional error probability. Each remaining codeword
must satisfy P[m̂ 6= m|x(m) sent] ≤ 2ε when the mismatched decoding
rule (1.1) is applied using C. Then, the same follows for the mismatched
decoder that uses C′, since for any x ∈ C′, there are only fewer incorrect
codewords x ∈ C′ (compared to x ∈ C) that could lead to the error
event qn(x,y) ≥ qn(x,y). Hence, pe,max(C′) ≤ 2ε, and since the rate of
C′ is asymptotically the same as that of C, the desired claim follows.

In the following subsection, we overview several applications of the
mismatched decoding, highlighting some cases in which the seemingly
innocuous definition of the mismatch capacity Cm should be interpreted
with care.

1.2 Applications of Mismatched Decoding

1.2.1 Channel Uncertainty

An immediate application of mismatched decoding is that in which
the decoder has an incorrect channel estimate Ŵ (y|x) that is used as
if it were correct, corresponding to (1.1) with q(x, y) = Ŵ (y|x). Such
channel uncertainty can arise in many different forms, including incorrect
parameter estimates [26], amplitude mismatch in real channels [65],
phase offsets in complex channels [65], and incorrect models of additive
noise distributions [53].

While this application of mismatched decoding is seemingly natural,
the notion of mismatch capacity often needs to be interpreted with
care. In particular, Definition 1.1 assumes that the codebook can be
optimized, but performing such an optimization may implicitly require
knowledge of both W and q. Hence, if W is unknown, then a potentially
more meaningful quantity is the rate achieved when a codebook designed
for Ŵ is applied to W , and used with the above-mentioned decoding
metric q(x, y) = Ŵ (y|x).

Fortunately, the achievable rates presented in this monograph will
account for both scenarios. In particular, we will generally provide per-
formance bounds for a given random-coding ensemble. We can optimize
over the given class of random-coding ensembles to get the best possible
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lower bound on the mismatch capacity, or in accordance with the above
discussion, we can consider the rate for a fixed ensemble (e.g., one
which would be capacity-achieving if the true channel were Ŵ ) as the
appropriate performance measure.

1.2.2 Fading Channels

In wireless communication scenarios, the channel typically exhibits
unknown fluctuations resulting from the signal arriving at the receiver
via multiple paths in a dynamic environment. A widely-adopted complex-
valued channel model in this context is the following:

Yi = HiXi + Zi, (1.4)

where Hi ∈ C is a fading coefficient, and Zi ∈ C is additive complex
Gaussian noise. The use of a complex-valued model arises naturally
when transmitting signals modulated by a high-frequency carrier; see
for example [102].

Since the coefficients Hi are determined by a complex dynamic
environment, one cannot expect to know their values precisely. As a
result, one typically performs channel estimation to obtain estimates
{Ĥ i}ni=1 of the coefficients {Hi}ni=1, and then uses the estimates as if
they were the true coefficients. In particular, the mismatched version of
the maximum-likelihood rule, which would be optimal if the estimates
were correct, is given by

m̂ = arg min
j=1,...,M

n∑
i=1
|Yi − Ĥ iX

(j)
i |

2, (1.5)

where (X(j)
1 , . . . , X

(j)
n ) is the j-th codeword. As a result, we have a

mismatched decoding rule as in (1.1), with decoding metric q(x, (ĥ, y)) =
e−|y−ĥx|

2 . Note that ĥ is treated as part of the channel output here, since
it is known at the decoder. In this application, one typically considers
random coding techniques with a Gaussian input distribution, rather
than (unrealistically) adopting the best codebook as per Definition 1.1.

It should be noted that the “channel” dictating the conditional
distribution of (Ĥ,Y ) given X is only memoryless under strong as-
sumptions. However, even in the presence of memory, the mismatched
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decoding perspective has led to a variety of powerful theoretical results,
including both achievable rates and provable limitations of random
coding imposed by the mismatch [57, 105].

1.2.3 Reduced Decoding Complexity

Even in cases that the channel W is known, its associated optimal
decoding rule may be too complex to implement or even approximate.
In such scenarios, it may be preferable or even essential to adopt a
decoding rule that is simpler but suboptimal.

For instance, while the maximum-likelihood decoder under additive
Gaussian noise is the nearest-neighbor decoder, a non-Gaussian noise
distribution may lead to a much more complex maximum-likelihood
rule. To circumvent this difficulty, one may simply revert to the nearest-
neighbor decoder (or a similar rule) despite its suboptimality, and this
becomes a problem of mismatched decoding. By characterizing the
resulting performance, we can understand the extent to which simple
decoding rules remain useful beyond the specific channels that they
were designed for.

A more detailed example of reducing complexity at the expense of
suboptimal decoding is discussed in the following subsection.

1.2.4 Bit-Interleaved Coded Modulation

The technique of bit-interleaved coded modulation (BICM) [44] is
motivated by the question of how binary codes can be employed even
when the communication channel induced by a modulation scheme
is non-binary. BICM has been widely adopted in practical settings,
including a number of standards.

If the transmitted symbol x belongs to a signal constellation set
X with 2` elements, we may represent x using a label of ` bits, b =
(b1, . . . , b`). We make the dependence explicit by writing the i-th bit
in the binary mapping of x as bi(x). The key element of BICM is the
observation that the overall non-binary code C may also be decoded at
bit level. More formally, in place of a potentially complicated symbol-
wise decoding metric, one can decode according to a product of bit-wise
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metrics:

q(x, y) =
∏̀
i=1

qi(bi(x), y), (1.6)

where the bit decoding metrics qi(b, y) (for i = 1, . . . , `) are given as

qi(b, y) =
∑
x∈X

PX|Bi(x|b)W (y|x), (1.7)

and where PX|Bi is the conditional distribution induced by the channel
input distribution. The decoding metric (1.6) corresponds to treating the
` bits labeling a symbol as if they were independent, and the metric (1.7)
for a given bit corresponds to treating all other bits as noise.

A particularly relevant case in practice is that in which the input
distribution is uniform (i.e., all constellation symbols occur with equal
probability), in which case the conditional probability PX|Bi(x|bi) is
zero if bi(x) 6= b, and 2−(`−1) if bi(x) = b. In this case, decoding can
proceed using standard binary decoding techniques, e.g., forming `

parallel bit decoding metrics for every channel output.
BICM was first explicitly cast as a mismatched decoding problem

in [62], permitting the application of general mismatched decoding
achievable rates specialized to the decoding metric given in (1.6).

1.2.5 Finite-Precision Arithmetic

Another interesting application of mismatched decoding is that of finite-
precision arithmetic [15, 75]. We illustrate the general idea through the
specific example of an additive white Gaussian noise (AWGN) channel
Y = X + Z, with Z ∼ N(0, σ2).

The optimal decoding metric, corresponding to maximum-likelihood
decoding, is log q(x, y) = −(y − x)2, corresponding to nearest-neighbor
decoding. However, such a decoder may be ruled out when hardware
constraints limit the precision of the arithmetic. In such cases, a more
feasible decoding rule is given by

log q(x, y) = −(ΦY (y)− ΦX(x))2, (1.8)

where ΦX and ΦY are scalar quantization functions. This is again a
mismatched decoding problem.
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We note that this setup is not equivalent to applying the scalar
quantizer ΦX prior to transmission, as we still allow the transmitted
codeword to take arbitrary values; it is only the decoder that is required
to work with the quantized values. In this application, it is often rea-
sonable to assume that the codebook designer knows both W and q,
which justifies the optimization over the codebook in Definition 1.1.

1.2.6 Optical Communication

Optical communication is of considerable practical importance, but
the development of precise information-theoretic rates is a notoriously
hard problem. While optical fiber channels with low signal powers
are typically well-approximated by an additive white Gaussian noise
(AWGN) channel, severe non-linearities hinder the performance at
higher powers [8, 85]. In addition, the underlying channel can be far
from memoryless, due to phenomena such as inter-symbol interference.

Despite the complexity of the channel, simpler achievable rates
can be attained by considering suboptimal decoding rules (see [85]
for a recent survey), such as the AWGN decoding metric that ignores
channel memory. In this sense, the corresponding optical communication
problem can be viewed through the lens of mismatched decoding [40].

The technique of BICM, outlined in Section 1.2.4, is also widespread
in the field of optical communication, and a mismatched decoding
perspective can again be adopted [8]. A distinction here is that the
resulting achievable rates are typically difficult to compute exactly
due to the presence of high-dimensional integrals. Nevertheless, one
can accurately approximate the rates using techniques such as Gauss-
Hermite quadrature or Monte Carlo integration, as is often done even
for standard Gaussian channels when discrete input constellations are
employed.

1.2.7 Zero Undetected Error Capacity

In studies of channel coding, it is often useful to let the decoder explicitly
output an error when it is not confident enough to make a decision on
the transmitted message. When this is done, one can distinguish between
a detected error, where the decoder chooses to declare an error, and an
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undetected error, where the decoder outputs an incorrect estimate of
the message. It is then of interest to understand the trade-off between
the two, particularly in cases where undetected errors are considered
much more costly.

In the special case of DMCs, an interesting extreme case of this trade-
off is the zero-undetected error capacity, which is the highest achievable
rate when the probability of an undetected error must be exactly zero
(i.e., the error probability equals the detected error probability) [2, 26].
For this to occur, the decoder must only output a message estimate if
there is a unique codeword for which the output sequence has positive
probability; if multiple codewords are feasible (i.e., consistent with the
output), an error must be declared. For this setting to be meaningful,
some of the channel transition probabilities W (y|x) must be zero.

The zero-undetected error capacity is a special case of the mismatch
capacity, corresponding to the decoding metric [26]

q(x, y) = 1{W (y|x) > 0}, (1.9)

often referred to as the erasures-only metric. To see this, note that
qn(x,y) = 1 whenever x is feasible, and qn(x,y) = 0 otherwise. Hence,
assuming ties are broken as errors, the mismatched decoding rule leads
to an error if and only if multiple codewords are feasible, as desired.

1.2.8 Zero-Error Capacity

Another interesting special case of the mismatch capacity is the zero-
error capacity [51, 88] of a DMC, which is the highest communication
rate such that the probability of any error is exactly zero. The zero-error
capacity is known to depend on the channel W (y|x) only through the
|X | × |X | matrix AW with (x, x′)-th entry

AW (x, x′) = 1{W (y|x)W (y|x′) > 0 for some y ∈ Y}, (1.10)

where we assume without loss of generality that X = {1, . . . , |X |}.
The matrix AW is the adjacency matrix of the channel graph, formed
by connecting two inputs if and only if they share a common output
according to W .

With this definition, the zero-error capacity of W is equal to the
mismatch capacity of the following channel-metric pair, whose input
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and output alphabets are both X [26]:

W0(x′|x) = 1{x = x′}, q0(x, x′) = AW (x, x′). (1.11)

That is, the channel is noiseless, and the metric is the indicator function
of (x, x′) sharing a common output in W , sometimes referred to as
being adjacent or confusable.

To see that Cm(W0, q0) equals the zero-error capacity of W , we
first recall from Remark 1.2 that the mismatch capacity is unchanged
when the requirement of pe being arbitrarily small is replaced by the
requirement that pe,max (see (1.3)) is arbitrarily small. Hence, it suffices
to show that any given sequence of codebooks {Cn}n≥1 attains zero
error probability on W (i.e., any transmitted codeword can be uniquely
decoded with probability one) if and only if pe,max(Cn) → 0 for the
mismatched DMC (W0, q0).

The “only if” statement follows from the fact that any zero-error
codebook Cn for W yields qn0 (x,x) = 1 for all x ∈ C, and qn0 (x,x) = 0
for all x,x ∈ Cn with x 6= x, due to the choice of q0 in (1.11). Thus, Cn
satisfies pe,max(C) = 0 under the mismatched DMC (W0, q0), in which
the channel output deterministically equals the input. To establish
the other direction, we note that since both the channel W0 and the
decoder (with ties broken as errors) are deterministic, the quantities
P[m̂ 6= m|x(m) sent] defining pe,max in (1.3) can only be zero or one.
Thus, the only way to attain pe,max(Cn)→ 0 is to have pe,max(Cn) = 0
for all sufficiently large n. By the choice of q0, one can only have
pe,max(Cn) = 0 when all codewords have no common outputs, which
implies that Cn is a zero-error codebook for W .

A related example can be found in [26], showing that a graph-
theoretic quantity called the Sperner capacity is also a special case of
the mismatch capacity.

1.3 Other Channel Uncertainty Models

The mismatched decoding problem provides one of several perspectives
on the role of channel uncertainty in information theory. An excellent
survey comparing the various perspectives can be found in [56], so we
provide only a brief discussion here.
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It is well-known that universal decoding rules exist that are able
to achieve the capacity of any DMC when the codebook is optimized.
A prominent example is the maximum empirical mutual information
decoder [24, Ex. 6.20]. Adopting such a decoder under channel uncer-
tainty would typically lead to strictly better achievable rates compared
to a mismatched decoding metric. However, such decoding rules are
multi-letter in nature, and computationally efficient techniques for im-
plementing or approximating them remain elusive. In contrast, the
decoding rule in (1.1) is single-letter, in the sense that it is written as a
product over individual symbols, and many practical decoding meth-
ods can be viewed as approximating this rule (despite not necessarily
implementing it exactly).

Channels with a state, in which the transition law takes the form
W (y|x, s) for some unknown state s, also provide a powerful means to
address channel uncertainty [30, Ch. 7]. In particular, the capacity varies
depending on whether the state is known at the encoder and/or decoder,
and whether it is known causally or non-causally. A prominent example
is fading channels, where s represents a fading coefficient. In fact, as
evidenced in the previous subsection, the study of channels with a state
is by no means disjoint from the mismatched decoding problem. Rather,
channels with a state are simply another class of channels where the
decoding rule may be either matched or mismatched; e.g., see [57] for
mismatched fading channels, and [33] for mismatched DMCs with a
state.

Another widely-adopted approach is to consider adversarial channel
models, taking the form Wn(y|x, s) for some sequence s = (s1, . . . , sn)
that can be viewed as being chosen by an adversary (possibly subject
to some constraints) in order to hinder the communication. Hence,
one requires small error probability simultaneously for all possible
sequences s. Under the constraint s1 = · · · = sn this is referred to
as a compound channel [16], whereas the case of arbitrary length-n
sequences is referred to as the arbitrarily varying channel (AVC) [17].
Adversarial channel models are of particular interest for communication
in the presence of jamming.

To our knowledge, the study of AVCs has had minimal interaction
with the mismatched decoding perspective in the existing literature.
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This is because bounds on the capacity of the AVC typically adopt rather
complicated multi-letter decoding rules, e.g., not simply maximizing
a metric on (x,y), but instead considering various combinations of
triplets (x,x′,y) [25]. In addition, the study of AVCs often leads to
very different insights and challenges compared to the mismatched
decoding problem, such as the fact that the capacity may differ for
the average error probability vs. maximum error probability criteria,
and the consideration of randomized encoding. See [56] for a detailed
overview.

Despite these differences, we briefly mention two examples of con-
nections between adversarial channel models and mismatched decoding:
(i) For certain compound channels, the capacity can be achieved by a
single-letter mismatched decoding rule [99]; we present this example
in Section 2.4.4. (ii) It is shown in [26] that the erasures-only decod-
ing metric (see (1.9)) can achieve the capacity of certain AVCs under
deterministic coding and the average-error criterion.

1.4 Outline of the Monograph

Through the monograph, we focus primarily on achievable rates (i.e.,
lower bounds on the mismatch capacity) via random coding. This has
been the primary focus of the existing literature, with upper bounds
on the mismatch capacity generally remaining elusive. The study of
achievable rates in itself comes with many interesting challenges and
differences compared to the matched setting. To name just one exam-
ple, we will see that both constant-composition codes and multi-user
coding techniques can lead to better achievable rates than standard
i.i.d. random coding, in stark contrast with the matched setting in
which i.i.d. random codes are capacity-achieving.

In Section 2, we present achievable rates for discrete memoryless
channels, introducing the generalized mutual information (GMI) for
i.i.d. coding, and the LM rate for constant-composition random coding.
We present several key properties of both rates, including conditions
for positivity, conditions under which the matched capacity is achieved,
and ensemble tightness results. In addition, we present a variety of
representative examples from the literature.
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In Section 3, we present a generalization of the GMI and LM rate
to continuous-alphabet channels, using the idea of random coding with
auxiliary costs. We again provide several representative examples focus-
ing on additive channels and variants of mismatched nearest-neighbor
decoding. In particular, these examples include non-Gaussian noise
channels and fading channels, both of which have been among the most
widespread applications of mismatched decoding in the literature.

In Section 4, we momentarily depart from the channel coding prob-
lem and survey the role of mismatch in rate-distortion theory. In this
case, the problem becomes one of mismatched encoding, and we again
present achievable rates that are proved via random coding, as well as
a multi-letter converse result. In addition, we overview a different type
of mismatch in which the optimal encoder is adopted but a suboptimal
random coding distribution is used, highlighting the important special
case of Gaussian compression techniques for non-Gaussian sources.

In Section 5, we study the mismatched multiple-access channel
(MAC), presenting an ensemble-tight achievable rate region for constant-
composition random coding, as well as an extension to continuous
alphabets. In Section 6, we survey further results demonstrating that
multi-user coding techniques, including both MAC coding methods and
superposition coding, can lead to improved rates for single-user channels.
In particular, we present a refined version of superposition coding that
provides the best known achievable rate at the time of writing.

In Section 7, we move beyond achievable rates and present an
overview of results on error exponents, which provide refined characteri-
zations of the asymptotic behavior of the error probability at fixed rates.
In particular, we discuss the role of cost-constrained random coding
with multiple auxiliary costs for attaining the best known achievable
error exponents, highlighting the differences compared to the study of
achievable rates alone.

In Section 8, we overview recent developments and challenges in
obtaining upper bounds on the mismatch capacity. In accordance with
the literature on this topic, we focus primarily on multi-letter bounds
that are non-computable but can still provide interesting insight on the
problem. In addition, we present a recent single-letter upper bound.
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In Section 9, we briefly outline several topics in mismatched decoding
that were omitted from the main sections, including refined asymptotics,
modified channel coding settings, further results on continuous and
fading channels, and mismatch in practical coding methods. For each
of these, we give several pointers to the relevant literature. Conclusions
are drawn in Section 10.

Unless it is explicitly stated otherwise, it should be understood that
the results surveyed in this monograph come from the existing literature.
We highlight the main references at the beginning of each section.

Notes on the Presentation and Assumed Background. We make an
effort to provide self-contained proofs of most results, but for certain
parts that are highly technical and/or less central to the survey, we
instead refer the reader to the relevant literature.

We assume that the reader is familiar with the classical theorems
of information theory (e.g., source coding, channel coding, and rate-
distortion theory), as well as the associated information measures (e.g.,
entropy, mutual information, and KL divergence) and their properties
(e.g., chain rule, data processing inequality). As for slightly less standard
prior knowledge, the reader is encouraged to learn the basics of the
method of types [24, Ch. 2] and Gallager’s proof of the channel coding
theorem [38, Ch. 5] if either of these is unfamiliar.

Notation. We will introduce our notation throughout the monograph,
but for reference, we also summarize some recurring notation here.
Definitions of the most commonly-used mathematical symbols and
abbreviations are listed prior to Section 1.

The set of all probability distributions on an alphabet X is denoted
by P(X ), and the set of all conditional distributions on Y given X is
denoted by P(Y|X ). More precisely, in the case that X is finite, we write
PX ∈ P(X ) when PX is a probability mass function (PMF) on X , and
similarly for conditional PMFs. When we consider continuous alphabets,
we use the same notation for probability density functions (PDFs).
The set of all empirical distributions on a vector in X n (i.e., types [24,
Sec. 2], [37]) is denoted by Pn(X ), and the set of all conditional empirical
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distributions (i.e., conditional types) on Yn given X n is denoted by
Pn(Y|X ). Given PX ∈ Pn(X ), the type class T n(PX) is defined to be
the set of all sequences in X n with type PX .

We use bold symbols for vectors (e.g., x), and we denote the corre-
sponding i-th entry using a subscript (e.g., xi). In the case of random
vectors, we use capital letters (e.g., X and Xi). The probability of
an event is denoted by P[·], and the symbol ∼ means “distributed as”.
The marginals of a joint distribution PXY (x, y) are denoted by PX(x)
and PY (y). Similarly, PY |X(y|x) denotes the conditional distribution
induced by PXY (x, y). Expectation with respect to a joint distribution
PXY (x, y) is denoted by EP [·]. When the probability distribution is
understood from the context, we simply write E[·]. Given a distribution
QX(x) and a conditional distribution W (y|x), we write QX ×W to
denote the joint distribution QX(x)W (y|x), and similarly when there
are more than two distributions.

We use standard notation for the entropy H(X), conditional entropy
H(X|Y ), mutual information I(X;Y ), conditional mutual information
I(X;Y |Z), KL divergence D(P‖Q) and conditional KL divergence
D(PY |X‖QY |X |PX) [22]. We often explicitly state the underlying dis-
tribution of the random variables with a subscript (e.g., IP (X;Y ),
I
P̃

(X;Y )). The set of real numbers is denoted by R, and the set of
complex numbers is denoted by C. We define [α]+ = max{0, α}, and we
denote the indicator function of an event by 1{·}. The floor function is
denoted by b · c, and the ceiling function by d · e. All logarithms have
base e, and all rates are in units of nats except in the examples, where
bits are used.



2
Discrete Memoryless Channels

2.1 Introduction

Throughout the monograph, it will be useful to distinguish between
channels with finite alphabets and continuous alphabets. In this section,
we focus on the finite-alphabet setting, which will allow us to provide
a more elementary introduction using widely-known techniques from
the literature. In Section 3, we will consider the continuous-alphabet
setting.

We consider the problem setup as described in Section 1.1, in the
special case that X and Y are finite, and hence W (y|x) represents
a conditional probability mass function. Recall that a non-negative
decoding metric q(x, y) dictates the decision rule in (1.1). Collectively,
we refer to the pair (W, q) as a mismatched DMC.

The achievable rates presented this section are based on random
coding, a ubiquitous tool in information theory in which one proves the
existence of good codebooks by bounding the average error probability
of a randomly-generated codebook [87]. A given random construction,
characterized by the joint distribution of the codewords, is called a
random-coding ensemble. In this section, we assume that the codewords

170
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are drawn independently from a common distribution PX :

{X(m)}Mm=1 ∼
n∏
i=1

PX(x(m)). (2.1)

In Section 6, we will turn to alternative ensembles in which some form
of dependence is introduced among the codewords.

This section is predominantly based on the works of Hui [46], Csiszár
and Körner [23], Csiszár and Narayan [26], and Merhav et al. [65].

2.2 Properties of the Mismatch Capacity

In this subsection, we provide some straightforward properties of the
error probability and mismatch capacity that will be useful for moti-
vating the random coding ensembles and interpreting their achievable
rates.

We begin with the following proposition regarding the equivalence of
certain decoding metrics, which in fact applies not only to mismatched
DMCs, but also general mismatched memoryless channels.

Proposition 2.1 (Equivalence of Metrics). For any memoryless channel
W (y|x) and codebook C = (x(1), . . . ,x(M)), if two decoding metrics q, q̃
are related according to

log q̃(x, y) = b(y) + s log q(x, y) (2.2)

for some b(y) and s > 0, then we have for all y ∈ Yn that

arg max
j=1,...,M

q̃n(x(j),y) = arg max
j=1,...,M

qn(x(j),y), (2.3)

i.e., the two decoding metrics are equivalent.

Recalling that qn(x,y) =
∏n
i=1 q(xi, yi), this claim follows by simply

writing log q̃n(x,y) = bn(y) + s log qn(x,y), where bn(y) =
∑n
i=1 b(yi).

Since s > 0, this implies that the two maximization problems in (2.3)
are equivalent.

We can strengthen Proposition 2.1 for a useful class of codebooks
called constant-composition codebooks. The composition of a sequence x



172 Discrete Memoryless Channels

(also referred to as its type or empirical distribution) is defined as

P̂x(x) = 1
n

n∑
i=1

1{xi = x}, (2.4)

and a constant-composition codebook is one in which all codewords
have the same composition. Thus, every sequence has the same number
of occurrences of any given symbol, and the codewords are permutations
of one another.

Proposition 2.2 (Equivalence of Metrics for Constant-Composition Code-
books). For any memoryless channel W (y|x) and constant-composition
codebook C = (x(1), . . . ,x(M)), if two decoding metrics q, q̃ are related
according to

log q̃(x, y) = a(x) + b(y) + s log q(x, y) (2.5)

for some a(x), b(y), and s > 0, then we have for all y ∈ Yn that

arg max
j=1,...,M

q̃n(x(j),y) = arg max
j=1,...,M

qn(x(j),y), (2.6)

i.e., the two decoding metrics are equivalent for constant-composition
codebooks.

The proof is similar to that of Proposition 2.1: We have
log q̃n(x,y) = an(x) + bn(y) + s log qn(x,y), and for any constant-
composition codebook, the value an(x) =

∑n
i=1 a(xi) is the same for

every codeword, as the codewords are all permutations of one another.
The constant-composition assumption may seem restrictive, but in

fact, any codebook can be reduced to a constant-composition codebook
with a negligible loss in the rate. To see this, note that P̂x in (2.4)
takes the form (n1

n , . . . ,
n|X|
n ) with nx ∈ {0, 1, . . . , n} for all x ∈ X , and

hence, the total number of different compositions is at most (n+ 1)|X |.
As a result, given a codebook with M = enR codewords, among all
possible sub-codebooks with codewords having the same composition,
there must exist one whose size is at least

M ′ ≥ M

(n+ 1)|X |
. (2.7)
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If X is finite, as is the case for a DMC, then it holds for any fixed
rate R that 1

n logM ′ → R as n → ∞. In addition, the maximal error
probability in the reduced codebook is no higher than that of the original
codebook, since for any given transmitted codeword x, there are only
fewer incorrect codewords x remaining that could lead to the error
event qn(x,y) ≥ qn(x,y). Since the mismatch capacity is always the
same under the average and maximal error criteria (see Remark 1.2),
we have the following corollary.

Corollary 2.1 (Metrics with Equal Mismatch Capacities). For any mem-
oryless channel W and decoding metrics q and q̃, we have the
following:

(i) The mismatch capacities of (W, q) and (W, q̃) are identical pro-
vided that q and q̃ are related according to (2.2) for some b(y)
and s > 0.

(ii) If the input alphabet X is finite, then the mismatch capacities
of (W, q) and (W, q̃) are identical provided that q, q̃ are related
according to (2.5) for some a(x), b(y), and s > 0.

2.3 Achievable Rates: GMI and LM Rate

In this subsection, we introduce the two most well-known achievable
rates in the mismatched decoding literature: The generalized mutual
information (GMI) and the LM rate.1 These rates are derived using
two common random coding techniques known as i.i.d. random coding
and constant-composition random coding, which we introduce below.
While the achievable rate for the latter of these was proved first in the
literature [23, 46], we find it instructive to start with the former.

Both the GMI and LM rate will be written in two equivalent
forms which, at first glance, might appear to be completely unrelated.

1We adopt these names because they have become widespread in the literature,
but in our opinion, neither of them is ideal. While the GMI does “generalize” mutual
information in the sense of recovering it in the special case q(x, y) = W (y|x), the same
could be said of any achievable rate that is tight when specialized to the matched
case. The name LM rate appears to have arisen following [65], with the acronym
implicitly standing for “lower [bound on the] mismatch [capacity]”. This would again
be equally suitable for any achievable rate.
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The equivalence of the two (stated in Lemma 2.10 below) is proved using
the method of Lagrange duality from the theory of convex optimization
[18, Ch. 5]. Accordingly, we will refer to the two as primal expressions
and dual expressions, and we will adopt similar terminology throughout
the monograph whenever a similar equivalence holds.

We proceed by introducing the random coding ensembles (i.e.,
choices of the codeword distribution PX in (2.1)) and their achiev-
able rates, and then turn to a common discussion of the two in which
we interpret both the primal and dual forms.

2.3.1 i.i.d. Random Coding and the GMI

By far the most widely-studied random-coding ensemble in the informa-
tion theory literature is i.i.d. random coding, defined as follows. Here
and subsequently, P(X ) denotes the set of all probability distributions
on the alphabet X .

Definition 2.1 (i.i.d. Random Coding). Under the i.i.d. random coding
ensemble with input distribution QX ∈ P(X ),2 the codewords are
independently drawn from the codeword distribution

PX(x) =
n∏
i=1

QX(xi). (2.8)

That is, every symbol of every codeword is independently drawn
from QX .

We will use i.i.d. random coding to prove the achievability of the
generalized mutual information (GMI), which can equivalently be written
in the primal form

Igmi(QX) = min
P̃XY ∈P(X×Y): P̃Y =PY

E
P̃

[log q(X,Y )]≥EP [log q(X,Y )]

D(P̃XY ‖QX × PY ) (2.9)

with PXY = QX ×W , or in the dual form,3

Igmi(QX) = sup
s≥0

∑
x,y

QX(x)W (y|x) log q(x, y)s∑
xQX(x)q(x, y)s . (2.10)

2Not to be confused with the decoding metric q(x, y).
3A supremum is used for s ≥ 0 instead of a maximum since it may not be

attained by a finite value of s; see (2.53) for an example.
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These expressions are discussed in Sections 2.3.3–2.3.4 below. The
following theorem provides a formal statement of achievability, which
will be proved in Section 2.6.

Theorem 2.2 (Achievability of the GMI). For any mismatched DMC
(W, q) and a given input distribution QX ∈ P(X ), the rate Igmi(QX) is
achievable via i.i.d. random coding. Consequently,

Cm ≥ Cgmi , max
QX∈P(X )

Igmi(QX). (2.11)

Of course, Igmi(QX) depends not only on QX , but also on (W, q).
For the most part, we leave this dependence implicit, as we will be
considering a fixed channel and decoding metric. However, in some
cases, we will make the dependence explicit by writing Igmi(QX ,W ) or
Igmi(QX ,W, q).

2.3.2 Constant-Composition Random Coding and the LM Rate

Another well-known random coding method for channel coding is
constant-composition random coding, which introduces some depen-
dence between the symbols of a given codeword. In contrast to the
matched setting [24, 37], we will see that this ensemble can attain better
higher rates than the i.i.d. ensemble in the presence of mismatch (see
Section 2.4).

Before defining the ensemble, we introduce some terminology. Recall-
ing the notion of a type in (2.4), we let Pn(X ) ⊂ P(X ) be the subset of
probability distributions that correspond to the type of some length-n
sequence, i.e., each probability equals an integer multiple of 1

n . For a
given type PX ∈ Pn(X ), we define the type class

T n(PX) = {x ∈ X n: P̂x = PX}, (2.12)

where P̂x is defined in (2.4). In words, T n(PX) contains all length-n
sequences having empirical distribution PX .

As with i.i.d. random coding, the constant-composition codeword
distribution is specified by an input distribution QX ∈ P(X ). Given
QX , we define QX,n ∈ Pn(X ) to be an arbitrary type having the same
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support as QX , and satisfying the following:

‖QX −QX,n‖∞ , max
x∈X
|QX(x)−QX,n(x)| ≤ 1

n
. (2.13)

This essentially amounts to rounding each value of QX(x) up or down
so that it is an integer multiple of 1

n .

Definition 2.2 (Constant-Composition Random Coding). Under the
constant-composition random coding ensemble with input distribution
QX ∈ P(X ), the codewords are independently drawn from the codeword
distribution

PX(x) = 1
|T n(QX,n)|1{x ∈ T

n(QX,n)}, (2.14)

where QX,n ∈ Pn(X ) satisfies (2.13). That is, each codeword is equiprob-
able on the set of sequences with empirical distribution QX,n.

We will use constant-composition random coding to prove the achiev-
ability of the LM rate, which can equivalently be written in the primal
form

Ilm(QX) = min
P̃XY ∈P(X×Y): P̃X=QX ,P̃Y =PY

E
P̃

[log q(X,Y )]≥EP [log q(X,Y )]

I
P̃

(X;Y ) (2.15)

with PXY = QX ×W , or in the dual form,

Ilm(QX) = sup
s≥0,a(·)

∑
x,y

QX(x)W (y|x) log q(x, y)sea(x)∑
xQX(x)q(x, y)sea(x) .

(2.16)
These expressions are discussed in Sections 2.3.3–2.3.4, and the following
formal statement of achievability is proved in Section 2.6.

Theorem 2.3 (Achievability of the LM Rate). For any mismatched DMC
(W, q) and a given input distribution QX ∈ P(X ), the rate Ilm(QX) is
achievable via constant-composition random coding. Consequently,

Cm ≥ Clm , max
QX∈P(X )

Ilm(QX). (2.17)

As with the GMI, we will sometimes write Ilm(QX ,W ) or
Ilm(QX ,W, q) to make the dependence on the channel and/or decoding
metric explicit.
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2.3.3 Interpretations of the Rates

We proceed by giving some interpretations of the achievable rates, and
some intuition as to how they arise from the random-coding analysis.
At this point, it is worth noting that the LM rate is always at least as
high as the GMI:

Igmi(QX) ≤ Ilm(QX). (2.18)

This is easily seen from the fact that the minimization in the primal
expression (2.15) is more constrained than that in (2.9), or from the
fact that we can lower bound the dual expression (2.16) via the specific
choice a(x) = 0 in order to obtain (2.10).

Although the GMI is weaker than the LM rate, it is still interesting
to understand it separately, and to contrast it with the LM rate in order
to better understand the differences between the corresponding random-
coding ensembles. Moreover, in several applications of mismatched
decoding, the GMI admits a simple analytical expression but the LM
rate does not.

Primal Expressions. The idea behind the proof of Shannon’s (matched)
channel coding theorem is that if R < I(X;Y ), then with high prob-
ability under random coding, no incorrect codeword x will be such
that the pair (x,y) “looks like” it was generated according to QX ×W
(e.g., in terms of joint typicality, or having a sufficiently high likeli-
hood). In the mismatched setting, such codewords are not the only
problematic ones; errors also occur when (x,y) “looks like” it was drawn
from any P̃XY with a higher decoding metric than QX ×W . In both
(2.9) and (2.15), the achievable rate is a minimum over all such P̃XY .
The Y -marginal constraint arises since P̂ y → PY by the law of large
numbers, and the X-marginal constraint in the LM rate arises from the
constant-composition construction.

As noted in [65], the primal expressions also closely resemble rate-
distortion functions in lossy source coding; for instance, in the absence
of the constraint P̃Y = PY in (2.15), we would precisely recover the
rate distortion function of the “source” X with “reconstruction” Y ,
distortion measure d(x, y) = − log q(x, y), and distortion threshold
−EP [log q(X,Y )]. See Section 4.7 for further discussion.
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Dual Expressions. Gallager’s proof of the channel coding theorem [36]
is based on maximum-likelihood decoding, and is particularly amenable
to a generalization to maximum-metric decoding. If this is done naively,
one attains a rate of the form (2.10) with s = 1, which is rather limited
(e.g., such a rate may be negative) [34]. However, the achievability of
the GMI immediately follows from the equivalence of the decoding
metrics q(x, y) and q(x, y)s for s > 0, stated in Proposition 2.1 (the
case s = 0 can also trivially be included). Similarly, the LM rate
can be deduced using the equivalence of q(x, y) and q(x, y)sea(x) for
constant-composition codes, stated in Proposition 2.2. Essentially, the
improvement of constant-composition random coding over i.i.d. random
coding comes from the additional codebook structure that permits the
introduction of a(·) into the bound.

To provide another interpretation, we note that the LM rate can be
written as follows (see Lemma 2.8 in Section 2.5):

Ilm(QX ,W ) = I(QX ,W )− inf
VY |X∈Vq

D(W‖VY |X |QX), (2.19)

where I(QX ,W ) = I(X;Y ) with (X,Y ) ∼ QX ×W , and

Vq =
{
VY |X ∈ P(Y|X ) : VY |X(y|x) = q(x, y)sea(x)eb(y)

for some s ≥ 0, a(x), b(y)
}
, (2.20)

where we recall that P(Y|X ) is the set of all conditional distributions
on Y given X .

To understand the form given in (2.19), consider the case that
q(x, y) = Ŵ (y|x) is a conditional distribution. In analogy with source
coding methods (e.g., Huffman coding) in which one pays a KL di-
vergence penalty for assuming the wrong distribution [22, Ch. 5], one
might expect to pay a penalty of D(W‖Ŵ |QX) here compared to op-
timal decoding. The above formulation reveals that this is an upper
bound on the loss, and that it can always be reduced to the infimum
of D(W‖VY |X |QX) over all conditional distributions VY |X yielding an
equivalent decoding metric in the sense of Proposition 2.2.
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2.3.4 Advantages of the Primal and Dual Forms

At this point, it may be unclear why it is beneficial to consider two
equivalent formulations of each achievable rate. The advantages will
become increasingly clear throughout the section and the monograph,
but we briefly outline some important examples here:

• As we already saw above, the two forms can admit interesting
alternative interpretations.

• The most important properties of the rates (see Section 2.5) are
often easier to prove using one particular form, though some can
be proved using either of the two.

• As a notable example, when it comes to establishing ensemble
tightness (roughly, showing that the rates cannot be improved un-
der the random coding ensembles considered), the most elementary
proofs for DMCs are based on the primal expression.

• The dual forms have the notable advantage that substituting any
choices of s ≥ 0 and/or a(·) yields a valid achievable rate. In
contrast, the primal expressions are only guaranteed to provide a
valid achievable rate under the minimizing joint distribution P̃XY .

• Another advantage of the dual forms is that they come with direct
derivations that readily extend to continuous-alphabet channels
(see Section 3).

• When it comes to computing the achievable rates numerically, it
can be useful to compute both forms and verify that they coincide,
as a check for robustness against numerical precision issues.

For reasonable-sized alphabets X and Y, neither the primal nor dual
forms pose significant computational challenges for a given input distri-
bution QX : The primal expressions are convex minimization problems,
and the dual expressions are concave maximization problems, and
hence both can be evaluated using off-the-shelf solvers. In contrast,
Lemma 2.12 below suggests that the optimization over QX can be
difficult due to non-concavity.
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2.4 Examples

In this subsection, we provide analytical and numerical evaluations of
the GMI and LM rate for a variety of specific DMCs.

2.4.1 Binary Channels

Consider the case that both the channel inputs and outputs are binary,
i.e., |X | = |Y| = 2. We assume without loss of generality that X =
Y = {0, 1}. We will first show that the LM rate is either equal to the
matched capacity or zero [26], and then discuss how the GMI does not
exhibit such a dichotomy.

Evaluating the LM Rate. Recall that the LM rate is based on constant-
composition codes, and that for any such code, two decoding metrics
q, q̃ are equivalent if

log q̃(x, y) = a(x) + b(y) + s log q(x, y) (2.21)

for some constant s > 0 and functions a(x), b(y) (see Proposition 2.2).
To study such equivalences, we introduce the notation

`q =
[
log q(0, 0) log q(0, 1)
log q(1, 0) log q(0, 1)

]
,

[
`00 `01
`10 `11

]
, (2.22)

and we write `q ≡ `q̃ if (2.21) holds.
Notice that choosing a(x) (respectively, b(y)) in (2.21) amounts to

adding or subtracting a constant from each row (respectively, column)
of `q. By choosing these constants to equate certain entries to zero, we
obtain

`q ≡
[

0 0
`10 − `00 `11 − `01

]
≡
[
0 0
0 `11 − `01 − `10 + `00

]
. (2.23)

By a symmetric argument, we can obtain the same final equivalence
with the top-left and bottom-right entries swapped, and in addition, we
can sum the two matrices together to obtain

`q ≡
[
`00 + `11 − `01 − `10 0

0 `00 + `11 − `01 − `10

]
. (2.24)
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Since multiplying by s > 0 in (2.21) amounts to scaling the entire
matrix, we deduce that as long as `11 − `01 − `10 + `00 6= 0, one of the
following must hold:

`q ≡
[
1 0
0 1

]
, or `q ≡

[
−1 0
0 −1

]
, (2.25)

with the non-zero entries equaling sign(`00 + `11 − `01 − `10).
Now, letting δ1 and δ2 denote the transition probabilities W (1|0)

and W (0|1) respectively, we observe that upon substituting `∗xy =
logW (y|x), it holds that `∗00 + `∗11 − `∗01 − `∗10 > 0 if and only if
(1−δ1)(1−δ2)

δ1δ2
> 1, which in turn is equivalent to δ1 + δ2 < 1. Hence,

if δ1 + δ2 < 1 then the ML rule minimizes the Hamming distance, and
otherwise, it maximizes the Hamming distance.

If the sign of `00 + `11 − `01 − `10 = log q(0,0)q(1,1)
q(0,1)q(1,0) for the decoding

metric matches that of the ML rule, then clearly we achieve the matched
capacity, as the corresponding decoding rules are equivalent. If not, then
the decoder is minimizing a quantity that is meant to be maximized
(or vice versa), and hence we attain a rate of zero.4

Evaluating the GMI. The GMI is based on i.i.d. random coding, which
can produce general codebooks for which two decoding rules q, q̃ are
only equivalent if

log q̃(x, y) = b(y) + s log q(x, y) (2.26)

for some s > 0 and b(y) (see Proposition 2.1). That is, we no longer
have the freedom to choose a(x) as in (2.21). Re-using the notation
`q ≡ `q̃ to mean equivalence according to (2.26), we have the following
whenever `00 6= `10:

`q ≡
[
`00 − `10 0

0 `11 − `01

]
≡
[
±1 0
0 λ

]
, (2.27)

where the ±1 entry equals the sign of `00− `10, and λ = ±( `11−`01
`00−`10

) may
be positive or negative. In this form, the decoder can be interpreted as
considering a weighted Hamming distance.

4This claim can be verified, for example, via Lemma 2.6 below.
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Figure 2.1: Binary example: GMI and LM rate as a function of λ = log q(2, 2) with
δ = 0.11, under equiprobable inputs and a log-decoding metric of the form (2.27).

If we reduce both logW (y|x) and log q(x, y) to the form in (2.27),
then even if the signs match, the achievable rate can degrade due to
the mismatch. We demonstrate this in Figure 2.1, where we plot the
GMI (as well as the LM rate) in the following setting:

• The channel is a BSC with crossover probability δ = 0.11, hence
having a matched capacity of roughly 0.5 bits/use.

• The (log-)decoding metric takes the form on the right-hand side
of (2.27) with first entry +1, and with λ = log q(1, 1) taking some
value in the range [−2, 2]. The choice λ = 1 recovers optimal
minimum Hamming distance decoding.

• The input distribution is QX = (1
2 ,

1
2), which achieves the matched

capacity under matched decoding.

In accordance with the above findings, the LM rate is zero for λ < −1
and equals the matched capacity for λ > −1. On the other hand, the
GMI only achieves the matched capacity for λ = 1.
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2.4.2 Symmetric Channels and Metrics

In the previous example, we saw that the gap between the GMI and LM
rate grows when more asymmetry is incorrectly introduced into the
decoding metric. In this example, we complement this finding via the
following claim: Under matching output-symmetry and an equiprobable
input distribution QX , the GMI and LM rate are identical.

The notion of matching output-symmetry needs some clarification;
we adopt the following definition of Gallager [38, Sec. 4.5] regarding W ,
and extend it to the metric q in the natural way.

Definition 2.3 (Output-Symmetric Channel and Metric). A DMCW (y|x)
is said to be output-symmetric if there exists a partition Y1, . . . ,Yk
of Y such that the following holds: Given the |X | × |Y| transition
matrix corresponding to W , the |X | × |Yj | sub-matrix correspond-
ing to each Yj (j = 1, . . . , k) is such that all rows are permutations
of each other, and all columns are permutations of each other. The
notion of output-symmetry for a decoding metric q(x, y) is defined
similarly.

A mismatched DMC (W, q) is said to exhibit matching output-
symmetry if bothW and q are output-symmetric with the same partition
Y1, . . . ,Yk.

We briefly give two concrete examples of output-symmetry: For the
binary symmetric channel one adopts the trivial partition Y1 = Y =
{0, 1}, whereas for the binary erasure channel, the two partitions are
Y1 = {0, 1} and Y2 = {e} (the erasure symbol).

We can now formally state the following result, which, to the best
of our knowledge, has not appeared previously.

Lemma 2.4 (GMI and LM Rate Under Output Symmetry). For any pair
(W, q) exhibiting matching output symmetry, if QX is the equiprobable
distribution on X , then

Igmi(QX) = Ilm(QX). (2.28)

The proof amounts to showing that the choice a(x) = 0 in (2.16)
satisfies necessary and sufficient optimality conditions, implying that
the rate coincides with (2.10). The details are given in Appendix A.2.
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In the following example, we show that even when the pair (W, q)
satisfies a stronger symmetry assumption (namely, Definition 2.3 re-
stricted to k = 1), the achievable rates Igmi(QX) and Ilm(QX) may
differ when QX is non-equiprobable, and the LM rate can be strictly
higher when QX is optimized.

2.4.3 Zero-Undetected Error Capacity

As we saw in Section 1.2.7, this choice q(x, y) = 1{W (y|x) > 0}
corresponds to the zero-undetected error capacity. Here we consider a
specific example from [2], in which X = Y = {0, 1, 2}, and the channel
and decoding metric are given by

W =

0.75 0.25 0
0 0.75 0.25

0.25 0 0.75

 , q =

1 1 0
0 1 1
1 0 1

 , (2.29)

where x indexes the rows and y indexes the columns.
In Figure 2.2, we plot the LM rate as a function of (QX(0), QX(1)),

with the remaining entry QX(2) determined so that the three sum to
one. The optimal choices of QX are given as follows:

• For the GMI, QX = (1
3 ,

1
3 ,

1
3) is optimal. Under this choice,

Igmi(QX) = Ilm(QX) = 0.585 bits/use; the two rates are identical
in accordance with Lemma 2.4.
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Figure 2.2: Zero-undetected error capacity example: GMI and LM rate for the
channel and decoding metric in (2.29), as a function of QX(0) and QX(1).
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• For the LM rate, the choice QX = (0.449, 0.551, 0) (or any cyclic
shift thereof) is optimal. Under this choice, Igmi(QX) = 0.502
bits/use and Ilm(QX) = 0.596 bits/use.

We see that the LM rate exceeds the GMI even after the optimization
of QX . In Section 6.3, we will present an achievable rate that further
improves on the LM rate in this example, implying that the LM rate is
strictly smaller than the mismatch capacity, i.e., Clm < Cm. Of course,
this implies the same for the GMI, which is no higher than the LM rate.

2.4.4 Compound Channels

In this example (taken from [26]), we consider the case that the channel
is only known to lie in some set W, but the exact channel within the
set is unknown. This is commonly referred to as the compound channel
model, and was discussed in Section 1.3. We initially focus on the case
that W is closed and convex, and then comment on the more general
case.

Using i.i.d. random coding with an input distribution QX , along
with a fixed decoding metric q, we can achieve any rate up to

RW(QX , q) , min
W∈W

Igmi(QX ,W, q), (2.30)

where Igmi(QX ,W, q) denotes the GMI with an explicit dependence
on the channel and metric. We will show that upon optimizing QX
and q, this recovers the best possible rate (i.e., the compound chan-
nel capacity), given as follows in the case that W is closed and
convex [26, 56]:

C∗ = max
QX

min
W∈W

I(QX ,W ) = min
W∈W

max
QX

I(QX ,W ), (2.31)

where I(QX ,W ) , IQX×W (X;Y ).
Let (Q∗X ,W ∗) denote the pair achieving the saddle-point in (2.31).

We choose q(x, y) = W ∗(y|x) and QX(x) = Q∗X(x), and proceed by
lower bounding the achievable rate in (2.30). For any W ∈ W, setting
s = 1 in (2.10) yields

Igmi(Q∗X ,W,W ∗) ≥
∑
x,y

Q∗X(x)W (y|x) log W
∗(y|x)
P ∗Y (y) , (2.32)
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where P ∗Y is the Y -marginal of the joint distribution Q∗X ×W ∗. It now
only remains to prove that∑

x,y

Q∗X(x)W (y|x) log W
∗(y|x)
P ∗Y (y) ≥ I(Q∗X ,W ∗), (2.33)

since the right-hand side equals C∗ in (2.31) by definition. To establish
(2.33), we first note the following for any λ ∈ [0, 1]:

I(Q∗X , λW + (1− λ)W ∗) ≥ I(Q∗X ,W ∗), (2.34)

which follows from the convexity of W and the fact that W ∗ minimizes
I(Q∗X ,W ′) among W ′ ∈ W. By taking λ → 0, it follows that the
derivative of the left-hand side of (2.34) with respect to λ must be
non-negative at λ = 0, and it is a simple differentiation exercise to show
that this fact is equivalent to (2.33). It follows that RW(Q∗X ,W ∗) ≥ C∗,
as desired.

If we remove the assumption thatW is convex, then the best possible
single-letter decoding metric q(x, y) may still yield a highly suboptimal
rate. For instance, from the example in Section 2.4.1, if X = Y =
{0, 1} and W contains the deterministic channels with Y = X and
Y = 1−X, then any maximum-metric decoder gives zero rate. However,
the compound channel capacity is 1 bit/use, and can be achieved by a
standard universal decoder [24, Ex. 6.20].

2.4.5 Parallel Channels

In this example (taken from [58]), we present another channel (in
addition to that of Section 2.4.3) for which the LM rate is known to be
strictly smaller than the mismatch capacity.

We let X = Y = {0, 1}2, and write the input and output as binary
pairs, X = (X1, X2) and Y = (Y1, Y2). The output Y1 is formed by
passing X1 through a binary symmetric channel (BSC), and similarly
for Y2 and X2, with the two BSCs being independent of each other; see
Figure 2.3. The corresponding crossover probabilities are denoted by
δ1, δ2 ∈ (0, 1

2), and the mismatched decoder incorrectly assumes that
both crossover probabilities are equal. Hence, the channel is given by
W ((y1, y2)|(x2, x2)) = W1(y1|x2)W2(y2|x2), and the decoding metric
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Figure 2.3: Parallel binary symmetric channels with crossover probabilities (δ1, δ2).

can be taken as

log q((x1, x2), (y1, y2)) = 1
2(1{x1 = y1}+ 1{x2 = y2}), (2.35)

meaning that both x1 6= y1 and x2 6= y2 are penalized equally.
We let QX be the equiprobable distribution on {0, 1}2, and evaluate

the LM rate using the primal expression. For any joint distribution P̃XY
satisfying the constraints in (2.15), we have

I
P̃

(X;Y ) = I
P̃

(X1, X2;Y1, Y2) (2.36)
= I

P̃
(X1;Y1, Y2) + I

P̃
(X2;Y1, Y2|X1) (2.37)

≥ I
P̃

(X1;Y1) + I
P̃

(X2;Y2), (2.38)

where (2.37) follows from the chain rule, and (2.38) follows by trivially
lower bounding the first term, and bounding the second term as follows:

I
P̃

(X2;Y1, Y2|X1) = H
P̃

(X2|X1)−H
P̃

(X2|Y1, Y2, X1) (2.39)
≥ H

P̃
(X2)−H

P̃
(X2|Y2) (2.40)

= I
P̃

(X2;Y2), (2.41)

where (2.40) uses the independence of (X1, X2) following from P̃X = QX
(with QX chosen to be equiprobable on {0, 1}2), and the fact that
conditioning does not increase entropy.

The constraints P̃X = QX and P̃Y = PY in (2.15) ensure that X1,
X2, Y1, and Y2, are each equiprobable on {0, 1} under P̃XY . This is
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only possible if the conditional marginals P̃Y1|X1 and P̃Y2|X2 are BSCs.
Letting H2(α) = α log 1

α + (1 − α) log 1
1−α denote the binary entropy

function, we deduce from (2.38) that the following holds for some
auxiliary crossover probabilities δ̃1, δ̃2 ∈ (0, 1):

I
P̃

(X;Y ) ≥ (1−H2(δ̃1)) + (1−H2(δ̃1)) (2.42)

≥ 2
(

1−H2
( δ̃1 + δ̃2

2
))

(2.43)

≥ 2
(

1−H2
(δ1 + δ2

2
))
, (2.44)

where (2.43) follows from the concavity of entropy, and (2.44) fol-
lows since the constraint E

P̃
[log q(X,Y )] ≥ EP [log q(X,Y )] reduces to

δ̃1+δ̃2
2 ≤ δ1+δ2

2 under the metric in (2.35).
We now observe that all the inequalities up to and including (2.44)

hold with equality when δ̃1 = δ̃2 = δ1+δ2
2 , meaning the corresponding

joint distribution P̃XY must achieve the minimum in (2.15). Hence, we
have shown that

Ilm(QX) = 2
(

1−H2
(δ1 + δ2

2
))
. (2.45)

For δ1 6= δ2, this is strictly smaller than the matched capacity C =
(1−H2(δ1)) + (1−H2(δ2)), which is achieved by equiprobable QX . See
Figure 2.4 for an illustration, where we fix δ1 = 0.11 and vary δ2.

We will revisit this example in Section 5.4.1, and see that in fact
Cm = C, and that the LM rate is strictly smaller than the mismatch
capacity.

2.5 Properties of the GMI and LM Rate

In this subsection, we overview some of the most important known
properties of the GMI and LM rate.

2.5.1 Basic Properties

We start by stating the important property of continuity of the GMI
and LM rate as a function of the input distribution and channel. This
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Figure 2.4: Parallel BSC example: Matched and mismatched achievable rates, with
δ1 = 0.11 and various δ2.

property will be used in the derivations of the primal expressions (2.9)
and (2.15) based on the method of types.

In the following, recall that Igmi(QX ,W ) and Ilm(QX ,W ) denote
the GMI and LM rate with an explicit dependence on the channel, for
a fixed metric q. The following was proved in [26].

Lemma 2.5 (Continuity). In the discrete memoryless setting with a given
decoding metric q, the achievable rates Igmi(QX ,W ) and Ilm(QX ,W )
are continuous in the pair (QX ,W ) within the space of pairs satisfying

(QX(x) > 0 ∩ q(x, y) = 0) =⇒ W (y|x) = 0. (2.46)

The proof is somewhat technical, and is deferred to Appendix A.1.
We note that the condition (2.46) is mild, since both achievable
rates are zero when it fails [26]. Indeed, if (2.46) fails then we have
EQX×W [log q(x, y)] = −∞, which implies that the choice P̃XY =
QX × PY in (2.15) is feasible, and gives I

P̃
(X;Y ) = 0. At a more

intuitive level, if q(x, y) = 0 and QX(x)W (y|x) > 0 then the met-
ric associated with the transmitted codeword will be zero with high
probability, precluding correct decoding.
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Next, we present necessary and sufficient conditions for the GMI,
LM rate, and mismatch capacity to be positive [26]. Notably, as long as
we optimize the input distribution, both i.i.d. and constant-composition
random coding achieve a positive rate whenever there exists any coding
scheme achieving a positive rate.

Lemma 2.6 (Conditions for Positivity). For any mismatched DMC (W, q)
and input distribution QX , we have the following:

(i) Igmi(QX) > 0 ⇐⇒ Ilm(QX) > 0, with both being positive if and
only if

EQX×W [log q(X,Y )] > EQX×PY [log q(X,Y )], (2.47)

where PY is the Y -marginal of PXY = QX ×W . Moreover, in
the case that this condition holds, the primal expressions (2.9)
and (2.15) remain unchanged when the inequality constraint is
replaced by an equality constraint.

(ii) The mismatch capacity Cm satisfies

Cm > 0 ⇐⇒ Clm > 0 ⇐⇒ Cgmi > 0, (2.48)

where Cgmi and Clm are defined in (2.11) and (2.17), respectively.

Proof. In the primal expressions of both the GMI and LM rate (see (2.9)
and (2.15)), the objective function is zero if and only if P̃XY = QX×PY
is feasible. For the GMI, this follows since the KL divergence is zero if
and only if the two distributions are equal, and for the LM rate, it follows
from the marginal constraints and the fact that mutual information is
zero if and only if X and Y are independent. The first claim follows since
the choice P̃XY = QX × PY is feasible in the minimization problems if
and only if (8.5) fails.

Next, recall that both (2.9) and (2.15) are convex minimization
problems with linear constraints. If the inequality constraint were to
be removed in either case, the product distribution would be feasible,
yielding an objective of zero. This means that whenever the rate is
positive, the inequality constraint is active (i.e., removing it changes
the optimal objective value), and it is then a standard result in convex
optimization theory that it must hold with equality [18, Sec. 5.5].
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The proof of the second part is rather technical, so it is given in
Appendix A.2.

Lemma 2.6 is concerned with the distinction between a zero and non-
zero rate, but does not give any indication of how close the achievable
rates might be to the mismatch capacity. The following lemma addresses
the other extreme, giving necessary and sufficient conditions for the
achievable rate to equal the mutual information I(QX ,W ) = I(X;Y )
under (X,Y ) ∼ QX×W , which is the rate that would be achieved under
optimal decoding. Of course, if QX is a (matched) capacity-achieving
input distribution, then achieving I(QX ,W ) amounts to achieving the
matched capacity, and hence also the mismatch capacity.

Lemma 2.7 (Conditions for Achieving the Matched Performance). For any
mismatched DMC (W, q) and input distribution QX ∈ P(X ), letting
PY denote the Y -marginal of PXY = QX ×W , we have:

(i) Igmi(QX ,W ) ≤ I(QX ,W ), with equality if and only if

inf
s≥0,b(·)

max
(x,y)∈X×Y:

QX(x)>0,PY (y)>0

|W (y|x)− q(x, y)seb(y)| = 0. (2.49)

(ii) Ilm(QX ,W ) ≤ I(QX ,W ), with equality if and only if

inf
s≥0,a(·),b(·)

max
(x,y)∈X×Y:

QX(x)>0,PY (y)>0

|W (y|x)− q(x, y)sea(x)eb(y)| = 0.

(2.50)

This result will be proved via an alternative formulation of the dual
expressions after Lemma 2.8 below. We note that conditions (2.49) and
(2.50) are slightly more general than the conditions

logW (y|x) = b(y) + s log q(x, y), (2.51)
logW (y|x) = a(x) + b(y) + s log q(x, y), (2.52)

which are easily seen to be sufficient for Igmi(QX) = I(QX ,W ) and
Ilm(QX) = I(QX ,W ) respectively: By Propositions 2.1–2.2, these con-
ditions imply that mismatched decoding and maximum-likelihood de-
coding are equivalent when s > 0 (whereas if s = 0, it is straightforward
to show that either of (2.51)–(2.52) imply I(QX ,W ) = 0).
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To give an example of a case where the more general condi-
tions (2.49)–(2.50) are required, consider the binary erasure channel
(BEC): X = {0, 1}, Y = {0, e, 1}, and the channel and metric are
described by the matrices

W =
[
1− ε ε 0

0 ε 1− ε

]
, q =

[
1 1 0.5

0.5 1 1

]
(2.53)

for some ε ∈ (0, 1). Due to the entries withW (y|x) = 0, there do not exist
fixed choices of s, a(·), and b(·) such that W (y|x) = q(x, y)sea(x)eb(y) for
all (x, y). However, if we raise each entry of q to the power of s > 0, then
in the limit as s → ∞, we recover the standard erasures-only metric
q̃(x, y) = 1{W (y|x) > 0}. Multiplying this metric by ẽb(y) recovers
the maximum-likelihood metric when we let ẽb(0) = ẽb(1) = 1 − ε and
ẽb(e) = ε. Hence, the condition (2.49) is satisfied (and consequently, so
is the more general condition (2.50)).

It is also insightful to provide a direct proof that (2.51)–(2.52) are
sufficient; we do this for the GMI, but a similar argument applies to
the LM rate. First note that the upper bound Igmi(QX) ≤ I(QX ,W )
follows immediately from the fact that the choice P̃XY = PXY (with
PXY = QX ×W ) is feasible in (2.9). Moreover, for any feasible P̃XY , if
(2.51) holds then we have

D(P̃XY ‖QX × PY )
= I

P̃
(X;Y ) +D(P̃X‖QX) (2.54)

≥ I
P̃

(X;Y ) (2.55)
= H

P̃
(Y )−H

P̃
(Y |X) (2.56)

= HP (Y ) + E
P̃

[
log

(
P̃Y |X(Y |X)
W (Y |X) W (Y |X)

)]
(2.57)

= HP (Y ) + E
P̃

[logW (Y |X)] +D(P̃Y |X‖W |QX) (2.58)
≥ HP (Y ) + E

P̃
[logW (Y |X)] (2.59)

≥ HP (Y ) + EP [logW (Y |X)] (2.60)
= IP (X;Y ), (2.61)

where (2.54) and (2.57) use the constraint P̃Y = PY , (2.55) and (2.59)
follow from the non-negativity of KL divergence, and (2.60) follows since
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the metric constraint E
P̃

[log q(X,Y )] ≥ EP [log q(X,Y )] is equivalent
to E

P̃
[logW (Y |X)] ≥ EP [logW (Y |X)] when (2.51) holds with s > 0

(recall that P̃Y = PY ). We conclude that the choice P̃XY = PXY must
achieve the minimum in (2.9).

Next, we provide alternative forms of the dual expressions, which
will also allow us to prove Lemma 2.7.

Lemma 2.8 (Alternative Formulations of the Dual Expressions). For any
mismatched DMC (W, q), we have the following:

(i) The GMI and LM rate can be written as

Igmi(QX ,W ) = I(QX ,W )− inf
s≥0

D(W ′‖V ′s |PY ), (2.62)

Ilm(QX ,W ) = I(QX ,W )− inf
s≥0,a(·)

D(W ′‖V ′s,a|PY ), (2.63)

where W ′(x|y) = PX|Y (x|y) = W (y|x)QX(x)
PY (y) and PY (y) is the

marginal of PXY = QX ×W , and where

V ′s (x|y) = QX(x)q(x, y)s∑
xQX(x)q(x, y)s , (2.64)

V ′s,a(x|y) = QX(x)q(x, y)sea(x)∑
xQX(x)q(x, y)sea(x) . (2.65)

(ii) The LM rate can be written as

Ilm(QX ,W ) = sup
s≥0,b(·)

∑
x,y

QX(x)W (y|x) log q(x, y)seb(y)∑
y PY (y)q(x, y)seb(y)

(2.66)
= I(QX ,W )− inf

s≥0,b(·)
D(W‖Vs,b|QX), (2.67)

where
Vs,b(y|x) = PY (y)q(x, y)seb(y)∑

y PY (y)q(x, y)seb(y) . (2.68)

Proof. To prove the first part, we write the LM rate (2.16) as

Ilm(QX) = sup
s≥0,a(·)

∑
x,y

PY (y)W ′(x|y) log
(
V ′s,a(x|y)
QX(x) ·

W ′(x|y)
W ′(x|y)

)
,

(2.69)
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where we have used the fact that PY ×W ′ = QX×W = PXY , along with

the definition of V ′s,a. Splitting the logarithm as log
(
V ′s,a(x|y)
QX(x) ·

W ′(x|y)
W ′(x|y)

)
=

log W ′(x|y)
QX(x) − log W ′(x|y)

V ′s,a(x|y) and re-arranging yields (2.63), and the GMI is
handled in an identical manner.

To prove the second part, we define φa = EQ[a(X)] and φb =
EP [b(Y )], and proceed as follows:

Ilm(QX) = sup
s≥0,a(·)

∑
x,y

QX(x)W (y|x) log q(x, y)s

−
∑
y

PY (y) log
∑
x

QX(x)q(x, y)sea(x)−φa (2.70)

= sup
s≥0,a(·),b(·)

∑
x,y

QX(x)W (y|x) log q(x, y)s

−
∑
y

PY (y) log
∑
x

QX(x)q(x, y)sea(x)−φaeb(y)−φb

(2.71)

= sup
s≥0,a(·),b(·)

∑
x,y

QX(x)W (y|x) log q(x, y)s

− log
∑
x,y

QX(x)PY (y)q(x, y)sea(x)−φaeb(y)−φb

(2.72)

where (2.70) follows by re-arranging (2.16), (2.71) follows since the factor
eb(y)−φb cancels to zero upon expanding the logarithm, and (2.72) follows
by moving the average over Y inside the logarithm using Jensen’s inequal-
ity, and noting that b(y) can always be chosen to make Jensen’s inequal-
ity hold with equality (i.e., such that

∑
xQX(x)q(x, y)sea(x)−φaeb(y)−φb

does not vary with y).
Renaming (x, y) as (x, y) in (2.72) and reversing the steps of (2.70)–

(2.72) with the roles of x and y interchanged, we obtain (2.66). Finally,
(2.67) follows from (2.66) by the same argument as the first part.

The equivalence in (2.66) can be understood by noting that the
primal expression (2.15) for the LM rate is symmetric with respect
to X and Y , so the roles of the two can also be swapped in the dual
expression. In contrast, the GMI does not exhibit such symmetry.
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As discussed in Section 2.3.3, the formulation in (2.67) has the
natural interpretation that the loss due to the mismatch is the smallest
conditional KL divergence D(W‖V |QX) among the set of conditional
distributions V (y|x) ∈ P(Y|X ) that are equivalent to q(x, y) in the
sense of Proposition 2.2.5 For the GMI, the interpretation is slightly less
natural, with the loss taking the form D(W ′‖V ′s |PY ) for the “reverse
channel” W ′(x|y).

We conclude by using Lemma 2.8 to prove Lemma 2.7. We focus
on the GMI, but analogous arguments apply for the LM rate. The
idea is to note that D(W ′‖V ′s |PY ) ≥ 0, with equality if and only if
V ′s (x|y) = W ′(x|y) for all y such that PY (y) > 0 [22, Thm. 2.6.3]. Sup-
pose first that the supremum in (2.49) is attained by a finite value of s.
Writing V ′s (x|y) = 1

Ω(y)QX(x)q(x, y)s with Ω(y) =
∑
xQX(x)q(x, y)s,

the necessary and sufficient condition V ′s (x|y) = W ′(x|y) becomes

W ′(x|y) = 1
Ω(y)QX(x)q(x, y)s, (2.73)

and substituting W ′(x|y) = QX(x)W (y|x)
PY (y) yields the equivalent condition

W (y|x) = 1
Ω(y)PY (y)q(x, y)s (2.74)

for all (x, y) with QX(x) > 0 and PY (y) > 0. Defining b(y) to satisfy
eb(y) = PY (y)

Ω(y) , we find that this condition coincides with (2.49).
In the case that (2.49) is not attained by a finite value of s, the

argument is similar but more tedious, so we omit the details. While the
KL divergence is discontinuous in cases where the second argument has
a zero transition but the first argument does not, such cases are not
relevant here, because we are only considering conditions for vanishing
KL divergence.

5Assuming without loss of generality that PY (y) > 0 for all y, we can rename
PY (y)eb(y) as ẽb(y) for some b̃(y). Moreover, to ensure that V (y|x) is a valid conditional
distribution, one must set a(x) = − log

∑
y
PY (y)q(x, y)eb(y) when considering (2.5)

with q̃(x, y) = V (y|x).



196 Discrete Memoryless Channels

2.5.2 Ensemble Tightness

The vast majority of the mismatched decoding literature has focused on
achievable rates, whereas upper bounds on Cm have mostly remained
elusive (see Section 8 for an overview). We have also seen that there
are mismatched channels for which the GMI and LM rate are strictly
smaller than Cm, i.e., the achievable rates are not tight.

Based on these observations, it is natural to ask the following: Is
the weakness in the GMI and LM rate due to an inherent weakness
in i.i.d. and constant-composition random coding, or is it due to loose
bounds in the mathematical analysis? This question is answered by
the following ensemble tightness result [65], showing that i.i.d. random
coding cannot achieve any rate higher than the GMI, and constant-
composition random coding cannot achieve any rate better than the
LM rate. Thus, we cannot hope to obtain improved rates by sharpen-
ing the mathematical analysis; we must devise alternative codebook
constructions.

In the following, pe = pe(n,M) denotes the random-coding error
probability with block length n and codebook size M .

Lemma 2.9 (Ensemble Tightness). For any mismatched DMC and a
given input distribution QX ∈ P(X ), we have the following:

• Under i.i.d. random coding, pe(n, benRc)→ 1 as n→∞ for any
R > Igmi(QX);

• Under constant-composition random coding, pe(n, benRc)→ 1 as
n→∞ for any R > Ilm(QX).

The proof is given in Section 2.6.

2.5.3 Equivalence of Primal and Dual Expressions

Thus far, we have taken for granted that the primal and dual expressions
of the GMI (2.9)–(2.10) are equal, and similarly for the LM rate (2.15)–
(2.16). The following lemma, adapted from [65], provides the justification
for doing so.
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Lemma 2.10 (Primal-Dual Equivalence). For any mismatched DMC
(W, q) and a given input distribution QX ∈ P(X ), the right-hand sides
of (2.9) and (2.10) are equal, and similarly for (2.15) and (2.16).

Proof. We use a direct analysis to show that the primal expression for
the LM rate is lower bounded by the dual expression. The matching
upper bound is deduced using Lagrange duality techniques [18]; the
details are omitted here, and can be found in [77, Appendix E]. The
GMI is handled in a similar (and slightly simpler) manner, so its details
are also omitted.

For any P̃XY satisfying the constraints in (2.15), the mutual infor-
mation can be lower bounded as follows for any s ≥ 0 and a(·):

I
P̃

(X;Y )

=
∑
x,y

P̃XY (x, y) log P̃XY (x, y)
QX(x)PY (y) (2.75)

≥
∑
x,y

P̃XY (x, y) log P̃XY (x, y)
QX(x)PY (y) +

∑
x

a(x)(QX(x)− P̃X(x))

+ s
∑
x,y

log q(x, y)(PXY (x, y)− P̃XY (x, y)) (2.76)

=
∑
x,y

P̃XY (x, y) log P̃XY (x, y)
QX(x)PY (y)q(x, y)sea(x) +

∑
x

QX(x)a(x)

+ s
∑
x,y

PXY (x, y) log q(x, y) (2.77)

≥
∑
y

P̃Y (y) log P̃Y (y)∑
xQX(x)PY (y)q(x, y)sea(x) +

∑
x

QX(x)a(x)

+ s
∑
x,y

PXY (x, y) log q(x, y) (2.78)

=
∑
x,y

PXY (x, y) log q(x, y)sea(x)∑
xQX(x)q(x, y)sea(x) , (2.79)

where (2.75) follows from the marginal constraints P̃X = QX and
P̃Y = PY , (2.76) follows from the X-marginal constraint and the metric
constraint E

P̃
[log q(X,Y )] ≥ EP [log q(X,Y )] with PXY = QX × W ,

(2.77) follows from simple re-arranging, (2.78) follows from Jensen’s



198 Discrete Memoryless Channels

inequality in the form of the log-sum inequality
∑n
i=1 αi log αi

βi
≥

(
∑n
i=1 αi) log

∑n

i=1 αi∑n

i=1 βi
[22, Sec. 2.7], and (2.79) follows from the marginal

constraints along with simple re-arranging. Taking the supremum over
s ≥ 0 and a(·) establishes the desired claim.

2.5.4 Additional Properties: Differences to Mutual Information

Along with the above properties that the GMI and LM rate satisfy,
it is useful to highlight certain properties that, despite holding in the
matched setting (i.e., for the mutual information), may fail to hold in
the mismatched setting. The following lemmas, adapted from [26, 39,
65], provide three such properties.

Lemma 2.11 (Non-Tightness). There exist mismatched DMCs for which
Clm < Cm (and consequently Cgmi < Cm).

The claim regarding the GMI follows directly from that of the LM
rate, since Cgmi ≤ Clm (see (2.18)). There are several known examples
showing that the LM rate is not tight:

• In Section 5.4, we will return to the parallel BSC example of
Section 2.4.5, and see that the mismatch capacity equals the
matched capacity, which is strictly higher than the LM rate.

• In Section 6.3.3, we will return the zero-undetected error example
of Section 2.4.3, and see that the optimized LM rate can be
improved upon.

• In Section 6.3.4, we provide an example of a binary-input DMC
for which Clm is strictly smaller than the mismatch capacity,
thus providing a counter-example to a reported converse for the
binary-input case [14].

• The zero-error capacity (cf. Section 1.2.8) is a special case of
the mismatch capacity, and it is known that i.i.d. and constant-
composition random coding can be strictly suboptimal in this
context [26].
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The first and last of these examples lead to analytical proofs of
Lemma 2.11, whereas the other two are numerical.

Lemma 2.12 (Non-Concavity in QX). There exist mismatched DMCs
(W, q) such that the functions Igmi(QX) and Ilm(QX) are non-concave
in the input distribution QX .

We omit a formal proof, and instead discuss how this is established:

• For the LM rate, the non-concavity can be observed in the example
in Figure 2.2. In the same example, it was shown analytically in
[101, Ch. 4] that all three permutations of QX = (1

2 ,
1
2 , 0) yield

the same LM rate, and that this rate is strictly higher than that
of QX = (1

3 ,
1
3 ,

1
3). Due to Jensen’s inequality, this would not be

possible if the LM rate were concave in QX .

• An alternative proof for the LM rate can be found in [39] based
on the mismatch capacity per unit cost.

• The non-concavity of the GMI can be inferred from a result on
the zero-undetected error capacity given in [21]; we provide the
details in Appendix A.2.

Finally, again recalling the notation Igmi(QX ,W ) and Ilm(QX ,W )
with an explicit dependence on the channel, we have the following.

Lemma 2.13 (Lack of Data Processing Inequality). There exist sce-
narios in which Igmi(QX ,W ) < Igmi(QX , T ◦W ) and Ilm(QX ,W ) <
Ilm(QX , T ◦W ) for some transformation T : Y → Y, where ◦ denotes
the composition operation.

This result is in contrast to the mutual information I(QX ,W ) with
respect to (X,Y ) ∼ QX ×W , for which we know that I(QX ,W ) ≥
I(QX , T ◦W ) for any transformation T by the data processing inequality
[22, Sec. 2.8].

To establish Lemma 2.13, consider the following example: Let X =
Y = {0, 1}, let W be the noiseless binary channel X = Y , and let q
be the maximum-likelihood metric of the binary channel with Y =
1 − X (i.e., a deterministic flip of the input). From the example in
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Section 2.4.1, Igmi(QX ,W ) = Ilm(QX ,W ) = 0. However, if we choose T
to represent a deterministic bit flip, we obtain from the same example
that Igmi(QX , T ◦W ) = Ilm(QX , T ◦W ) = 1 bit/use.

In fact, since we know from Lemma 2.6 that Cm > 0 ⇐⇒ Clm >

0 ⇐⇒ Cgmi > 0, this example demonstrates that the mismatch
capacity Cm also does not satisfy the data processing inequality.

2.6 Proofs of Achievable Rates

In this subsection, we prove the achievability of the GMI and LM rate,
as stated in Theorems 2.2 and 2.3, as well as their ensemble tightness,
as stated in Lemma 2.9. We will provide primal and dual derivations
for both the GMI and LM rate. While there is significant overlap in
the proofs of the two rates, we present them separately so that their
differences can be properly understood.

Throughout the subsection, we let pe = pe(n,M) be the error
probability averaged over the random codebook. By the symmetry
of the random construction, the random-coding error probability is
identical conditioned on any given value of m, so we may assume
without loss of generality that m = 1. Recalling that ties are broken
as errors, the starting point of all four achievability proofs will be the
following:

pe = E
[
P
[ M⋃
j=2

{
qn(X(j),Y ) ≥ qn(X(1),Y )

} ∣∣∣∣X(1),Y

]]
(2.80)

≤ E
[

min{1, (M − 1)P[qn(X,Y ) ≥ qn(X,Y )|X,Y ]}
]
, (2.81)

with (X,Y ,X) ∼ PX(x)Wn(y|x)PX(x). In (2.80), we have written
the probability as an expectation given (X(1),Y ) for convenience, and in
(2.81) we have applied the truncated union bound, i.e., the better out of
the union bound and the trivial upper bound of one. Equation (2.81) is a
simple extension of the random-coding union bound [69] to mismatched
decoding.

In our analysis, we will handle the outer expectation over (X,Y )
using the law of large numbers, which suffices for establishing the
achievable rates. However, both the primal and dual analyses can be



2.6. Proofs of Achievable Rates 201

strengthened to obtain error exponents establishing the exponential
rate of decay of pe; see Section 7.2 for details.

2.6.1 Preliminaries on the Method of Types

Here we present some useful properties of types that will be used
in deriving the primal expressions. Since these are standard in the
literature, we omit the proofs; further details can be found in [24, Ch. 2]
and [37].

Recall from (2.12)–(2.13) that QX,n is a type (i.e., an empirical
distribution) approximating QX , and that T n(QX,n) is the set of all
sequences having type QX,n. We will also need the notion of a joint type
class, which is simply a type class in the case of a product alphabet, say
X × Y:

T n(P̃XY ) = {(x,y) ∈ X n × Yn: P̂xy = P̃XY }, (2.82)

where P̂xy(x, y) = 1
n

∑n
i=1 1{(xi, yi) = (x, y)}.

The properties that we will use are as follows:

• There are at most (n+1)|X | types on X , and at most (n+1)|X |·|Y|
joint types on X × Y.

• The constant-composition codeword distribution can be upper
bounded in terms of the corresponding i.i.d. distribution:

PX(x) ≤ (n+ 1)|X |QnX,n(x), (2.83)

under the choice of PX in Definition 2.2.

• For a fixed sequence y ∈ T n(PY ), an independent codeword
X ∼ QnX , and a joint type P̃XY with P̃Y = PY , it holds for any
δ > 0 and sufficiently large n that

e−n(D(P̃XY ‖QX×PY )+δ) ≤ P[(X,y) ∈ T n(P̃XY )]

≤ e−nD(P̃XY ‖QX×PY ). (2.84)

• For a fixed sequence y ∈ T n(PY ), a constant-composition code-
word X ∼ PX , and a joint type P̃XY with P̃X = QX,n and
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P̃Y = PY , it holds for any δ > 0 and sufficiently large n that

e
−n(I

P̃
(X;Y )+δ) ≤ P[(X,y) ∈ T n(P̃XY )] ≤ e−n(I

P̃
(X;Y )−δ)

.

(2.85)

• For X drawn from either the i.i.d. or constant-composition code-
word distribution with input distribution QX , and Y conditionally
drawn from Wn( · |x), the joint type PXY of (X,Y ) satisfies

‖PXY −QX ×W‖∞ ≤ δ (2.86)

with probability approaching one, for arbitrarily small δ > 0.

The last of these follows directly from the law of large numbers; the
rest are non-trivial but still straightforward to derive [24, Ch. 2], [37].

2.6.2 Primal Derivation of the GMI

The key idea of the primal analysis is to observe that if (x,y) ∈ T n(PXY )
and (x,y) ∈ T n(P̃XY ), then the condition qn(x,y) ≥ qn(x,y) in
(2.81) is equivalent to E

P̃
[log q(X,Y )] ≥ EP [log q(X,Y )]. This follows

immediately from the definition of a joint type following (2.82). Hence,
for fixed (x,y) ∈ T n(PXY ), we have

P[qn(X,y) ≥ qn(x,y)]

=
∑

P̃XY ∈Pn(X×Y):
E
P̃

[log q(X,Y )]≥EP [log q(X,Y )]

P[(X,y) ∈ T n(P̃XY )] (2.87)

≤
∑

P̃XY ∈Pn(X×Y): P̃Y =PY ,
E
P̃

[log q(X,Y )]≥EP [log q(X,Y )]

e−nD(P̃XY ‖QX×PY ) (2.88)

≤ (n+ 1)|X |·|Y| max
P̃XY ∈Pn(X×Y): P̃Y =PY ,

E
P̃

[log q(X,Y )]≥EP [log q(X,Y )]

e−nD(P̃XY ‖QX×PY )

(2.89)
≤ (n+ 1)|X |·|Y|e−n(Igmi(PXY )+D(PX‖QX)), (2.90)

where (2.88) follows from (2.84) and the fact that P̃Y = PY by con-
struction, (2.89) follows since there are at most (n+ 1)|X |·|Y| joint types,
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and (2.90) follows by upper bounding the maximum over joint types
Pn(X × Y) by that over all joint distributions P(X × Y), and defining
Igmi(PXY ) to be the GMI in (2.10) with input distribution PX and
channel PY |X .

Next, recall from (2.86) that ‖PXY −QX×W‖∞ ≤ δ with probability
approaching one, and note that when this holds for sufficiently small δ,
(2.90) can be weakened to

P[qn(X,y) ≥ qn(x,y)] ≤ e−n(Igmi(QX×W )−δ′) (2.91)

for arbitrarily small δ′ and sufficiently large n, by the continuity of the
GMI (cf., Lemma 2.5) and the fact that the KL divergence in (2.90)
approaches zero as δ → 0. By upper bounding min{1, ·} in (2.81) by
one whenever ‖PXY − QX ×W‖∞ > δ, and by (2.91) otherwise, we
deduce that the error probability vanishes for any rate R = 1

n logM
arbitrarily close to the GMI, as desired.

2.6.3 Primal Derivation of the LM Rate

The core part of the argument is very similar to that of the GMI, with
the main difference being that we can introduce the constraint P̃X = PX
by the fact that all codewords have the same composition. Specifically,
for X ∼ PX following the constant-composition codeword distribution
in Definition 2.2, and for fixed (x,y) ∈ T n(PXY ), we have

P[qn(X,y) ≥ qn(x,y)]

=
∑

P̃XY ∈Pn(X×Y):
E
P̃

[log q(X,Y )]≥EP [log q(X,Y )]

P[(X,y) ∈ T n(P̃XY )] (2.92)

≤
∑

P̃XY ∈Pn(X×Y):P̃X=PX ,P̃Y =PY ,
E
P̃

[log q(X,Y )]≥EP [log q(X,Y )]

e
−nI

P̃
(X;Y ) (2.93)

≤ (n+ 1)|X |·|Y| max
P̃XY ∈Pn(X×Y): P̃X=PX ,P̃Y =PY ,

E
P̃

[log q(X,Y )]≥EP [log q(X,Y )]

e
−nI

P̃
(X;Y ) (2.94)

≤ (n+ 1)|X |·|Y|e−nIlm(PXY ), (2.95)
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where (2.93) follows from (2.85) and the fact that P̃X = PX and P̃Y =
PY by construction, (2.94) follows since there are at most (n+ 1)|X |·|Y|
joint types, and (2.90) follows by upper bounding the maximum over
joint types Pn(X ×Y) by that over all joint distributions P(X ×Y), and
defining Ilm(PXY ) to be the LM rate in (2.16) with input distribution
PX and channel PY |X .

The desired result now follows by substituting (2.95) into (2.81) and
using the continuity of the LM rate (cf., Lemma 2.5).

2.6.4 Dual Derivation of the GMI

The dual analysis bears some resemblance to that of Gallager [38, Ch. 5]
for maximum-likelihood decoding. Raising both of the qn terms to the
power of s > 0 in (2.81) clearly leaves the probability unchanged, and
upon applying Markov’s inequality, we obtain6

pe ≤ E
[

min
{

1,ME
[(
qn(X,Y )
qn(X,Y )

)s ∣∣∣∣X,Y

]}]
(2.96)

≤ P
[

logM + log E
[(
qn(X,Y )
qn(X,Y )

)s ∣∣∣∣X,Y

]
≥ log δ

]
+ δ, (2.97)

where in (2.96) we also used M −1 ≤M , and (2.97) holds for any δ > 0
by upper bounding min{1, z} by one when z > δ, and by δ otherwise.

To simplify the notation, we write (2.97) as

pe ≤ P[ins (X,Y ) ≤ logM − log δ] + δ, (2.98)

where
ins (x,y) = − log E

[(
qn(X,Y )
qn(X,Y )

)s ∣∣∣∣X,Y

]
. (2.99)

We proceed by showing that ins (X,Y ) can be expressed as a sum of
i.i.d. random variables with mean Igmi(QX). We have

ins (x,y) = − log
∑

x

QnX(x)
(
qn(x,y)
qn(x,y)

)s
(2.100)

6We can also consider s = 0, as it makes the right-hand side of (2.96) equal one.
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= − log
∑

x

n∏
i=1

(
QX(xi)

(
q(xi, yi)
q(xi, yi)

)s)
(2.101)

= −
n∑
i=1

log
∑
x

QX(x)
(
q(x, yi)
q(xi, yi)

)s
, (2.102)

where (2.102) follows by writing
∑

x =
∑
x1 . . .

∑
xn and then distribut-

ing the sums. The pair (X,Y ) is i.i.d. on QX ×W , and averaging any
summand of (2.102) over (Xi, Yi) ∼ QX ×W yields the dual form of
the GMI (cf., (2.10)) upon optimizing s, as desired.

By the law of large numbers, we conclude from (2.98) that if the
rate R = 1

n logM is smaller than Igmi(QX)− δ, then the upper bound
(2.97) can be made arbitrarily close to zero for suitably-chosen δ.

2.6.5 Dual Derivation of the LM Rate

In the dual derivation of the GMI, the first two steps leading to (2.97)
were not specific to any particular codeword distribution, so they remain
valid here with the distribution (X,Y ,X) ∼ PX(x)Wn(y|x)PX(x)
adjusted accordingly. In addition, when PX is the constant-composition
codeword distribution, we can further weaken (2.97) as follows:

pe ≤ P
[

logM + log E
[(
qn(X,Y )
qn(X,Y )

)s ean(x)

ean(x)

∣∣∣∣X,Y

]
≥ log δ

]
+ δ

(2.103)

≤ P
[

logM + |X | log(n+ 1)

+ log E
[(
qn(X ′,Y )
qn(X,Y )

)s ean(x)

ean(x)

∣∣∣∣X,Y

]
≥ log δ

]
+ δ,

(2.104)

where (2.103) holds with an(x) =
∑n
i=1 a(xi) for any function a(·) since

X and X have the same composition, and (2.104) holds with X ′ ∼ QnX,n
by upper bounding PX according to (2.83).

Now, similarly to (2.98), we can write (2.104) as

pe ≤ P[ins (X,Y ) ≤ logM + |X | logn− log δ] + δ, (2.105)
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where

ins,a(x,y) = − log E
[(
qn(X ′,y)
qn(x,y)

)s ean(X′)

ean(x)

]
. (2.106)

Since the expectation is taken with respect to an i.i.d. distribution
for X ′, we can expand it in the same way as (2.100)–(2.102) to obtain

ins,a(x,y) =
n∑
i=1
− log

∑
x

QX,n(x)
(
q(x, yi)
q(xi, yi)

)s ea(x)

ea(xi)
. (2.107)

Observe that for any fixed x ∈ T n(QX,n), if we replace y by Y ∼
Wn( · |x) in (2.107), then we get a sum of independent and non-
identically distributed random variables, nQX,n(x) of which are dis-
tributed as − log

∑
xQX,n( q(x,Y )

q(x,Y )) ea(x)

ea(x) with Y ∼ W (·|x). The law of
large numbers again applies in this case, and the corresponding normal-
ized mean 1

nE[ins,a(X,Y )] is given by

µn(s, a) , −
∑
x,y

QX,n(x)W (y|x) log
∑
x

QX,n(x)
(
q(x, y)
q(x, y)

)s ea(x)

ea(x) .

(2.108)
Using (2.105) and noting that |X | logn−log δ

n → 0, we find that when
R ≤ µn(s, a) − δ, the random-coding error probability vanishes. The
achievability of Ilm(QX) now follows by recalling that QX,n(x)→ QX(x)
by definition, and taking the supremum over s ≥ 0 and a(·).

2.6.6 Ensemble Tightness

The ensemble tightness of the GMI and LM rate (cf., Lemma 2.9) are
proved by following the primal achievability proofs, while replacing each
upper bounding step by an analogous lower bound. We give the details
for the LM rate (which turns out to be more difficult), and then only
briefly comment on the GMI.

Since we have assumed that ties are broken as errors, the exact
random-coding error probability in (2.80) can be written as

pe = 1− E
[(

1− P[qn(X,Y ) ≥ qn(X,Y ) |X,Y ]
)M−1]

(2.109)
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with (X,Y ,X) ∼ PX(x)Wn(y|x)PX(x), due to the independence of
the codewords.

Since (1 − 1
αn

)βn → 0 whenever αn ≥ 1 and limn→∞
αn
βn

= 0, we
deduce from (2.109) that pe → 1 whenever the following holds for all
(x,y) within some “typical set” (i.e., a set with probability tending to
one):

P[qn(X,y) ≥ qn(x,y)] ≥ e−n(R−δ), (2.110)

where R = 1
n logM , and δ > 0 is arbitrarily small.

To establish (2.110), we analyze the left-hand side in terms
of joint types, similarly to the primal achievability proof. Letting
PXY ∈ Pn(X × Y) denote the joint type of (x,y), we have

P[qn(X,y) ≥ qn(x,y)] (2.111)

=
∑

P̃XY ∈Pn(X×Y):
E
P̃

[log q(X,Y )]≥EP [log q(X,Y )]

P[(X,y) ∈ T n(P̃XY )] (2.112)

≥
∑

P̃XY ∈Pn(X×Y):P̃X=PX ,P̃Y =PY ,
E
P̃

[log q(X,Y )]≥EP [log q(X,Y )]

e
−n(I

P̃
(X;Y )+δ) (2.113)

≥ max
P̃XY ∈Pn(X×Y):P̃X=PX ,P̃Y =PY ,

E
P̃

[log q(X,Y )]≥EP [log q(X,Y )]

e
−n(I

P̃
(X;Y )+δ)

, (2.114)

where (2.113) follows from (2.85), and (2.114) follows by lower bounding
the summation by the maximum.

We would now like to show that we can lower bound (2.114) in
terms of a similar maximization over all joint distributions, not only
joint types. Intuitively, the two should be essentially equivalent due to
the fact that all joint distributions are increasingly close to the nearest
joint type as n → ∞. However, due to the constraints in (2.114), the
proof is surprisingly tricky in general. We provide the formal statement
as follows, and defer the proof to Appendix A.1.
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Lemma 2.14 (Passing from Types to General Distributions). For any
decoding metric q(x, y) and joint type PXY ∈ Pn(X × Y), it holds that

min
P̃XY ∈Pn(X×Y):P̃X=PX ,P̃Y =PY ,

E
P̃

[log q(X,Y )]≥EP [log q(X,Y )]

I
P̃

(X;Y )

≤ min
P̃XY ∈P(X×Y):P̃X=PX ,P̃Y =PY ,
E
P̃

[log q(X,Y )]≥EP [log q(X,Y )]

I
P̃

(X;Y ) + δ (2.115)

for arbitrarily small δ > 0 and sufficiently large n.

By Lemma 2.14 and (2.114), we have

P[qn(X,y) ≥ qn(x,y)] ≥ e−n(Ilm(PXY )+2δ), (2.116)

where Ilm(PXY ) denotes the LM rate (2.15) with input distribution PX
and channel PY |X . As a result, recalling the condition (2.110) and the
fact that ‖PXY − QX ×W‖∞ ≤ δ with probability approaching one,
we conclude that pe → 1 whenever

R ≥ max
PXY : ‖PXY −QX×W‖∞≤δ

Ilm(PXY ) + 3δ. (2.117)

Since the LM rate is continuous in PXY by Lemma 2.5, and δ can be
arbitrarily small, this establishes the ensemble tightness of Ilm(QX).

For the GMI, similar steps are applied, including the lower bound
in (2.84). However, the analog of Lemma 2.14 turns out to be simpler
to prove; see Appendix A.1 for details.

2.7 Multi-Letter Improvements

Since the GMI and the LM rate do not achieve the mismatch capacity
in general (cf., Lemma 2.11), it is natural to ask how we might achieve
improved rates. The first proposed method for improvement, due to
Csiszár and Narayan [26], was to apply the GMI and LM rate to the
product channel, described by

W 2((y1, y2)|(x1, x2)) = W (y1|x1)W (y2|x2) (2.118)
q2((x1, x2), (y1, y2)) = q(x1, y1)q(x2, y2). (2.119)
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Indeed, it is easy to see that if the rate R(2) is achievable for (W 2, q2),
then the rate R = 1

2R
(2) is achievable for (W, q). This argument corre-

sponds to coding over pairs of symbols, and perhaps surprisingly, this
can lead to strict improvements in the mismatched setting.

More generally, we can code over k-tuples of symbols for any fixed
integer k, and divide the resulting achievable rate for (W k, qk) by k to
get the achievable rate for (W, q). By doing so, we obtain the following:

C
(k)
gmi = 1

k
max
Q
Xk

Igmi(QXk ,W k, qk) (2.120)

C
(k)
lm = 1

k
max
Q
Xk

Ilm(QXk ,W k, qk), (2.121)

where on the right-hand sides we use the GMI and LM rate with an
explicit dependence on the channel and metric. Formally, we have the
following.

Lemma 2.15 (Multi-Letter Extensions). For any mismatched DMC (W, q)
and any positive integer k, the rates C(k)

gmi and C
(k)
lm are achievable,

and consequently, so are the rates C(∞)
gmi , supk∈ZC

(k)
gmi and C

(∞)
lm ,

supk∈ZC
(k)
lm . Moreover, there exist mismatched DMCs for which C(2)

gmi >

Cgmi and C(2)
lm > Clm.

There are at least two cases where the strict improvement stated in
the second part has been established:

• We will see that the zero-undetected error capacity example of
Section 2.4.3 serves as a numerical example when we return to it
in Section 6.3.3.

• An analytical proof of the second part is given in [26] based on
the reduction to zero-error capacity (cf., Section 1.2.8).

Csiszár and Narayan [26] conjectured that C(k)
lm approaches the mismatch

capacity as k →∞ (i.e., C(∞)
lm = Cm), but this conjecture remains open

in general. We revisit this idea in detail in Section 8.



3
Continuous-Alphabet Memoryless Channels

3.1 Introduction

While discrete memoryless channels (DMCs) are convenient to analyze
and capture a variety of interesting communication settings, there is
substantial motivation to understand channels defined on continuous
alphabets, such as the real or complex numbers.

In the absence of mismatch, coding theorems for continuous-alphabet
channels are often obtained by performing an increasingly fine quan-
tization of the inputs and outputs. However, such an approach is less
suitable in the mismatched setting for at least two reasons. Firstly, quan-
tizing the output amounts to changing the decoder, and it is non-trivial
to study the resulting impact on the original mismatched decoder of
interest. Secondly, it is often of interest to characterize the performance
of random coding under a specific continuous input distribution (e.g.,
Gaussian).

An inspection of the dual i.i.d. analysis in Section 2.6, yielding the
GMI, reveals that it directly extends to continuous-alphabet memoryless
channels (see also Section 3.3 below). However, we saw that the constant-
composition ensemble, defined on finite alphabets, yields the improved
LM rate. One of the main goals of this section is to present a unified

210
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random coding technique, known as cost-constrained random coding,
that generalizes the LM rate to the continuous setting, as well as
achieving it for DMCs (see Section 3.4).

In Section 3.8, we will apply the GMI and LM rate to three
continuous-alphabet mismatched channels of interest: The additive
white Gaussian noise (AWGN) channel with a mismatched signal level,
non-Gaussian additive channels where an AWGN-type coding scheme
is employed anyway, and a channel fading scenario with imperfect
knowledge of the fading coefficients.

This section is predominantly based on the works of Ganti et al. [39]
and Scarlett et al. [79], and includes examples based on the works of
Merhav et al. [65], Lapidoth [53], and Lapidoth and Shamai [57].

3.2 Problem Setup

We continue to consider the setup described in Section 1.1, but we drop
the assumption that X and Y are finite. For concreteness, we focus
primarily on real alphabets, i.e., X = Y = R; however, the analysis will
extend directly to other alphabets such as C or Rd, as well as finite or
countably infinite discrete alphabets.

We let W (y|x) be a conditional probability density function, and
consider input distributions QX(x) in the form of probability densities.
As a result, the decoding metric q(x, y) is also defined on R× R. We
initially focus on general choices of (W, q), but we will later specialize
to the important class of additive noise channels, taking the form
Y = X + Z with Z representing random noise.

For most continuous-alphabet channels, the capacity is infinite unless
suitable restrictions are placed on the input. To address this, we assume
throughout the section that the transmitted codeword x = (x1, . . . , xn)
must satisfy an input constraint of the form

1
n

n∑
i=1

c(xi) ≤ Γ (3.1)

for some cost function c(x) and threshold Γ. Perhaps the most widely-
adopted special case is a power constraint, in which c(x) = x2, and Γ is
the permitted per-symbol power averaged over the block. We denote
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the minimal cost of a single symbols as

Γmin = inf
x∈X

c(x), (3.2)

and we assume throughout the section that Γ > Γmin.

Definition 3.1 (Input-Constrained Mismatch Capacity). The input-
constrained mismatch capacity Cm(Γ) of the pair (W, q) with input
constraint (c,Γ) and Γ > Γmin is defined to be the supremum of all
achievable rates under the decoding rule (1.1) for codebooks C satisfying
1
n

∑n
i=1 c(xi) ≤ Γ for all x ∈ C.

Before proceeding, we present the following useful lemma [39].

Lemma 3.1 (Concavity in Γ). Under the preceding setup, the function
Cm(Γ) is a concave non-decreasing function of Γ ∈ (Γmin,∞).

Our use of this lemma will be in noting that concavity implies
continuity, though the stronger concavity property is also of interest in its
own right. The non-decreasing property is immediate from Definition 3.1,
and concavity follows from a standard concatenation argument [39]:
Choose the first λn symbols from a codebook achieving Cm(Γ1), and
the last 1− λn symbols from a codebook achieving Cm(Γ2). The total
cost is λΓ1 + (1 − λ)Γ2, and the rate λCm(Γ1) + (1 − λ)Cm(Γ2) is
achieved. Recalling that we are considering decoding metrics of the
form qn(x,y) =

∏n
i=1 q(xi, yi), we can factorize qn as the product of the

metrics for the first λn and last (1− λ)n symbols. Hence, the product
nature of the codebook implies that the overall mismatched decoder
is equivalent to separately decoding the two blocks, and the overall
error probability is upper bounded by the sum of the two blocks’ error
probabilities.

3.3 i.i.d. Random Coding and the GMI

Similarly to the discrete setting, we fix a density function QX and
consider i.i.d. random coding of the form

PX(x) =
n∏
i=1

QX(xi). (3.3)
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In this case, the dual analysis of Section 2.6.4 applies without change
upon replacing the summations by integrals, and we recover a continuous-
alphabet counterpart of the GMI [48], stated in the following.

Theorem 3.2 (GMI for Continuous-Alphabet Channels). For any mis-
matched memoryless channel (W, q), under i.i.d. random coding with
input distribution QX , the random coding error probability vanishes
for any fixed rate R < Igmi(QX), where

Igmi(QX) = sup
s≥0

E
[

log q(X,Y )s

E[q(X,Y )s|Y ]

]
, (3.4)

with (X,Y,X) ∼ QX(x)W (y|x)QX(x).

This result can also be inferred from a more general analysis given
in Section 3.6 below.

Theorem 3.2 does not immediately provide a lower bound on the
input-constrained mismatch capacity in the sense of Definition 3.1, as
some codewords may violate the input constraint. However, we can
form a feasible codebook using a standard expurgation argument similar
to that of Remark 1.2: As long as EQ[c(X)] < Γ, any given codeword
will indeed be feasible with probability approaching one (e.g., by the
law of large numbers). Hence, for arbitrarily small ε > 0, the average
number of infeasible codewords is at most εM for sufficiently large n,
and Markov’s inequality implies that the probability of having M

2 or
more infeasible codewords is at most 2ε. In the high-probability case
that this event does not occur, the sub-codebook with only the feasible
half (or more) of the codewords achieves vanishing error probability
with rate approaching Igmi(QX). Hence, defining the optimized GMI as

Cgmi(Γ) , sup
QX : EQ[c(X)]≤Γ

Igmi(QX), (3.5)

we have for any Γ > Γmin that

Cgmi(Γ) ≤ Cm(Γ). (3.6)

The case EQ[c(X)] = Γ is justified by the concavity (and hence continu-
ity) of Cm(Γ) in Γ, stated in Lemma 3.1.
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3.4 Cost-Constrained Random Coding and the LM Rate

Based on the findings of Section 2, one would hope to be able to
achieve a continuous variation of the LM rate (cf., Theorem 2.3) in
order to improve on the GMI. In this subsection, we present a codeword
distribution constructed precisely for this purpose [39]. Specifically, we
fix an input distribution QX and real-valued function a(·), and consider

PX(x) = 1
Ωn

n∏
i=1

QX(xi)1{x ∈ Dn}, (3.7)

where

Dn ,
{

x:
∣∣∣∣ 1n

n∑
i=1

c(xi)− φc
∣∣∣∣ ≤ δ, ∣∣∣∣ 1n

n∑
i=1

a(xi)− φa
∣∣∣∣ ≤ δ}, (3.8)

φc , EQ[c(X)], φa , EQ[a(X)], (3.9)

and where δ > 0 is a parameter, and Ωn is a normalizing constant.
Hence, PX follows an i.i.d. distribution conditioned on both c(·) and
a(·) having an empirical mean close to the true mean.

The intuition behind this choice of PX is as follows:

• If EQ[c(X)] < Γ, where Γ is the threshold in (3.1), then the
first constraint in (3.9) with sufficiently small δ ensures that all
codewords satisfy the input constraint (3.1).

• The dual analysis in Section 2.6 for constant-composition random
coding used the fact that

∑n
i=1 a(xi) is the same for all codewords

and any a(·), in order to deduce the improved LM rate rather
than the GMI. For PX in (3.7), this property is approximately
true for one particular function a(·). The deviation by δ does not
impact the achievable rate in the limit δ → 0, and the fact that
this property holds for only one function is also sufficient given
that we are free to design that function to our liking.

We refer to the ensemble corresponding to the choice of PX in (3.7) as
cost-constrained random coding, but it is important to understand the
distinction between c(·) and a(·): The system cost c(·) corresponds to a
constraint imposed by the problem formulation, whereas the auxiliary



3.4. Cost-Constrained Random Coding and the LM Rate 215

cost a(·) is intentionally introduced in order to improve the random
coding performance.

While the choice of constraints in (3.9) will suffice for our purposes,
other variations exist in the literature, such as one-sided system costs
[38, Sec. 7.3] and choices of δ that decrease with n [79]. The choices of
δ could also differ for the two constraints, but this would not affect the
results that we present corresponding to δ → 0.

We formally state the achievability of a generalization of the LM
rate in the following theorem [39], which will be proved in Section 3.6.

Theorem 3.3 (LM Rate for Continuous-Alphabet Channels). For any
mismatched memoryless channel (W, q) with input constraint (c,Γ),
and any input distribution QX such that EQ[c(X)] < Γ, the following
rate is achievable via cost-constrained random coding with suitably-
chosen a(·) and δ > 0:

Ilm(QX) = sup
s≥0,a(·)

E
[

log q(X,Y )sea(X)

E[q(X,Y )sea(X)|Y ]

]
, (3.10)

where (X,Y,X) ∼ QX(x)W (y|x)QX(x), and the supremum is over all
a(·) such that EQ[a(X)] is finite.

Analogously to (3.6), we deduce the following from Theorem 3.3:
Defining the optimized LM rate

Clm(Γ) , sup
QX : EQ[c(X)]≤Γ

Ilm(QX) (3.11)

we have for any Γ > Γmin that

Clm(Γ) ≤ Cm(Γ). (3.12)

Here we do not need to expurgate any codewords violating the power
constraint, since we have ensured that there is zero probability of such
an event happening.

Theorem 3.3 comes with an important caveat not present in the
constant-composition random coding result of Theorem 2.3. Under
constant-composition random coding, we can introduce an arbitrary
function a(·) in the analysis, and then optimize the final result to deduce
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the LM rate. In contrast, in the present setting, we need to choose a
specific function a(·) in the random-coding construction itself. The
optimal function a(·) in (3.10) clearly depends on both the channel W
and the decoding metric q. As a result, the cost-constrained approach to
achieving the LM rate requires knowing both of these. In fact, even when
they are known, explicitly constructing an optimal choice of a(·) may
be difficult, since the supremum in (3.10) corresponds to an infinite-
dimensional optimization problem. In the following subsection, we
present a more general random coding ensemble and analysis addressing
these considerations.

A related fact is that while the decoding metrics q(x, y) and
q(x, y)sea(x)eb(y) (with s > 0) always yield the same mismatch ca-
pacity when X is finite (cf., Corollary 2.1), it is unclear whether this
is true for infinite alphabets. The ability to include a(x) in this claim
for finite X is based on the fact that any good code also has a good
constant-composition sub-code, and this fact has no obvious extension
to the continuous-alphabet case. However, from (3.10), one can at least
deduce that the metrics q(x, y) and q(x, y)sea(x)eb(y) yield the same LM
rate.

3.5 Cost-Constrained Random Coding with Multiple
Auxiliary Costs

We first consider the question of how cost-constrained random coding
performs with a suboptimal choice of the auxiliary cost a(·) (again
considering the limit δ → 0). A natural guess is that we can achieve the
rate (3.10) with the supremum over a(·) replaced by the fixed choice.
Such a rate is indeed achievable, but it turns out that a better rate can
be derived by introducing an additional auxiliary parameter, allowing
us to replace a(·) by ra(·) for any r ∈ R (see Theorem 3.4 below).

We know that in order to achieve the LM rate, having a single
optimized auxiliary cost is enough. However, when such optimization
is not possible, it is also of interest to understand the behavior in the
presence of multiple auxiliary costs [78, 79]. Generalizing (3.7), we fix
QX ∈ P(X ) and let L denote the number of auxiliary costs, denote
the l-th one by al(·) and its mean by φl = EQ[al(X)], and consider the



3.5. Cost-Constrained Random Coding with Multiple 217

codeword distribution

PX(x) = 1
Ωn

n∏
i=1

QX(xi)1{x ∈ Dn}, (3.13)

where

Dn ,
{

x:
∣∣∣∣ 1n

n∑
i=1

c(xi)− φc
∣∣∣∣ ≤ δ,∣∣∣∣ 1n

n∑
i=1

al(xi)− φl
∣∣∣∣ ≤ δ, ∀l = 1, . . . , L

}
. (3.14)

The following theorem states an achievable rate for random coding
under this more general ensemble.

Theorem 3.4 (Achievable Rate with Fixed Auxiliary Costs). For any
mismatched memoryless channel (W, q) with input constraint (c,Γ), and
any input distribution QX such that EQ[c(X)] < Γ, the following rate
is achievable via cost-constrained random coding with fixed auxiliary
costs a1(·), . . . , aL(·) having finite means φl = EQ[al(X)]:

I ′lm(QX , {al}Ll=1) = sup
s≥0,{rl}Ll=1

E
[

log q(X,Y )se
∑L

l=1 rlal(X)

E[q(X,Y )se
∑L

l=1 rlal(X)|Y ]

]
,

(3.15)
where (X,Y,X) ∼ QX(x)W (y|x)QX(x).

The intuition behind the presence of the parameters {rl}Ll=1 is that
since al(·) has an empirical mean within δ of the true mean, rlal(·) has
an empirical mean within rlδ of the true mean. Hence, by letting δ be
sufficiently small, we can perform the analysis as if the l-th auxiliary
cost function were scaled by rl.

In fact, we could also include rc(·) (with r ∈ R) inside both of the
exponential terms in (3.15) to potentially improve the rate further. We
omit such terms to avoid cumbersome notation, and since the resulting
rate could equivalently be recovered by including an additional auxiliary
cost with al(·) = c(·).

We note the following relation between the achievable rates:

Ilm(QX) ≥ I ′lm(QX , {al}Ll=1) ≥ Igmi(QX), (3.16)
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where the right inequality follows by setting all values of rl to zero in
(3.15), and the left inequality follows since given any choices of auxiliary
costs and parameters in (3.15), we recover the objective in (3.10) upon
setting a(x) =

∑L
l=1 rlal(x). A generalization of the right inequality

in (3.16) is that adding further auxiliary costs can never reduce the
achievable rate.

The preceding results and discussions apply to both discrete and
continuous channels. In the discrete case, it is also worth noting that
if one chooses L = |X | and al(x) = 1{x = l} (assuming without loss
of generality that X = {1, . . . , |X |}), then the distribution in (3.13)
produces codewords whose types are within δ of QX in the entry-wise
sense. Hence, this choice recovers a similar ensemble to the constant-
composition ensemble. However, it is not necessary to increase the
number of auxiliary costs as a function of the alphabet size to attain the
LM rate, as Theorem 3.3 shows that a single auxiliary cost is sufficient.

3.6 Proofs of Achievable Rates

Here we present the proof of the fixed-cost LM rate in Theorem 3.4,
which immediately implies the GMI (Theorem 3.2) upon setting L = 0,
and the LM rate (Theorem 3.3) upon setting L = 1 and optimizing
a1(·). The analysis is similar to the dual constant-composition analysis
of Section 2.6, but we provide the details for completeness.

We start with the following key property of the cost-constrained
ensemble, which follows directly from the law of large numbers.

Lemma 3.5 (Normalizing Constant for Cost-Constrained Coding). For the
cost-constrained codeword distribution in (3.13) with L fixed auxiliary
costs, if φc and {φl}Ll=1 are finite, then Ωn → 1 as n→∞ for any fixed
δ > 0.

We now consider the bound (2.97), which holds for a general code-
word distribution, and is repeated here for convenience:

pe ≤ P
[

logM + log E
[(
qn(X,Y )
qn(X,Y )

)s ∣∣∣∣X,Y

]
≥ log δ

]
+ δ, (3.17)
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where (X,Y ,X) ∼ PX(x)Wn(y|x)PX(x), and δ > 0 is arbitrary. To
form a convenient upper bound, we define anl (x) ,

∑n
i=1 al(xi), and

observe that the constraint set in (3.14) implies that

1 ≤ e
∑L

l=1(rlanl (x)+|rl|δn)

e
∑L

l=1(rlanl (x)−|rl|δn)
= e

∑L

l=1 rla
n
l (x)

e
∑L

l=1 rla
n
l

(x)
· e2δn

∑L

l=1 rl (3.18)

for any parameters {rl}Ll=1, and any codewords x and x such that
PX(x) > 0. Hence, defining rsum =

∑L
l=1 |rl| for brevity, we obtain

log E
[(
qn(X,y)
qn(x,y)

)s]
≤ log E

[(
qn(X,y)
qn(x,y)

)s e∑L

l=1 rla
n
l (X)

e
∑L

l=1 rla
n
l

(x)
e2δrsumn

]
.

(3.19)
Substituting into (3.17) and using the fact that PX(x) ≤ 1

ΩnQ
n
X(x) (see

(3.13)), we obtain

pe ≤
1

Ωn
P
[
− log E

[(
qn(X ′,Y )
qn(X ′,Y )

)s e∑L

l=1 rla
n
l (X′)

e
∑L

l=1 rla
n
l

(X′)

∣∣∣∣X ′,Y ]

≤ log M

δΩn
+ 2δrsumn

]
+ δ, (3.20)

where (X ′,Y ,X ′) ∼ QnX(x)Wn(y|x)QnX(x) is now a triplet of random
vectors with the corresponding (X ′i, Y ′i , Xi) being i.i.d. with respect to
i = 1, . . . , n. For notational convenience, we rewrite (3.20) as

pe ≤
1

Ωn
P
[
is,{rl}(X

′,Y ) ≤ logM − log(δΩn) + 2δrsumn
]

+ δ, (3.21)

where

is,{rl}(x,y) , − log E
[(
qn(X ′,y)
qn(x,y)

)s e∑L

l=1 rla
n
l (X′)

e
∑L

l=1 rla
n
l

(x)

]
. (3.22)

Since the average in (3.22) is taken with respect to X ′ ∼ QnX , we can
expand it in the same way as (2.100)–(2.102) to obtain

is,{rl}(x,y) = −
n∑
i=1

log
∑
x

QX(x)
(
q(x, yi)
q(xi, yi)

)s e∑L

l=1 rlal(x)

e
∑L

l=1 rlal(xi)
.

(3.23)
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Hence, when we substitute the pair (X ′,Y ), we have a sum of i.i.d. ran-
dom variables, each having mean

µ(s, {rl}Ll=1)

= −
∑
x,y

QX(x)W (y|x) log
∑
x

QX(x)
(
q(x, y)
q(x, y)

)s e∑L

l=1 rlal(x)

e
∑L

l=1 rlal(x)
. (3.24)

By applying the law of large numbers in (3.20) and noting that Ωn → 1
(see Proposition 3.5) and δ is arbitrarily small, we conclude that
µ(s, {rl}Ll=1) is an achievable rate. Optimizing over s ≥ 0 and {rl}Ll=1
establishes Theorem 3.4.

3.7 Ensemble Tightness Results

We know from Section 2 that in the finite-alphabet setting, the GMI
and LM rate are ensemble-tight for the i.i.d. and constant-composition
ensembles. In addition, when the input constraint is absent or trivial
(e.g., c(x) = 0 for all x, and Γ = 0), or when one of the auxiliary costs
al(·) is equal to c(·) (which can be assumed without loss of generality), it
can also be shown using the techniques of Section 2 that I ′lm(QX , {al}Ll=1)
in Theorem 3.4 is ensemble-tight for the cost-constrained ensemble when
specialized to any mismatched DMC [79].

In this subsection, we present an ensemble tightness result for the
GMI with continuous alphabets, which holds under mild technical as-
sumptions, and follows from the large-deviations analysis of a distinct
but related rate-distortion setup [28]. Related proofs of ensemble tight-
ness for certain additive noise channels can also be found in [53, 57,
105], and an example from [53] with a simpler direct argument will be
illustrated in the proof of Theorem 3.9 below.

We will also discuss a plausibility argument for the ensemble tightness
of the LM rate under cost-constrained random coding in the continuous-
alphabet setting, but we leave open the problem of establishing this
rigorously.

The large deviations result that we utilize [28, Thm. 1] is stated as
follows without proof. We note that the roles of X and Y are reversed
here compared to [28], and the negative log-metric − log q(x, y) plays
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the role of the distortion function in [28]. This result will be re-stated
in Section 4.7 (see Lemma 4.6 therein) in the context of rate-distortion
theory, using notation that more closely resembles that of [28].

Lemma 3.6 (Large Deviations Result for i.i.d. Random Coding). Fix an
input distribution QX , an output distribution PY , and a decoding metric
q satisfying q(x, y) ∈ (0, 1] for all (x, y), and define1

γmin = EPY [ess infQX {− log q(X,Y )}], (3.25)
γprod = EQX×PY [− log q(X,Y )]. (3.26)

Then, if γprod <∞, we have for any γ ∈ (γmin, γprod) that the following
holds with probability one with respect to Y :

lim
n→∞

− 1
n

log P[− log qn(X,Y ) ≥ nγ|Y ]

= sup
s≥0

{
− sγ − E[log E[q(X,Y )s|Y ]]

}
, (3.27)

where (X,Y ) ∼ QnX(x)PnY (y) and (X,Y ) ∼ QX(x)PY (y).

Using this result, we can establish the ensemble tightness of the GMI
for continuous-alphabet memoryless channels, stated in the following
theorem. We adopt some technical assumptions that follow from those
regarding q, γmin, and γprod in Lemma 3.6, and will be discussed shortly.

Theorem 3.7 (Ensemble Tightness of the GMI). Consider a mismatched
memoryless channel (W, q) and an input distribution QX , and let PY
be the marginal distribution of PXY = QX × W . Then, under the
assumptions

q(x, y) ∈ (0, qmax], ∀(x, y), for some qmax <∞, (3.28)
EQX×PY [log q(X,Y )] > −∞, (3.29)

EQX×W [log q(X,Y )] < EPY [ess supQX {log q(X,Y )}], (3.30)
EQX×W [log q(X,Y )] > EQX×PY [log q(X,Y )], (3.31)

we have for any R > Igmi(QX) that pe(n, benRc)→ 1 as n→∞ under
i.i.d. random coding with input distribution QX .

1The essential infimum of a function g(X) with respect to X ∼ QX is defined
to be supremum of t ∈ R for which PQ[g(X) > t] = 1. The essential supremum is
defined analogously.
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Before presenting the proof, we briefly discuss the assumptions.
We observe from (3.28) that q(x, y) = 0 is disallowed, but we are not
aware of any continuous-alphabet examples that consider decoding
metrics taking value zero. Similarly, the upper bound q(x, y) ≤ qmax
states that the metric is bounded, and we are not aware of any counter-
examples considered previously. In particular, for standard distance-
based decoding metrics such as q(x, y) = e−(y−x)2 (see Section 3.8),
(3.28) is satisfied with qmax = 1.

The assumption (3.29) rules out scenarios in which incorrect code-
words yield a log-decoding metric with a very heavy tail in the negative
direction; such situations are not commonly encountered. Similarly,
(3.30) rules out pathological scenarios where the transmitted codeword
always has the highest metric possible. This can occur naturally for
certain mismatched DMCs (e.g., see Section 1.2.7), but we are not aware
of any such examples in continuous-alphabet settings.

Finally, we note that the condition (3.31) was already considered in
Lemma 2.6, where it was shown that, at least for DMCs, the mismatch
capacity is zero when this fails to hold. While we are not aware of an
analogous claim for continuous-alphabet channels, it is shown in [39,
Prop. 1] that the LM rate (and therefore, the GMI) is indeed zero when
(3.31) fails.

Proof of Theorem 3.7. We first argue that we can consider the case
that qmax = 1 in (3.28) without loss of generality. Indeed, if qmax > 1,
then an equivalent decoding metric is attained by dividing all values by
qmax, and the resulting normalized metric is upper bounded by one.

We start with the exact expression for the error probability
in (2.109):

pe = 1− E
[(

1− P[qn(X,Y ) ≥ qn(X,Y ) |X,Y ]
)M−1]

(3.32)

= 1− E
[(

1− P[− log qn(X,Y ) ≤ − log qn(X,Y ) |X,Y ]
)M−1]

,

(3.33)

where (X,Y ,X) ∼ QnX(x)Wn(y|x)QnX(x), and M = benRc. Observe
that − log qn(X,Y ) =

∑n
i=1− log q(Xi, Yi) is an i.i.d. summation with
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mean nE[− log q(X,Y )], where (X,Y ) ∼ QX ×W . Hence, by the law
of large numbers, we have for any δ > 0 and sufficiently large n that
the following holds with γ = E[− log q(X,Y )]− δ:

pe ≥ 1− δ − E
[(

1− P[− log qn(X,Y ) ≤ nγ|Y ]
)M−1]

. (3.34)

This inner probability matches that in (3.27), and we proceed by veri-
fying the technical conditions of Lemma 3.6.

Multiplying both sides in (3.29)–(3.31) by −1 gives γmin <

E[− log q(X,Y )] < γprod < ∞, where γmin and γprod are defined in
(3.25)–(3.26). Hence, under the choice γ = E[− log q(X,Y )]−δ, we have
for sufficiently small δ that γ ∈ (γmin, γprod), and Lemma 3.6 gives

lim
n→∞

− 1
n

log P[− log qn(X,Y ) ≥ nγ|Y ]

= sup
s≥0

(−sγ − E[log E[q(X,Y )s|Y ]]) (3.35)

almost surely with respect to Y .
Observe that when δ is replaced by zero in the choice of γ, the

right-hand side of (3.35) simplifies as follows: Defining (X,Y,X) ∼
QX(x)W (y|x)QX(x), we have

sup
s≥0

(−sE[− log q(X,Y )]− E[log E[q(X,Y )s|Y ]])

= sup
s≥0

E
[

log q(X,Y )s

E[q(X,Y )s|Y ]

]
(3.36)

= Igmi(QX). (3.37)

Thus, assuming momentarily that we can replace δ by zero in (3.34),
we deduce that pe → 1 for R > Igmi(QX), using M = benRc and the
fact that (1− 1

αn
)βn → 0 whenever limn→∞

αn
βn

= 0.
To justify taking δ → 0, it suffices to show that the right-hand side

of (3.27) is continuous with respect to γ ∈ (γmin, γprod). This follows
from the fact that the pointwise supremum of a collection of linear
functions is convex [18, Sec. 3.2.3], and a convex function is continuous
when restricted to the region in which it is finite. The assumptions
of Lemma 3.6 ensure that (3.27) is finite for γ ∈ (γmin, γprod) (see the
discussion following [28, Thm. 1]), which implies the desired claim.
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Discussion. The key tool in proving Lemma 3.6 is the Gärtner-Ellis
theorem in large deviations theory; the interested reader is referred
to [28] for the details. Intuitively, the parameter s in the dual expression
for the GMI can be viewed as a Chernoff parameter resulting from
applying the Chernoff bound to

∑n
i=1 log q(Xi, yi).

Similarly, in the fixed-cost LM rate of Theorem 3.4 each parame-
ter rl can be viewed as combining two Chernoff parameters: one for∑n
i=1 a(Xi) ≥ n(φa− δ) and one for

∑n
i=1 a(Xi) ≤ n(φa+ δ). By taking

the difference of two arbitrary positive parameters, we end up with
an arbitrary real-valued parameter. In light of this interpretation, we
expect that counterparts of Lemma 3.6 and Theorem 3.7 should hold
for the LM rate and cost-constrained random coding, but currently this
remains an open problem.

3.8 Examples

In this subsection, we evaluate the preceding achievable rates for three
continuous-alphabet channels. For the sake of analytical tractability,
all examples are based on a Gaussian input distribution and a form of
nearest-neighbor decoding; however, the three are still fundamentally
distinct due to the different forms of the mismatch.

3.8.1 Mismatched Signal Level

We consider a variant of the additive white Gaussian noise (AWGN)
channel in which the input is scaled by an unknown constant α > 0:

Y = αX + Z, (3.38)

where Z ∼ N(0, σ2) for some noise power σ2 > 0, and X and Z are
independent. We consider a power constraint corresponding to (3.1)
with c(x) = x2 and some Γ > 0. Accordingly, we adopt a Gaussian
input distribution QX corresponding to X ∼ N(0,Γ), which is capacity-
achieving in the matched case.

The optimal decoding rule minimizes ‖y−αx‖22, and requires knowl-
edge of α. We consider a scenario in the decoder is unaware of the
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scaling effect, and therefore acts as if α = 1:2

m̂ = arg min
j=1,...,M

‖y − x(j)‖22. (3.39)

This is the nearest-neighbor decoding rule, and corresponds to the
decoding metric q(x, y) = e−(y−x)2 .

In this subsection, we will derive the following expressions for the
GMI and LM rate [65].

Theorem 3.8 (Mismatched Signal Level). Under the preceding mis-
matched signal level setting with input power Γ > 0, noise power
σ2 > 0, and signal level α > 0, we have the following:

(i) The GMI is given by

Igmi(QX) = sup
s≥0

1
2 log(1+2sΓ)+ s(α2Γ + σ2)

1 + 2Γs −s((α−1)2Γ+σ2).

(3.40)

(ii) The LM rate is given by

Ilm(QX) = 1
2 log

(
1 + α2Γ

σ2

)
, (3.41)

and equals the matched (and hence mismatched) capacity subject
to a power constraint Γ.

The intuition behind the fact that we achieve the matched capacity
in the second part is that the mismatched and maximum-likelihood
decoding rules are equivalent for codebooks in which all codewords have
the same power ‖x‖22. By using cost-constrained random coding with
an auxiliary cost a(x) = x2, we can ensure that the powers are nearly
identical, and that we still achieve the optimal rate.

We compare the GMI and LM rate numerically in Figure 3.1. In
addition, we plot the achievable rate of Theorem 3.4 with a single
auxiliary cost (i.e., L = 1) under the suboptimal choices a1(x) = |x| and

2More generally, one could consider a decoder that has an estimate α̂ of α and
decodes accordingly. Taking α̂ = 1 in fact entails no loss of generality, since one can
reduce to this scenario by re-scaling (and accordingly modifying the noise level σ2

and input power Γ).
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Figure 3.1: Unknown signal level example: GMI, LM rate, and its variation with a
suboptimal auxiliary cost, each plotted as a function of α.

a1(x) = |x|1.5. These rates were evaluated using numerical integration,
along with gradient ascent for optimizing (s, r1).

We observe that the LM rate exceeds the GMI for all α > 0, except
for the matched case α = 1. Moreover, the GMI is seen to saturate as
α→∞, while the LM rate grows unbounded. Moreover, even with a
suboptimal auxiliary cost, we get a strict improvement over the GMI,
and nearly match the LM rate for α < 1. The choice a1(x) = |x|1.5
provides a better rate than a1(x) = |x|, as should be expected due
to the fact that the former more closely resembles the optimal choice
a1(x) = x2.

Proof of Theorem 3.8

We first consider the LM rate, and then the GMI.

Evaluation of the LM Rate. The right-hand side of (3.41) is the
matched capacity of the AWGN channel with input scaled by α. To see
that it is achieved by the LM rate, we write the mismatched metric q
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and the optimal (maximum-likelihood) metric q∗ as

log q(x, y) = −y2 − x2 + 2xy (3.42)
log q∗(x, y) = −y2 − α2x2 + 2αxy, (3.43)

which implies that log q∗(x, y) = α log q(x, y) + (α− α2)x2 + (α− 1)y2.
By Lemma 2.7 (whose proof extends to the continuous setting), we
conclude that Ilm(QX) equals the matched decoding rate (i.e., the
mutual information I(X;Y )), which in turn is known to be given
by (3.41).

Evaluation of the GMI. We write the GMI in (3.4) as

Igmi(QX) = sup
s≥0

sE[log q(X,Y )]− E[log E[q(X,Y )s|Y ]] (3.44)

= sup
s≥0

− sE[(Y −X)2]− E[log E[e−s(Y−X)2 |Y ]], (3.45)

where we have substituted q(x, y) = e−(y−x)2 . We then obtain (3.40) by
evaluating the relevant Gaussian integrals according to Y = aX + Z

with X ∼ N(0,Γ) and Z ∼ N(0, σ2). The technical details of these
integral evaluations are omitted.

3.8.2 Mismatched Noise Distribution – Nearest-Neighbor
Decoding for Additive Non-Gaussian Channels

Continuing with the theme of additive noise channels, we turn to
a particularly important setting in which the noise distribution is
mismatched. The input-output relationship is given by

Y = X + Z, (3.46)

where X and Z are independent. We again consider an input constraint
according to (3.1) with c(x) = x2 (i.e., a power constraint of Γ > 0),
and we assume that Z follows an arbitrary distribution having a finite
mean and variance:

E[Z] = µ, Var[Z] = σ2 (3.47)

for some µ ∈ R and σ2 > 0.
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AWGN Case. As we already saw in the previous example, when the
noise is Gaussian, the matched capacity is given by

Cawgn(Γ, σ2) = 1
2 log

(
1 + Γ

σ2

)
. (3.48)

Moreover, when µ = 0, the optimal decoding rule is nearest-neighbor
decoding according to (3.39), which we repeat here:

m̂ = arg min
j=1,...,M

‖y − x(j)‖22. (3.49)

More generally, replacing y by y − µ1 in (3.49) gives the optimal rule,
where 1 is the vector of ones. The capacity-achieving input distribution
under the power constraint E[X2] ≤ Γ is given by X ∼ N(0,Γ).

Non-Gaussian Noise. Gaussian noise is convenient to analyze mathe-
matically, is often well-motivated in applications, and has been studied
extensively from both theoretical and practical viewpoints. On the other
hand, it is certainly not the only type of additive noise of interest.

In general, under non-Gaussian noise, the matched channel capacity
is given by C = supQX : EQ[X2]≤Γ I(X;Y ). However, achieving this may
be difficult for several reasons: The distribution PZ may not be known,
and even if it is known, the required codebook structure and decoder
may be prohibitively complex.

Motivated by these considerations, we consider the following ques-
tion [53]: If we adopt a Gaussian coding scheme, but apply it to a
channel that actually consists of non-Gaussian additive noise, how well
will it perform? More precisely, we consider random coding with input
distribution QX ∼ N(0,Γ), along with the nearest-neighbor decoding
rule (3.49) corresponding to q(x, y) = e−(y−x)2 . These choices are op-
timal for the zero-mean AWGN channel; we will also comment on
the alternative choice q(x, y) = e−(y−µ−x)2 corresponding to optimal
decoding for N(µ, σ2) noise.

If we apply such a Gaussian coding scheme to a non-Gaussian
channel, we may expect a performance degradation due to the fact
that we have designed a code for the wrong channel. On the other
hand, we may expect a higher rate due to the fact that for a given
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variance Var[Z] = σ2, Gaussian noise is the most harmful in the matched
scenario (i.e., yields the smallest capacity) [22, Ex. 9.21]. Intriguingly,
the following result reveals that these effects cancel each other, and
all noise distributions lead to the same rate as Gaussian noise. The
first part of this theorem can be found in [53], and the second part is a
straightforward variant that is new to the best of our knowledge.

Theorem 3.9 (Gaussian Coding Schemes for Non-Gaussian Channels).
Under the preceding mismatched nearest-neighbor decoding setting
with input distribution QX ∼ N(0,Γ) and an arbitrary additive noise
distribution PZ having mean µ and variance σ2, we have the following:

(i) The GMI is given by

Igmi(QX) = 1
2 log

(
1 + Γ

µ2 + σ2

)
. (3.50)

(ii) The fixed-cost LM rate with a single auxiliary cost a1(x) = x is
given by

I ′lm(QX , a1) = 1
2 log

(
1 + Γ

σ2

)
. (3.51)

In the proof of Theorem 3.9 (given below), we will additionally
present an elementary proof of ensemble tightness for the GMI that is
specific to this setting [53]. In contrast, we make no claims regarding
the ensemble tightness of the fixed-cost LM rate.

Theorem 3.9 can be viewed both positively and negatively. On
the positive side, we achieve Cawgn even though we designed the code
for the wrong channel, meaning that Gaussian codes form a robust
communication scheme. On the negative side, since Gaussian noise is
the most harmful noise, the matched capacity is strictly higher than
Cawgn, so we have failed to achieve the best possible rate. Stated
differently, by designing for the worst case noise, we are guaranteed to
achieve the worst-case capacity and no better.

From the second part of Theorem 3.9, we can conclude that the
improvement of the fixed-cost LM rate amounts at least to replacing
E[Z2] = µ2 + σ2 by Var[Z] = σ2. The gap between the two can be
arbitrarily large; we demonstrate this in Figure 3.2, where we plot the
rates as a function of µ with Γ = σ2 = 1.
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Figure 3.2: Mismatched noise distribution example: GMI and fixed-cost LM rate
as a function of µ with Γ = σ2 = 1.

To see why the choice a(x) = x in the second part removes the
dependence on the mean µ, we consider the decoding rule q̃(x, y) =
e(y−µ−x)2 , which provides a natural counterpart to the above choice
when µ is known. Expanding the square yields

− log q̃(x, y) = (y − x)2 − 2µy + 2µx. (3.52)

The term 2µy has no impact on the decoder, since it depends only on
the output. On the other hand, the term 2µx does have an impact in
general. However, if we use a codebook such that

∑n
i=1 xi is the same

for each codeword x, then there is no impact. By using cost-constrained
random coding with a(x) = x, we ensure that

∑n
i=1 xi is nearly the

same for every codeword, which is enough to ensure that the LM rates
corresponding to q(x, y) = e−(y−x)2 and q̃(x, y) above are the same.

Under the decoding metric q̃(x, y), the GMI also achieves the im-
proved rate 1

2 log(1+ Γ
σ2 ). However, such a choice amounts to subtracting

the mean µ at the output, and hence, it requires the mean to be known
in the first place. In contrast, using the fixed-cost LM rate, we attain
the improvement without knowledge of µ.
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Proof of Theorem 3.9

Evaluation of the GMI. We rewrite (3.4) as

Igmi(QX) = sup
s≥0

sE[log q(X,Y )]− E[log E[q(X,Y )s|Y ]] (3.53)

= sup
s≥0

1
2 log(1 + 2sΓ) + s(Γ + µ2 + σ2)

1 + 2Γs − s(µ2 + σ2),

(3.54)

where (3.50) follows by substituting q(x, y) = e−(y−x)2 and evaluating
the expectations explicitly; this requires some technical but elemen-
tary integration. Differentiating the right-hand side of (3.54), it is a
straightforward exercise to verify that the choice s = 1

2(µ2+σ2) makes
the derivative vanish. Hence, since the objective function defining the
GMI is always concave in s, we conclude that this choice of s must be
globally optimal. With some algebraic manipulation, this choice leads
to (3.50).

An Elementary Ensemble-Tightness Proof for the GMI. While the
ensemble-tightness of the GMI is already established in Theorem 3.7,
it is instructive to provide a direct proof that is not only significantly
simpler, but also comes with an interesting alternative proof of the
achievability part. The analysis proceeds in three steps, outlined as
follows:

• By the circular symmetry of PX = QnX , and similar symmetry
in the nearest-neighbor decoding rule, it can be verified that
the conditional error probability P[error|z] depends on the noise
realization z only through its power ‖z‖2 [53].

• Moreover, the conditional random-coding error probability
P[error|z] is non-decreasing as a function of ‖z‖2. To see this,
we suppose that ‖y − x‖2 ≤ ‖y − x‖2 for some incorrect x and
y = x + z, and proceed by showing that the same is true with
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y′ = x + (1 + δ)z for some δ > 0:
‖y′ − x‖2 = ‖y + δz − x‖2 (3.55)

≤ ‖y − x‖2 + δ‖z‖2 (3.56)
≤ ‖z‖2 + δ‖z‖2 (3.57)
= ‖y′ − x‖2, (3.58)

where (3.56) follows from the triangle inequality, and (3.57) follows
since x is closer to y than x is.

• As a result, the asymptotic behavior of the error probability is the
same for any noise distribution such that 1

n‖Z‖
2 → E[Z2] almost

surely. In particular, by the well-known fact that (3.50) is the
(tight) rate achieved under N(0,E[Z2]) additive Gaussian noise,
we deduce that it is also the (ensemble-tight) rate achieved for
any memoryless channel with the same second moment E[Z2] =
µ2 + σ2.

The interested reader is referred to [53] for the details.

Evaluation of the Fixed-Cost LM Rate. We rewrite (3.15) as
I ′lm(QX , a) = sup

s≥0,r
sE[log q(X,Y )] + rE[a(X)]

− E[log E[q(X,Y )sera(X)|Y ]] (3.59)

= sup
s≥0,r

1
2 log(1 + 2sΓ)− Γ · r(r + 4sµ)

2(1 + 2Γs)

+ s(Γ + µ2 + σ2)
1 + 2Γs − s(µ2 + σ2), (3.60)

where (3.60) follows by substituting the choices of q and a1(·) = a(·) and
evaluating the expectations. Only the second term in (3.60) depends on
r, and it is a simple differentiation exercise to show that the optimal
choice is r = −2sµ. Substituting this choice and suitably canceling
terms, we obtain

I ′lm(QX , a) = sup
s≥0

1
2 log(1 + 2sΓ) + s(Γ + σ2)

1 + 2Γs − sσ
2. (3.61)

This matches (3.54) with σ2 in place of µ+ σ2. Hence, since we already
know that (3.54) leads to (3.50), we deduce that (3.61) leads to (3.51).
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Variations and Generalizations

The first part of Theorem 3.9 holds not only for i.i.d. Gaussian codes,
but also shell codes, in which X is drawn uniformly from the sphere of
radius

√
nΓ [53]. This distribution can be thought of as corresponding to

cost-constrained random coding with a(x) = x2 and δ = 0, and indeed, it
can be verified analytically that the fixed-cost rate of Theorem 3.4 does
not improve on the GMI in this example when L = 1 and a1(x) = x2.

The first part of Theorem 3.9 has also been extended to additive
multiple-access channels [53], fading channels [53, 57, 105] (see also
Section 3.8.3), and parallel additive noise channels [53], and refined
characterizations of the fixed-error asymptotics have been given [84].

In addition, regarding the second part of Theorem 3.9, a similar
improvement replacing the second moment E[Z2] by the variance Var[Z]
is known to hold in the low-SNR regime under binary phase shift keying
(BPSK) and constant-composition random coding [39].

3.8.3 Fading Channels

In our final example, we turn to a class of channels exhibiting fad-
ing, which is fundamental to wireless communication scenarios (cf.,
Section 1.2.2). Fading channels are usually modeled as being complex-
valued, and we adopt such an approach here.3

The setup that we consider adopts fairly strong memorylessness
assumptions to keep the analysis simple, while still conveying some of the
main ideas behind mismatch in fading channels. A more comprehensive
treatment (including this special case) can be found in [57, 105].

We consider a memoryless time-varying model of the form

Yi = HiXi + Zi, (3.62)

where Xi ∈ C is the input, Zi ∈ C is additive noise, and Hi ∈ C is a
fading coefficient. We assume that {Zi}ni=1 is i.i.d. on CN(0, σ2) (i.e.,
the variance is σ2

2 each for the real and imaginary parts), and that {Hi}
is an i.i.d. sequence with density function PH . In addition, we assume

3The achievability results (i.e., GMI and LM rate) we have given for real-valued
channels are directly applicable to the complex-valued setting, and the proofs apply
without change.
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that X = (X1, . . . , Xn), H = (H1, . . . ,Hn), and Z = (Z1, . . . , Zn) are
all mutually independent.

Perfect Channel Knowledge. If each random realization Hi = hi were
known perfectly at the decoder, then due to the Gaussianity of the
noise, the optimal decoding rule would be the following weighted version
of the nearest-neighbor rule:

m̂ = arg min
j=1,...,M

n∑
i=1
|yi − hix(j)

i |
2. (3.63)

In addition, under a power constraint E[|X|2] ≤ Γ (i.e., c(x) = |x|2), the
capacity is achieved by a complex Gaussian input distribution CN(0,Γ),
and is given by [57, 102]

Cawgn(Γ, σ2, PH) = E
[

log
(
1 + |H|

2Γ
σ2

)]
, (3.64)

where H ∼ PH , and Γ is the input power. Note that unlike the previous
examples, there is no factor of 1

2 here, as we are in the complex-valued
setting rather than the real setting.

In fact, the achievability of (3.64) extends to non-Gaussian noise
distributions analogously to the first part of Theorem 3.9 above [53],
but we focus on Gaussian noise here for simplicity.

Imperfect Channel Knowledge. Our focus in this example is on un-
certainty in the fading coefficients Hi. To address this, we adopt a simple
uncertainty model in which

Hi = Ĥ i + H̃i, E[H̃i|Ĥ i] = 0, (3.65)

where Ĥ i is a possibly-random estimate of H known at the decoder, and
H̃i represents an unknown conditionally zero-mean error term. We make
the simplifying assumption that the pairs {(Ĥ i, H̃i)}ni=1 are i.i.d. with
respect to i = 1, . . . , n, and independent of the channel input and noise.

In the case that the joint density function of (Ĥ i, H̃i) is unknown (or
even when it is known but difficult to design a corresponding optimal
coding scheme), it is natural to apply weighted nearest-neighbor coding



3.8. Examples 235

similarly to (3.63), but with each weight given only by the realization
Ĥ i = ĥi of the corresponding estimate:

m̂ = arg min
j=1,...,M

n∑
i=1
|yi − ĥix(j)

i |
2. (3.66)

This is a mismatched decoding rule, in the sense that it would be optimal
under a model of the form Y = ĤX+Z with zero-mean Gaussian noise,
in contrast with the true model. The corresponding decoding metric
is given by q(x, (y, ĥ)) = e−(y−ĥx)2 . Note that here and subsequently,
since Ĥ is known at the decoder, it is treated as part of the output, so
that (Y, Ĥ) plays the role of the usual Y .

The following result gives an exact expression for the GMI [57]; to
our knowledge, the LM rate is yet to be studied in fading scenarios.

Theorem 3.10 (Fading Channels). Consider the preceding complex-
valued channel fading setup with a known estimate Ĥ at the output,
and a conditionally zero-mean error term H̃. Under i.i.d. random coding
with X ∼ N(0,Γ), along with weighted nearest-neighbor decoding
according to (3.66), the GMI is given by

Igmi(QX) = E
[

log
(

1 + |Ĥ|2Γ
E[|H̃|2|Ĥ]Γ + σ2

)]
. (3.67)

We observe that the GMI takes a similar form to the matched capac-
ity (3.64), except that the signal power in the numerator is multiplied
by |Ĥ|2 instead of |H|2, and the denominator contains an extra term
E[|H̃|2|Ĥ]Γ. The intuition here is that we are treating the unknown
error term H̃ as noise, and since that term is multiplied by X, the
overall additional “noise power” given Ĥ is E[|H̃|2|Ĥ]Γ.

Theorem 3.10 reveals that mismatch in the fading coefficient can
be much more harmful than mismatch in the noise distribution (cf.,
Section 3.8.2). For instance, supposing for simplicity that Ĥ takes some
deterministic non-zero value, we find that Igmi(QX) remains bounded in
the high-power regime Γ→∞, converging to log(1 + |Ĥ|2

E[H̃2]
). In contrast,

the matched capacity (3.64) grows unbounded. An illustration is given
in Figure 3.3, where we plot the GMI and matched capacity as a function
of Γ when Γ = σ2 = 1, |Ĥ|2 = 1 (deterministically), and E[|H̃|2] = 1.
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Figure 3.3: Fading channel example: Matched capacity and GMI as a function of Γ
with σ2 = 1, |Ĥ|2 = 1 (deterministically) and E[|H̃|2] = 1.

Proof of Theorem 3.10

Recall that the pair (Y, Ĥ) plays the role of the channel output. We
first write the GMI as

Igmi(QX) = sup
s≥0

E[Igmi(QX , s, Ĥ)], (3.68)

where

Igmi(QX , s, ĥ) = sE[log q(X, (Y, ĥ))]− E[log E[q(X, (Y, ĥ))s)]]
(3.69)

= −sE[|Y − ĥX|2]− E[log E[e−|Y−ĥX|2 |Y ]] (3.70)

with implicit conditioning on Ĥ = ĥ throughout. Notice that this
expression is similar to that of (3.45) in the mismatched signal level
example. While we are working with complex-valued (rather than real-
valued) random variables here, we can still explicitly evaluate the
expectations in a similar manner, leading to

Igmi(QX , s, ĥ) = log(1 + |ĥ|2Γs) + s(|ĥ|2Γ + ΓXY (ĥ))
1 + |ĥ|2Γs

− sΓXY (ĥ),

(3.71)
where we write ΓXY (ĥ) = E[|H̃|2|Ĥ = ĥ]Γ + σ2 for brevity.
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Next, it is a simple exercise to differentiate (3.71) and verify that
the choice s = 1

ΓXY yields a derivative of zero, regardless of the value
of ĥ. Since the objective function is concave in s, we conclude that such
a choice is globally optimal. Substituting this optimal choice, denoted
by s∗, we obtain the following after some algebraic manipulation:

Igmi(QX , s∗, ĥ) = log
(

1 + |ĥ|2Γ
ΓXY (ĥ)

)
. (3.72)

The proof is concluded by averaging over Ĥ and substituting ΓXY (·).



4
Mismatch in Rate Distortion Theory

4.1 Introduction

Thus far, we have focused on channel coding with a mismatched decoding
rule. In this section, we turn to the distinct problem of source coding
subject to a fidelity constraint, i.e., rate-distortion theory [22, Ch. 10].
As with channel coding, this represents one of the most fundamental
coding problems in information theory.

The setup of rate-distortion theory (detailed in Section 4.2 below)
consists of a memoryless source, an encoder mapping source sequences
to indices, and a decoder mapping these indices to a reconstructed
sequence. The quality of the reconstruction is measured by a distortion
function. Assuming that the decoder is deterministic, we can view the
set of all reconstructed sequences as forming a codebook. In addition,
given such a codebook, the optimal encoding rule is to map the source
sequence to the index corresponding to the codeword with the lowest
distortion.

If the encoder does not know the true distortion measure under
consideration, or if the optimal encoding rule is ruled out due to imple-
mentation constraints, then it is natural to consider a variant of this
problem with mismatched encoding, in which the encoder minimizes a

238
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given (possibly suboptimal) encoding metric between the source and its
reconstruction. Some motivating examples are given in Section 4.2.1.

As well as being of interest in its own right, the mismatched rate-
distortion problem has interesting analogies with the mismatched chan-
nel coding problem. Among other things, we will see that the multi-letter
extension (cf., Section 2.7) of a certain random-coding achievability re-
sult has a matching converse. In contrast, for channel coding it remains
open as to whether the multi-letter extension of the LM rate coincides
with the mismatch capacity in general.

In Sections 4.7 and 4.8, we consider a different type of mismatch, in
which a single distortion measure is adopted throughout the system, but
a suboptimal random coding distribution is used. Section 4.7 considers
discrete memoryless sources, while Section 4.8 focuses on Gaussian
coding for non-Gaussian sources. In the latter setting, in analogy with
the mismatched channel coding example of Section 3.8.2 (Gaussian
coding with non-Gaussian noise), we find that all real-valued sources
with a given second moment yield the same rate-distortion trade-off as
the Gaussian source.

This section is predominantly based on the work of Lapidoth [54],
with various aspects also relating to Sakrison [73, 74], Yang and
Kieffer [106], and Dembo and Kontoyiannis [28]. We note that compared
to [54], we consider a slightly simplified mismatched encoding problem
formulation (see below).

4.2 Problem Setup

We consider a discrete memoryless source (DMS), in which each symbol
is drawn from a distribution ΠX(x) on a finite alphabet X . The resulting
n-letter distribution is denoted by Πn

X(x) ,
∏n
i=1 ΠX(xi). The source

sequence X ∼ Πn
X is received as the input to an encoder that maps X n

to {1, . . . ,M} for some integer M . The rate of the code is denoted by
R = 1

n logM .
We consider encoding rules that are dictated by a codebook

C = {x̂(1), . . . , x̂(M)}, where each codeword lies in X̂ n for some fi-
nite reconstruction alphabet X̂ . In particular, in accordance with the
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discussion in Section 4.1, we assume that the encoder chooses1

m = arg min
j=1,...,M

dn0 (x, x̂(j)), dn0 (x, x̂) =
n∑
i=1

d0(xi, x̂i), (4.1)

where d0(x, x̂) is a given encoding metric on X ×X̂ . Except where stated
otherwise, the results that we present hold under arbitrary tie-breaking
methods in (4.1).

We focus on the trivial decoder that maps m to x̂(m). This is in
slight contrast to Lapidoth [54], who allowed the decoder to apply post-
processing to the codeword to obtain the final estimate. The former
setup will lead to slightly simpler results, while still conveying the same
key ideas and techniques.

When the source realization is x and its reconstruction is x̂, the
distortion incurred is given by dn1 (x, x̂) =

∑n
i=1 d1(xi, x̂i) for some true

distortion measure d1 on X × X̂ . Our goal is to achieve a normalized
distortion 1

nd
n
1 (x, x̂) that, with high probability, does not exceed a given

threshold D. Throughout the section, we assume that both d0 and d1 are
non-negative and finite-valued, and we define d1,max , maxx,x̂ d1(x, x̂).

Formally, we have the following.

Definition 4.1 (Mismatched Rate-Distortion and Distortion-Rate Func-
tions). Under the preceding mismatched rate-distortion setup specified
by (ΠX , d0, d1), a rate-distortion pair (R,D1) is said to be achievable if,
for all δ > 0, there exists a sequence of codebooks (indexed by n) with
M ≤ en(R+δ) codewords such that

P
[ 1
n
dn1 (X, X̂) ≥ D1 + δ

]
≤ δ (4.2)

for sufficiently large n (depending on δ), where X ∼ Πn
X , and X̂ is the

resulting estimate. Given D1, the mismatched rate-distortion function
R∗(D1) is defined to be the smallest R such that (R,D1) is achievable,
and given R, the mismatched distortion-rate function D∗1(R) is defined
to be smallest D1 such that (R,D1) is achievable.

1Here we minimize an additive metric, whereas in channel coding we maximized
a multiplicative metric. In both settings, we can readily switch between these notions,
e.g., maximizing

∏n

i=1 q(xi, yi) is equivalent to minimizing
∑n

i=1(− log q(xi, yi)).
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Before proceeding, we state the following useful result, which can
be viewed as an analog of the result in Lemma 3.1 concerning the
input-constrained mismatch capacity.

Lemma 4.1 (Convexity of Mismatched Distortion-Rate Function). Under
the preceding setup, the function D∗1(R) is convex and non-increasing
in R.

The monotonicity is immediate from Definition 4.1, and the convexity
follows by a standard concatenation argument: Use a codebook achieving
D∗1(R1) for the first λn symbols, and a codebook achieving D∗1(R2) for
the last (1− λ)n symbols, yielding a total distortion of λD∗1(R1) + (1−
λ)D∗1(R2) at rate λR1 + (1− λ)R2.

Remark 4.1 (Expected vs. High-Probability Distortion Criteria). The
results that we present under the excess distortion criterion (4.2) also
hold under an average distortion criterion of the form E[ 1

nd
n
1 (X, X̂)] ≤

D1 + δ. The achievability result is stated in [19, Thm. 3], and can
also be deduced from the high-probability result by noting that (4.2)
implies E[ 1

nd
n
1 (X, X̂)] ≤ D1 + δ+ δd1,max, and δ can be scaled down by

1 + d1,max since it is arbitrarily small in Definition 4.1. In Section 4.6,
we will present a multi-letter converse result for the excess distortion
criterion, but its proof will immediately imply the same for the expected
distortion criterion.

4.2.1 Discussion and Motivating Examples

Here we discuss two motivating examples where the mismatched rate-
distortion problem may be of interest.

Unknown Distortion Measure. The mismatched rate-distortion prob-
lem naturally arises in the case that it is not possible to know the true
distortion measure d1(x, x̂). For instance, when it comes to compressing
an image or audio signal,2 it is difficult to mathematically quantify
what makes a reconstruction “good”. Nevertheless, one might still try

2These are mentioned for the sake of intuition, but it should be noted that the
memoryless property and the assumption of additive distortion measures should not
be expected to hold in such cases.
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to perform compression according to some heuristic choice, such as
d0(x, x̂) = (x− x̂)2.

Similarly, after designing a coding scheme for some distortion mea-
sure d0, the system designer might change their mind and decide that a
different measure d1 is more suitable. It is then of interest to understand
how the performance of the original coding scheme degrades compared
to a new scheme based on d1. If the loss is minimal, one may prefer to
simply keep the mismatched design.

In both of these settings, the notion of mismatched rate-distortion
region in Definition 4.1 is questionable, as the optimal codebook de-
pends on both d0 and d1. Nevertheless, similarly to the channel coding
setting, we will state the achievability results for a fixed random coding
distribution, hence allowing us to assess the performance of random
codebooks that are designed without knowledge of d1.

Finite-Precision Arithmetic. Suppose for concreteness that the true
distortion measure is d1(x, x̂) = (x− x̂)2. If the encoder is constrained
to use finite-precision arithmetic, it may consist of first applying a scalar
quantizer to x, and then choosing a similarly-quantized codeword x̂

from the codebook based on a finite-precision distortion measure. For
instance, letting Φ(x) be a scalar quantizer, and letting X̂ be a its range
(i.e., a finite subset of R), one can consider the following distortion
measure at the encoder, with x ∈ R and x̂ ∈ X̂ :

d0(x, x̂) = (Φ(x)− x̂)2. (4.3)

In this case, assuming the system model is known perfectly, the notion
of mismatched rate-distortion region in Definition 4.1 is justified: One
knows that the system is constrained by the finite-precision arithmetic
and scalar quantizer, and hence, one can design a codebook specifically
targeted at combating this constraint.

4.3 Achievability Result

In this subsection, we provide an achievable distortion level for a given
rate, i.e., an upper bound on D∗1(R). The proof uses a form of constant-
composition random coding, and in this sense, the result can be viewed
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as a counterpart to the LM rate for channel coding (cf., Section 2.3.2).
A similar analysis could also be performed for i.i.d. random coding, but
this is omitted for brevity.

We fix a reconstruction distribution Q
X̂
∈ P(X̂ ), let Q

X̂,n
∈ Pn(X̂ )

be a type with the same support of Q
X̂

such that ‖Q
X̂,n
−Q

X̂
‖∞ ≤ 1

n ,
and draw each codeword X̂(j) independently from

P
X̂

(x̂) = 1
|T n(Q

X̂,n
)|1
{
x̂ ∈ T n(Q

X̂,n
)
}
, (4.4)

where T n(Q
X̂,n

) is the type class corresponding to Q
X̂,n

. We have the
following [54].

Theorem 4.2 (Achievable Mismatched Distortion-Rate Function). Un-
der the mismatched rate-distortion setup with a discrete memoryless
source ΠX and distortion measures (d0, d1), the following distortion is
achievable at rate R via constant-composition random coding with an
auxiliary distribution Q

X̂
∈ P(X̂ ):

D1(Q
X̂
, R) = max

P̃
XX̂
∈P̃

E
P̃

[d1(X, X̂)], (4.5)

where

P̃ =
{
P̃
XX̂

: P̃
XX̂
∈ arg min
P̃
XX̂

: P̃X=ΠX ,P̃
X̂

=Q
X̂
,

I
P̃

(X;X̂)≤R

E
P̃

[d0(X, X̂)]
}
. (4.6)

Consequently, we have D∗1(R) ≤ minQ
X̂
D1(Q

X̂
, R).

The proof is given in Section 4.5. The result can be understood
intuitively by interpreting P̃

XX̂
as the joint empirical distribution of

(x, x̂). The distortion incurred is dn1 (x, x̂) = nE
P̃

[d1(X, X̂)], and by the
nature of the encoding function, the joint type is one that minimizes
EP [d0(X, X̂)]. The constraint P̃X = ΠX follows by a basic typicality
argument, the constraint P̃

X̂
= Q

X̂
arises from the constant-composition

nature of the codebook, and the constraint I
P̃

(X; X̂) ≤ R arises because
the probability of any random codeword inducing I

P̃
(X; X̂) > R is

negligible. Finally, the maximum in (4.5) arises by treating ties in a
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“worst-case” manner, i.e., assuming that when a tie occurs, the selected
sequence is the one that maximizes d1.

In the case that d0 = d1, all elements of P̃ provide the same distor-
tion, and the bound of Theorem 4.2 simplifies to

D1,Matched(Q
X̂
, R) = min

P̃XX̂ : P̃X=ΠX ,P̃
X̂

=Q
X̂
,

I
P̃

(X;X̂)≤R

E
P̃

[d1(X, X̂)]. (4.7)

This corresponds to the usual distortion-rate function [22, Ch. 10],
but with an additional constraint on the X̂-marginal. Moreover, this
constraint can be removed by simply taking the minimum over all Q

X̂
,

since the latter is a free parameter.
We briefly that Theorem 4.2 is only stated and proved for discrete

memoryless sources, and handling continuous sources is a potentially
interesting open problem.

4.4 Examples

In this subsection, we provide two examples taken from [54].

4.4.1 Parallel Binary Sources

We begin with an analytical example showing that the achievable
distortion of Theorem 4.2 is not tight, i.e., it can be strictly higher than
the mismatched distortion-rate function. This example is closely related
to the parallel channel example of Section 2.4.5, and leads to analogous
observations. In fact, the analysis is also similar, and we therefore omit
some repeated details.

The source and reconstruction alphabets are given by X = X̂ =
{0, 1}2, and we write X = (X1, X2) and X̂ = (X̂1, X̂2) to denote the
corresponding binary pairs. We let ΠX be uniform, so that ΠX(x) = 1

4
for all x. For x = (x1, x2) and x̂ = (x̂1, x̂2), the distortion measures are
given as follows for some λ ∈ [0, 1]:

d0(x, x̂) = λ1{x1 6= x̂1}+ (1− λ)1{x2 6= x̂2}, (4.8)

d1(x, x̂) = 1
21{x1 6= x̂1}+ 1

21{x2 6= x̂2}. (4.9)
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Hence, the mismatched encoder treats the reconstructions of x1 and x2
with different weights, even though the two are treated equally under
the true distortion measure.

We set Q
X̂

in Theorem 4.2 to be the uniform distribution. To
understand the set P̃ in (4.6), we consider the mutual information
constraint I

P̃
(X; X̂) ≤ R. From the analysis in Section 2.4.5, we know

that
I
P̃

(X; X̂) ≥ (1−H2(δ̃1)) + (1−H2(δ̃2)), (4.10)

where δ̃1 and δ̃2 are transition probabilities associated with the marginals
P̃
X1X̂1

and P̃
X2X̂2

. From the choice of d0 in (4.8), the corresponding
distortion incurred is λδ̃1 + (1− λ)δ̃2, and we have

min
P̃
XX̂

: P̃X=ΠX ,P̃
X̂

=Q
X̂
,I
P̃

(X;X̂)≤R
EP [d0(X, X̂)]

≥ min
δ̃1,δ̃2: (1−H2(δ̃1))+(1−H2(δ̃2))≤R

λδ̃1 + (1− λ)δ̃2. (4.11)

In fact, this lower bound holds with equality, since it is attained when
P̃
X̂1|X1

and P̃
X̂1|X2

are independent BSCs with crossover probabilities
(δ̃∗1 , δ̃∗2) achieving the minimum on the right-hand side. Moreover, it
can be shown that the minimizer is unique on both sides of (4.11).
Under the optimal parameters (δ̃∗1 , δ̃∗2) attained in (4.11), the resulting
distortion incurred in (4.5) is

D1(Q
X̂
, R) = 1

2(δ̃∗1 + δ̃∗2) (4.12)

due to the choice of d1 in (4.9).
Next, since the matched rate-distortion function of a binary sym-

metric source with Hamming distortion is R∗symm(D) = 1 − H2(D)
bits/symbol [22, Sec. 10.3.1], the matched rate-distortion function of
the parallel source under consideration is R∗Matched(D1) = 2(1−H2(D1)).
Hence, for a given rate R, the distortion D1 incurred is the solution
to R = 2(1 − H2(D1)). We claim that, in fact, the mismatched rate-
distortion function D∗1(R) is identical to this matched one. This can be
verified by generating a separate codebook for each source, and letting
the overall codebook be the product of the two codebooks generated.
The easiest way to see that this achieves the matched performance is
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Figure 4.1: Parallel source example: Comparison of matched (λ = 0.5) and mis-
matched (λ = 0.2, 0.35) rate-distortion curves resulting from Theorem 4.2, in
the case that the source and the auxiliary distribution are both uniform, i.e.,
ΠX = Q

X̂
= ( 1

4 ,
1
4 ,

1
4 ,

1
4 ).

to note that d0 and d1 are equivalent under such a product codebook
structure.

Summarizing the above, the mismatched distortion rate function
yields the optimal value D∗1 satisfying R = 2(1−H2(D∗1)), whereas the
bound of Theorem 4.2 yields the distortion 1

2(δ̃∗1 + δ̃∗2) under the pair
(δ̃1, δ̃2) minimizing (4.11). Since the latter constrains (1 − H2(δ̃1)) +
(1 −H2(δ̃2)) ≤ R, we can use the strict concavity of H2(·) to deduce
that 1

2(δ̃∗1 + δ̃∗2) ≥ D∗1, with strict inequality when δ∗1 6= δ∗2 . Finally, one
can verify that δ∗1 6= δ∗2 whenever λ 6= 1

2 in (4.8); see Figure 4.1 for an
illustrative numerical example. Hence, we conclude that Theorem 4.2
fails to achieve the mismatched distortion-rate function in such cases.
While we only showed this for uniform Q

X̂
, any other choice would be

suboptimal even under matched encoding.
This example suggests that Theorem 4.2 could be improved via

multi-user coding techniques, analogously to the studies of multi-user
coding techniques for single-user channel coding surveyed in Section 6.
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To our knowledge, this idea is yet to be investigated beyond the present
example.

4.4.2 Ternary Symmetric Source

We consider an equiprobable ternary source: X = {0, 1, 2}, and ΠX(x) =
1
3 for each x. The distortion measures are given by

d0(x, x̂) = 1{x 6= x̂}, (4.13)
d1(x, x̂) = 1{x 6= x̂ ∩ x 6= 2}. (4.14)

Hence, the mismatched encoder uses the Hamming distance, whereas
under the true distortion measure, no penalty is incurred for x = 2.

The analysis given in [54] is outlined as follows:

• Under the uniform distribution Q
X̂

= (1
3 ,

1
3 ,

1
3), the unique mini-

mizer P̃
X̂|X in (4.6) is a ternary symmetric channel. Moreover, the

transition probability δ∗ between differing symbols is such that
I
P̃

(X; X̂) = R. The resulting distortion is E
P̃

[d1(X, X̂)] = 2
3 · 2δ

∗.

• Under the distribution Q
X̂

= (1
2 ,

1
2 , 0), the unique minimizer P̃

X̂|X
in (4.6) maps x = 2 to {0, 1} with probability 1

2 each, and maps
{0, 1} to {0, 1} according to a BSC. The crossover probability δ∗
is such that 2

3(1 − H2(δ∗)) = R, and the resulting distortion is
E
P̃

[d1(X, X̂)] = 2
3 · δ

∗.

The first of these choices of Q
X̂

would be optimal if the true distortion
were also d0, whereas the second is optimal under d1.

The achievable rate-distortion curves are plotted in Figure 4.2. For
the case Q

X̂
= (1

3 ,
1
3 ,

1
3), we also plot the matched function given in

(4.7), whereas for Q
X̂

= (1
2 ,

1
2 , 0) we found the matched and mismatched

curves to coincide.

4.5 Achievability Proof

In this subsection, we prove Theorem 4.2. We make use of the method
of types, including some of the properties stated in Section 2.6.1.
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Figure 4.2: Ternary symmetric source example: Upper bounds on the mismatched
distortion-rate function under the auxiliary distributions Q

X̂
= ( 1

3 ,
1
3 ,

1
3 ) and Q

X̂
=

( 1
2 ,

1
2 , 0).

Recall that we generate the codewords {X̂(m)}Mm=1 independently
according to the constant-composition codeword distribution P

X̂
in

(4.4). In accordance with Definition 4.1, we would like to show that the
random-coding error probability

pe , P
[ 1
n
dn1 (X, X̂) ≥ D1 + δ

]
(4.15)

vanishes as n→∞, for arbitrarily small δ > 0. Overloading the notation,
we first consider the conditional error probability

pe(x) , P
[ 1
n
dn1 (x, X̂) ≥ D1 + δ

∣∣∣X = x

]
. (4.16)

In the following, for a given type PX ∈ Pn(X ) associated with x, we
consider the possible joint types P̃

XX̂
∈ Pn(X × X̂ ) induced between x

and the codewords {X̂(j)}Mj=1.

Lemma 4.3 (Occurrences of Joint Types). Consider a random codebook
Cn = {X(1), . . . ,X(M)} with codewords of length n drawn indepen-
dently from P

X̂
in (4.4). For any δ′ > 0, conditioned on any X = x
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with x ∈ T n(PX), the following statements simultaneously hold with
probability approaching one as n→∞:

1. For all x̂ ∈ Cn, if (x, x̂) ∈ T n(P̃
XX̂

) for some P̃
XX̂
∈ Pn(X × X̂ ),

then it must hold that P̃X = PX and P̃
X̂

= Q
X̂,n

.

2. Defining the set

S(−)
n (PX) = {P̃

XX̂
∈ Pn(X × X̂ ):

P̃X = PX , P̃X̂ = Q
X̂,n

, I
P̃

(X; X̂) ≥ R+ δ′}, (4.17)

there does not exist a codeword x̂ ∈ Cn such that (x, x̂) ∈
T n(P̃

XX̂
) with P̃

XX̂
∈ S(−)

n (PX).

3. Conversely, for any joint type in the set

S(+)
n (PX) = {P̃

XX̂
∈ Pn(X × X̂ ):

P̃X = PX , P̃X̂ = Q
X̂,n

, I
P̃

(X; X̂) ≤ R− δ′}, (4.18)

there exists at least one codeword x̂ ∈ Cn for which (x, x̂) ∈
T n(P̃

XX̂
).

Proof. The first claim follows trivially from the assumption that x ∈
T n(PX) and the fact that we are using constant-composition random
coding according to the type Q

X̂,n
.

The second and third claims are based on the following expression
for the probability that there exists at least one codeword inducing a
given joint type P̃

XX̂
:

P
[ M⋃
j=1
{(x, X̂(j)) ∈ T n(P̃

XX̂
)}
]

= 1− (1− P[(x, X̂) ∈ T n(P̃
XX̂

)])M ,

(4.19)
where X̂ ∼ P

X̂
is independent of x. We fix ε > 0 and note the following:

• If P[(x, X̂) ∈ T n(P̃
XX̂

)] ≥ e−n(R−ε), then the right-hand side
of (4.19) is lower bounded by 1− (1− e−n(R−ε))enR = 1− ((1−
e−n(R−ε))en(R−ε))enε , which tends to one faster than exponentially
since (1− e−n(R−ε))en(R−ε) → 1

e .



250 Mismatch in Rate Distortion Theory

• If P[(x, X̂) ∈ T n(P̃
XX̂

)] ≤ e−n(R+ε), then the right-hand side of
(4.19) is upper bounded by 1 − (1 − e−n(R+ε))enR = 1 − ((1 −
e−n(R+ε))en(R+ε))e−nε , which tends to zero exponentially fast since
(1− e−n(R+ε))en(R+ε) → 1

e , and since for fixed α > 0 it holds that
( 1
α)z = 1− z logα+O(z2) as z → 0.

The second and third claims of the lemma now follow by combining
the above calculations with the fact that P[(x, X̂) ∈ T n(P̃

XX̂
)] behaves

as e−nIP̃ (X;X̂) times a sub-exponential pre-factor (cf., (2.85)), taking
the union bound over all possible joint types (of which there are only
polynomially many), and noting that ε can be arbitrarily small.

The remainder of the proof of Theorem 4.2 contains rather technical
continuity arguments; we only present an outline of the arguments here,
and refer the interested reader to [54] for further details.

Letting Sn(PX) be the set of all joint types of (x, x̂) induced by
some x̂ ∈ Cn, Lemma 4.3 states that with high probability, S(+)

n (PX) ⊆
Sn(PX) and S(−)

n (PX) ∩ Sn(PX) = ∅. Moreover, by the first part of the
lemma, S(−) and S(+) collectively account for all possible joint types
except those for which I

P̃
(X; X̂) ∈ (R− δ′, R+ δ′).

By construction, the encoder maps x to an index m ∈ {1, . . . ,M}
such that the corresponding joint type P̃

XX̂
has the highest possible

value of E
P̃

[d0(X, X̂)]. In addition, we have Q
X̂,n
→ Q

X̂
by definition,

and PX → ΠX by the law of large numbers. Hence, and taking δ′ → 0
in Lemma 4.3, we can deduce that the joint type P̃

XX̂
of (X, X̂)

must be arbitrarily close to a minimizer of E
P̃

[d0(X, X̂)] subject to
P̃X = ΠX , P̃

X̂
= Q

X̂
, and I

P̃
(X; X̂) ≤ R. Notice that these constraints

coincide with those in (4.6). In particular, the normalized distortion
incurred is 1

nd
n
1 (x, X̂) = E

P̃
[d1(X, X̂)], and is therefore upper bounded

by max
P̃
XX̂
∈P̃ E

P̃
[d1(X, X̂)] + δ for arbitrarily small δ > 0.

The proof is completed by recalling the definition of an achievable
(R,D) pair in Definition 4.1, and noting that we have only relied on the
high-probability events in Lemma 4.3 as well as PX → ΠX .
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4.6 Multi-Letter Improvement and Converse

We saw in Section 4.4 that the upper bound D1(Q
X̂
, R) is not tight in

general, i.e., it can be strictly higher than the mismatched distortion-
rate function D∗1(R), even after optimizing Q

X̂
. As with the LM rate

in channel coding (cf., Section 2.7), one can attain improved rates
by coding over blocks of k symbols. Applying Theorem 4.2 to the
source Πk

X , optimizing the input distribution Q
X̂k on the product

alphabet X̂ k, and normalizing the rate and the distortion incurred by k,
we obtain an achievability result for the original source. Specifically,
letting D1(Q

X̂
, R,ΠX) denote (4.5) with an explicit dependence on the

source, the achievable distortion is given by

D
(k)
1 (R) , min

Q
X̂k

1
k
D1(Q

X̂k , kR,Πk
X). (4.20)

Since the choice of k is arbitrary, it follows that the distortion

D
(∞)
1 (R) , inf

k∈Z
D

(k)
1 (R) (4.21)

is also achievable at rate R.
While the tightness of the product extension of the LM rate for

channel coding (i.e., the Csiszár–Narayan conjecture) remains an open
problem, the following theorem reveals that the analogous statement
is indeed true for the mismatched rate-distortion problem, at least
up to tie-breaking issues [54]. Specifically, it is true when we assume
a pessimistic view of tie-breaking: If multiple codewords achieve the
minimum in (4.1), then the selected codeword is the one with the highest
dn1 (x, x̂). If there is still a tie among these, then it makes no difference
which one is chosen.

Theorem 4.4 (Multi-Letter Converse). Under the mismatched rate-
distortion problem specified by (Π, d0, d1), under pessimistic tie-
breaking, the mismatched distortion-rate function satisfies

D∗1(R) = D
(∞)
1 (R). (4.22)

Proof. We have already established that the distortion D
(∞)
1 (R) =

infk∈ZD
(k)
1 (R) is achievable, i.e., it is an upper bound on D∗1(R). Since
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the distortion-rate function is continuous in R by Lemma 4.1, it suffices
to show that for any δ > 0, we can find an integer k such that D(k)

1 (R+
δ) ≤ D∗1(R) + cδ, where c > 0 is a constant not depending on δ. From
(4.20), such a statement is equivalent to showing that we can find an
auxiliary distribution Q

X̂k such that

1
k
D1(Q

X̂k , k(R+ δ),Πk
X) ≤ D∗1(R) + cδ. (4.23)

By the definition of the mismatched distortion-rate function D∗1(R)
(Definition 4.1), for any δ > 0, there exists a sufficiently large block
length k and a codebook Ck = {x̂(1), . . . , x̂(M)} with M ≤ ek(R+δ), such
that 1

kd
k
1(X, X̂) ≤ D∗1(R) + δ with probability at least 1 − δ,3 where

X ∼ Πk
X and X̂ is the resulting estimate. Recalling the definition

d1,max = maxx,x̂ d1(x, x̂) and the non-negativity of d1, we deduce that

1
k

E[dk1(X, X̂)] ≤ D∗1(R) + δ(1 + d1,max), (4.24)

which follows by upper bounding the distortion by d1,max in the case
that 1

kd
k
1(X, X̂) > D∗1(R) + δ.

In the following, we denote the mapping from source sequences to
compressed sequences under the codebook Ck as φ∗(·), i.e., X̂ = φ∗(X).
In addition, we let Q

X̂k be the resulting marginal distribution of X̂ ∈
X̂ k, corresponding to randomly generating X ∼ Πk

X and then setting
X̂ = φ∗(Xk).

We now consider the achievable distortion level of Theorem 4.2
applied to the multi-letter source Πk

X :

D1(Q
X̂k , k(R+ δ),Πk

X) = max
P̃
XkX̂k

∈P̃k
E
P̃

[dk1(Xk, X̂k)], (4.25)

where, in accordance with (4.6), we have

P̃k =
{
P̃
XkX̂k : P̃

XkX̂k ∈ arg min
P̃
XkX̂k

: P̃
Xk

=ΠkX ,P̃X̂k=Q
X̂k

,

I
P̃

(Xk;X̂k)≤k(R+δ)

E
P̃

[d0(X, X̂)]
}
.

(4.26)
3Here we use k instead of n for the block length to highlight the fact that we

consider D(k)
1 (R) in (4.20) and choose Q

X̂k depending on Ck.
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Note that the X̂-marginal constraint ensures that P
X̂k takes mass only

on the elements of Ck, of which there are at most ek(R+δ). It follows
that I

P̃
(Xk; X̂k) ≤ H

P̃
(X̂k) ≤ k(R+ δ), and hence the rate constraint

is redundant (i.e., it is automatically satisfied).
Since φ∗(xk) is a mismatched encoding rule minimizing d0, the joint

distribution resulting from P̃
X̂k|Xk(x̂k|xk) = 1{x̂k = φ∗(xk)} must be

in the set P̃k. Moreover, among all conditional distributions P̃
X̂k|Xk

producing the required marginal Q
X̂k supported on Ck, it is φ∗(xk) that

achieves the minimum in (4.25). Indeed, this follows directly from our
assumption of pessimistic tie-breaking – if two codewords achieve the
same d0, then the one with the highest d1 is selected under φ∗.

As a result, using the bound on the average distortion under Ck in
(4.24), we deduce from (4.25) that

1
k
D1(Πk

X , QXk , k(R+ δ)) ≤ D∗1(R) + δ(1 + d1,max). (4.27)

We have therefore established (4.23) (with c = 1 + d1,max), as
required.

4.7 Mismatched Random Codebooks with Optimal Encoding

The preceding subsections considered the mismatched encoding problem
in which the encoder chooses the minimum-distortion codeword with
respect to d0, but the actual distortion measure is d1. In this subsection,
we turn to a different form of mismatch in which a common distortion
measure d is adopted throughout the system, but a suboptimal random
coding distribution is used to generate the codebook. We are interested
in the rate-distortion trade-off for the given random coding ensemble.
This problem was studied in the case of finite alphabets in [106], and
more general alphabets in [107]. We refer the reader to [28] for a
more detailed survey, and discuss some other notions of mismatch and
universality in Section 4.7.4.

We focus primarily on the finite-alphabet setting in this subsection,
while occasionally providing references to more general results. In addi-
tion, Section 4.8 will consider a specific case of significant interest with
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continuous alphabets, namely, Gaussian codebooks for non-Gaussian
sources.

4.7.1 Achievable Rate-Distortion Functions

We consider the setup of Section 4.2 with a common distortion measure
d0 = d1 = d, assumed to be non-negative and finite-valued. In this
case, the encoder in (4.1) becomes the optimal minimum-distortion rule,
which is repeated as follows for convenience:

m = arg min
j=1,...,M

dn(x, x̂(j)), dn(x, x̂) =
n∑
i=1

d(xi, x̂i). (4.28)

Here the distortion incurred is identical for all tie-breaking strategies.
If the codebook is optimized in accordance with Definition 4.1, then

the rate-distortion trade-off is characterized by the classical solution of
Shannon [89], stated as follows:

R∗Matched(D) = min
P̃XX̂ : P̃X=ΠX
E
P̃

[d(X,X̂)]≤D

I
P̃

(X; X̂). (4.29)

Here and subsequently, we find it more convenient to consider the rate as
a function of the distortion, but the distortion as a function of the rate
follows by a simple inversion. For instance, (4.29) yields the following
distortion-rate function:

D∗Matched(R) = min
P̃XX̂ : P̃X=ΠX
I
P̃

(X;X̂)≤R

E
P̃

[d(X, X̂)]. (4.30)

In analogy with the channel coding results surveyed in Section 2,
we consider two random-coding ensembles, both of which consist of gen-
erating a codebook C = {X̂(1), . . . , X̂(M)} containing codewords drawn
independently from some distribution P

X̂
. Under the i.i.d. ensemble, we

set P
X̂

(x̂) = Qn
X̂
, and under the constant-composition ensemble, P

X̂
is

as given in (4.4). Similarly to Definition 4.1, we are interested in the
random-coding error probability

pe(n,M,D,Q
X̂
, δ) , P

[ 1
n
dn(X, X̂) ≥ D + δ

]
, (4.31)
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where the average is with respect to both X ∼ Πn
X and the random code-

book of size M . We say that a rate-distortion pair (R,D) is achievable
if pe(n, ben(R+δ)c, D,Q

X̂
, δ)→ 0 for any fixed δ > 0.

The achievable rate-distortion functions for these ensembles are
introduced as follows, and will be accompanied by a formal theorem
below. For the i.i.d. ensemble, the primal form is given by

Riid(D,Q
X̂

) = min
P̃XX̂ : P̃X=ΠX ,
E
P̃

[d(X,X̂)]≤D

D(P̃
XX̂
‖ΠX ×QX̂), (4.32)

and the dual form is given by

Riid(D,Q
X̂

) = sup
s≥0
−
∑
x

ΠX(x) log
∑
x̂

Q
X̂

(x̂)es(D−d(x,x̂)). (4.33)

Similarly, for the constant-composition ensemble, the primal form is
given by

Rcc(D,QX̂) = min
P̃XX̂ : P̃X=ΠX ,P̃

X̂
=Q

X̂
,

E
P̃

[d(X,X̂)]≤D

I
P̃

(X; X̂), (4.34)

and the dual form is given by

Rcc(D,QX̂) = sup
s≥0,b(·)

−
∑
x

ΠX(x) log
∑
x̂

Q
X̂

(x̂)es(D−d(x,x̂))eb(x̂)−φb

(4.35)
with φb = EQ[b(X̂)]. A proof of the equivalence of (4.32)–(4.33) can be
found in [28], and that of (4.34)–(4.35) can be proved in the same way
as the LM rate for channel coding.

Interestingly, there is a close connection between these expressions
and those of the GMI and LM rate: From (4.32) and (4.34), we obtain
the primal channel coding rates upon identifying (X, X̂) ↔ (Y,X),
d(x, x̂) ↔ − log q(x, y), and D ↔ EQX×W [− log q(X,Y )]. In addition,
we have the following analog of the fact that the LM rate is at least as
high as the GMI:

Riid(D,Q
X̂

) ≤ Rcc(D,QX̂). (4.36)

It is important, however, to remember that here we would like the rate
to be as small as possible for a given distortion level, in stark contrast
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with the channel coding setup in which high rates are desired. Thus, the
ordering (4.36) in fact implies that i.i.d. random coding is preferable to
constant-composition random coding for a given choice of Q

X̂
. While

strict inequality is possible in (4.36), equality holds upon minimizing
both sides over Q

X̂
(see the discussion following (4.7)).

The intuition as to why i.i.d. random coding may be preferable is as
follows. Attaining dn(X, X̂) < n(D + δ) is equivalent to the existence
of a codeword X̂(j) such that (X, X̂(j)) induces a joint type P̃

XX̂

satisfying E
P̃

[d(X, X̂)] < D + δ. By a typicality argument, we may
assume that the X-marginal of P̃

XX̂
is arbitrarily close to ΠX . For the

X̂-marginal, we consider two separate cases:

• Suppose that the X̂-marginal of P̃
XX̂

is Q
X̂

(or more generally, the
type Q

X̂,n
approximating Q

X̂
). Then, by the properties of types

in Section 2.6.1, the i.i.d. and constant-composition codeword
distributions yield matching behavior (on an exponential scale)
in the probability of the event (X, X̂(j)) ∈ T n(P̃

XX̂
). Note that

I
P̃

(X; X̂) = D(P̃
XX̂
‖ΠX ×QX̂) in this case.

• On the other hand, if the X̂-marginal of P̃
XX̂

differs from Q
X̂
,

then the event (X, X̂(j)) ∈ T n(P̃
XX̂

) never occurs under the
constant-composition ensemble. However, it may still occur under
the i.i.d. ensemble, with an associated per-codeword probability
of roughly e−nD(P̃

XX̂
‖ΠX×Q

X̂
).

Thus, high-probability success under the constant-composition ensemble
essentially implies the same under the i.i.d. ensemble, but the opposite
is not true in general. In this sense, the i.i.d. ensemble produces a more
diverse codebook that improves the chances of a low-distortion codeword
existing. Analogous observations were made for the error exponents of
Gaussian codebooks in [111].

In light of this discussion, it is natural to ask why constant-
composition coding was used in the proof of Theorem 4.2. Firstly, we
note that the distribution Q

X̂
therein is optimized, rather than being

fixed and possibly suboptimal. In addition, under the setup therein with
two distortion measures d0 and d1, an additional subtlety arises: A more
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diverse codebook may amount to more ways in which the encoder can be
led astray due to the mismatch. In fact, in the parallel source example
of Section 4.4.1 is an example in which additional codebook structure
provably eliminates the performance loss due to mismatch.

4.7.2 Statement of Results

In the following, we provide a formal statement of achievability and
ensemble tightness for the above rate-distortion functions Riid and Rcc.
To avoid trivial cases, we consider technical assumptions stated in terms
of the following definitions:

Dmin =
∑
x

ΠX(x) min
x̂: Q

X̂
(x̂)>0

d(x, x̂), (4.37)

Dprod =
∑
x,x̂

ΠX(x)Q
X̂

(x̂)d(x, x̂). (4.38)

We assume that D ≥ Dmin, which is justified by the fact that Dmin is
the average distortion attained when each source symbol xi is paired
with the reconstructed symbol x̂i having the lowest possible distortion.
In addition, we can assume without loss of generality that D < Dprod,
since a distortion of at most Dprod + δ is trivially attained with high
probability using a “codebook” with just a single codeword drawn from
Qn
X̂
, due to the law of large numbers.

Theorem 4.5 (Achievable Rate-Distortion Functions with Mismatched
Random Coding). For any discrete memoryless source ΠX , distortion
function d, distortion level D ∈ [Dmin, Dprod), auxiliary distribution
Q
X̂
∈ P(X̂ ), and parameter δ > 0, the random-coding error probability

(4.31) satisfies the following:

• Under the i.i.d. ensemble, we have pe(n, benRc, D,QX̂ , δ)→ 0 for
any R > Riid(D,Q

X̂
) and δ > 0, and pe(n, benRc, D,QX̂ , δ) → 1

for any R < Riid(D,Q
X̂

) and sufficiently small δ > 0.

• Under the constant-composition ensemble, we have
pe(n, benRc, D,QX̂ , δ) → 0 for any R > Rcc(D,QX̂) and
δ > 0, and pe(n, benRc, D,QX̂ , δ) → 1 for any R < Rcc(D,QX̂)
and sufficiently small δ > 0.



258 Mismatch in Rate Distortion Theory

Remark 4.2. As we will exemplify in Section 4.7.3, the constraint
set in (4.34) may be empty, in which case we adopt the convention
Rcc(D,QX̂) =∞, meaning that the condition R > Rcc(D,QX̂) cannot
be satisfied for any rate R, and no achievability claim is made for the
given pair (D,Q

X̂
). Specifically, this occurs whenever

D < min
P̃XX̂ : P̃X=ΠX ,P̃

X̂
=Q

X̂

E
P̃

[d(X, X̂)], (4.39)

and the right-hand side may be strictly larger than Dmin in (4.37).
The reason for this phenomenon is that under a suboptimal choice
of Q

X̂
, a given typical sequence X may incur significant distortion

with every sequence that has composition Q
X̂
. In contrast, under the

i.i.d. ensemble, although most codewords have composition close to Q
X̂
,

many codewords also have significantly different compositions.

The results of Theorem 4.5 can be proved in several ways. For
the constant-composition ensemble, the achievability part is in fact a
special case of Theorem 4.2, obtained by setting d0 = d1. This gives
the distortion-rate function in (4.7),4 which can be inverted to obtain
the primal rate-distortion expression in (4.34). The ensemble tightness
claim readily follows since the proof in Section 4.5 is based on exact
error probability expressions and the method of types.

The i.i.d. ensemble can be analyzed similarly using types. Alter-
natively, an elementary achievability proof that avoids the use of
types is possible via the techniques of Gallager [38, Lemma 9.3.1]
and Sakrison [73]. To further highlight the connections between mis-
matched channel coding and rate-distortion theory, we instead outline an
approach via a large-deviations result of [28], which we also used in Sec-
tion 3.7 to prove the ensemble tightness of the GMI for channel coding.

We first form an exact expression for the random-coding error proba-
bility under the i.i.d. ensemble as follows (see also [52, Thm. 9]): Defining

4The subscript “Matched” in (4.7) refers to having d0 = d1, but the choice of
Q
X̂

may still be mismatched in the sense of being fixed and suboptimal.
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(X, X̂ ′) ∼ Πn
X(x)Qn

X̂
(x̂), we have

pe = P
[ ⋂
j=1,...,M

{ 1
n
dn(X, X̂(j)) ≥ D + δ

}]
(4.40)

= E
[
P
[ ⋂
j=1,...,M

{ 1
n
dn(X, X̂(j)) ≥ D + δ

} ∣∣∣X]]
(4.41)

= E
[(

P
[ 1
n
dn(X, X̂ ′) ≥ D + δ

∣∣∣X])M]
(4.42)

= E
[(

1− P
[ 1
n
dn(X, X̂ ′) < D + δ

∣∣∣X])M]
, (4.43)

where (4.42) uses the independence of the random codewords. Observe
that (4.43) bears a strong resemblance to the channel coding counterpart
in (3.34).

One could proceed by characterizing the inner probability in (4.43)
using the method of types, via similar steps to Section 4.5. One may
also be tempted to follow the dual analysis of the GMI for channel
coding in Section 2.6.4; however, the situation is different here, as we
require a lower bound on the tail event in (4.43) to upper bound pe,
whereas the techniques of Section 2.6.4 (e.g., Markov’s inequality) lead
to upper bounds on the tail event.5 Hence, we instead consider the
use of the following large deviations result [28, Thm. 1], from which
both the achievability of Riid and ensemble tightness readily follow.
We state this result in a general form that permits its use even in the
continuous-alphabet setting.

Lemma 4.6 (Large Deviations Result for i.i.d. Random Coding). Fix a
memoryless source ΠX , an auxiliary distribution Q

X̂
, and a non-negative

distortion measure d(x, x̂), and define6

Dmin = EΠX [ess infQ
X̂
d(X, X̂)], (4.44)

Dprod = EΠX×Q
X̂

[d(X, X̂)]. (4.45)
5Note also that d(x, x̂) here plays the role of − log q(x, y) in channel coding, so

the inner probability in (4.43) considers a lower tail event, instead of an upper tail
event.

6As stated in Footnote 1 in Section 3.7, the essential infimum of a function
g(X̂) with respect to X̂ ∼ Q

X̂
is defined to be supremum of t ∈ R for which

PQ[g(X̂) > t] = 1.
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Then, if Dprod < ∞, we have for any D ∈ (Dmin, Dprod) that the
following holds with probability one with respect to X:

lim
n→∞

− 1
n

log P[log dn(X, X̂ ′) ≥ nD|X] = Riid(D,Q
X̂

), (4.46)

where (X, X̂ ′) ∼ Πn
X(x)Qn

X̂
(x̂).

With this result in place, the desired claim in Theorem 4.5 for
D ∈ (Dmin, Dprod) follows from (4.43) (with M = benRc) and the fact
that (1− 1

αn
)βn → 0 whenever αn ≥ 1 and limn→∞

αn
βn

= 0 (achievability)
and (1− 1

αn
)βn → 1 whenever αn ≥ 1 and limn→∞

αn
βn

=∞ (ensemble
tightness).

The assumption D ∈ (Dmin, Dprod) in Lemma 4.6 is motivated in
the same way as the discussion following (4.38), except that for general
alphabets, strict inequality is assumed in the condition D > Dmin in
order to avoid technical issues when D = Dmin. In contrast, in the
finite-alphabet setting, the case D = Dmin simply amounts to lossless
compression, which can easily be handled separately. Further discussion
can be found in the text following [28, Thm. 1].

4.7.3 Example: Bernoulli Source

As a simple example illustrating the preceding achievable rates, we
consider the source X ∼ Bernoulli(p) with p ≤ 1

2 , and let d(x, x̂) =
1{x̂ 6= x} be the Hamming distortion measure. It is well-known that
the matched rate-distortion function is [22, Sec. 10.3.1]

R∗Matched(D) = [H2(p)−H2(D)]+, (4.47)

where [α]+ = max{0, α}. In addition, the optimal auxiliary distribution
Q
X̂

is Bernoulli(q∗), with q∗ chosen according to one of two cases: (i) if
0 ≤ D ≤ p, then q∗ = p−D

1−2D ; (ii) if D > p, then q∗ = 0.
In Figure 4.3, we compare R∗Matched to Riid and Rcc in the case that

p = 1
3 , and QX̂ is chosen to be Bernoulli(1

5). We observe that Riid incurs
a small loss compared to R∗Matched across the entire range of distortion
levels. While Rcc behaves similarly to Riid at high distortion levels, it
is unable to attain any distortion level below a threshold of roughly
0.13, regardless of a rate; this is due to the phenomenon discussed
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Figure 4.3: Bernoulli source example: Matched and mismatched rate-distortion
curves with X ∼ Bernoulli( 1

3 ) and the Hamming distortion measure. In the mis-
matched case, the auxiliary distribution Q

X̂
is chosen to be Bernoulli( 1

5 ).

in Remark 4.2. Finally, we note that all three curves coincide when
D = 2

9 ≈ 0.22; this is due to the fact that the optimal parameter
q∗ = p−D

1−2D mentioned above equals 1
5 under this choice, and thus

coincides with the choice of Q
X̂
.

4.7.4 Further Related Work

We conclude this subsection by briefly outlining some other relevant
notions of mismatch and universality in the literature on rate-distortion
theory. This outline is far from exhaustive, and further references can
be found in [28, 50].

We first briefly mention that the techniques and results surveyed in
this subsection are related to (and in some cases directly used in) studies
of universal rate-distortion codes [28, 50, 98, 110]. Along similar lines, the
early works of Sakrison [73, 74] introduced the problem of constructing
rate-distortion codes that simultaneously achieve low distortion for a
class of sources, as a natural analog of the compound channel in channel



262 Mismatch in Rate Distortion Theory

coding [16]. This setup is also closely related to the use of Gaussian
codes for non-Gaussian sources [54], which we survey in Section 4.8.

In other works such as [42, 43], the goal is also to characterize
the degradation in performance when a rate-distortion codebook is
designed for some source ΠX but then applied to a different source
Π′X . This is analogous to the problem considered in this subsection, but
is studied in [42, 43] beyond the random coding setting, with various
results including generalizations of the well-known loss of D(ΠX‖Π′X)
for Huffman coding [22, Sec. 5.6].

4.8 Gaussian Compression for Non-Gaussian Sources

In the previous subsection, we focused on discrete memoryless sources
with a mismatched random coding distribution. In this section, we
turn to a particularly important special case of the continuous-alphabet
counterpart of this problem, namely, Gaussian coding for non-Gaussian
sources under the squared-error distortion criterion [54]. This can be
viewed as an analogous problem to that of mismatched Gaussian codes
for channel coding (cf., Section 3.8.2). Before formally describing the
problem setting, we provide some background on rate-distortion theory
with Gaussian sources.

4.8.1 Background

The compression of Gaussian sources subject to a squared-error dis-
tortion constraint is one of the most widely-considered rate-distortion
settings. In this setting, the source X is assumed to be i.i.d. on N(0, σ2)
for some σ2 > 0, and the goal is to construct an encoder (mapping
Rn to {1, . . . ,M}) and decoder (mapping {1, . . . ,M} to Rn) such that
dn(x, x̂) = ‖x− x̂‖22 is small, where x̂ is the reconstruction.

Under the matched counterpart of Definition 4.1 with d0 = d1 = d,
the rate-distortion function is given by [22, Sec. 10.3.2]

R∗Matched(D) =
[1
2 log σ

2

D

]
+
, (4.48)

where [α]+ = max{0, α}. The achievability part can be proved using
Gaussian codebooks (to be made precise below), along with an encoder
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that maps a given source sequence x ∈ Rn to the nearest codeword in
the codebook:

x̂ = arg min
j=1,...,M

‖x− x̂(j)‖22. (4.49)

4.8.2 Non-Gaussian Sources

Suppose that we have an arbitrary memoryless source on R, i.e.,
X ∼ Πn

X for some ΠX . For concreteness, we assume that the underlying
distribution is continuous, so that ΠX is a density function. Continuing
with the assumption of squared-error distortion d(x, x̂) = (x− x̂)2, the
matched rate-distortion function in (4.29) specializes as follows:

R∗Matched(D) = min
P̃
XX̂

: P̃X=ΠX ,

E
P̃

[(X−X̂)2]≤D

I(X; X̂). (4.50)

However, achieving this rate may be difficult – the source distribution
may be unknown, and even if it is known, the required codebook
structure may be prohibitively complex.

In this subsection, we address these difficulties by considering the
question of how well a Gaussian codebook performs when applied to
a non-Gaussian source. Since we are considering the squared-error
distortion d(x, x̂) = (x− x̂)2, we still adopt the encoding rule in (4.49).
We only assume that the source has a fixed second moment:

EΠ[X2] = σ2. (4.51)

One may expect a rate increase due to the suboptimality of the codebook
construction, but on the other hand, one may expect a rate decrease
due to the fact that Gaussian sources are the hardest to compress for
a given second moment under the squared-error distortion criterion
[22, Ex. 10.8]. Analogously to mismatched channel coding with non-
Gaussian noise (cf., Section 3.8.2), we will see that these effects cancel
each other, and all sources lead to the same rate-distortion trade-off as
the Gaussian source.

While our presentation follows that of Lapidoth [54], an achievability
result was also given in the early work of Sakrison [73] under the
additional technical assumption that the (2 + ε)-th moment of X exists
for some ε > 0.
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4.8.3 Gaussian Codebooks

We consider two different notions of Gaussian codebooks, which we refer
to as the Gaussian i.i.d. ensemble and the shell ensemble. Fixing Γ > 0,
the Gaussian i.i.d. ensemble considers codewords that are independently
distributed according to

X̂ ∼ N(0,ΓIn) (4.52)

where 0 is the zero vector and In is the n × n identity matrix. In
contrast, the shell ensemble considers codewords that are independently
distributed according to

X̂ ∼ Uniform(Sn(Γ)), (4.53)

where Sn(Γ) = {x̂ ∈ Rn: ‖x̂‖22 = nΓ} is the shell of radius
√
nΓ in

n-dimensional space.
The parameter Γ represents the “power” of codewords in the code-

book, but in contrast with channel coding, this is not constrained as
part of the problem statement. The optimal choice will turn out to be
Γ = σ2 −D whenever D ≤ σ2, whereas the case D > σ2 trivially yields
a rate of zero by always outputting the all-zero sequence.

4.8.4 Achievability Result

The above-outlined achievability result is formally stated as follows.

Theorem 4.7 (Gaussian Codes for Non-Gaussian Sources). For any mem-
oryless source ΠX with EΠ[X2] = σ2, under the Gaussian i.i.d. ensemble
or shell ensemble with parameter Γ > 0, along with nearest-neighbor
encoding according to (4.49), we have the following for any pair (R,D)
and δ > 0:

• If Γ = [σ2 − D]+ and R ≥ [1
2 log σ2

D ]+ + δ, then as n → ∞, we
have

P[‖X − X̂‖22 ≥ n(D + δ)]→ 0. (4.54)

• For any choice of Γ, if R ≤ [1
2 log σ2

D ]+ − δ, then as n → ∞, we
have

P[‖X − X̂‖22 ≥ n(D − δ)]→ 1. (4.55)
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As with Theorem 3.9, this result can be viewed both positively and
negatively. On the positive side, we see that Gaussian codes form a
compression scheme that is robust in handling non-Gaussian sources.
On the other hand, Gaussian sources are the hardest to compress for a
given second moment [22, Ex. 10.8], and Theorem 3.9 states that we
always attain this worst-case performance and no better.

The proof of Theorem 3.9 is outlined as follows; further details can
be found in [54]:

• By the circular symmetry of the distributions in (4.52)–(4.53),
and similar symmetry in the nearest-neighbor encoding rule (4.49),
the conditional error probability P[error|x] depends on the source
realization x only through ‖x‖22.

• From existing analyses of Gaussian codes for Gaussian sources,
one can deduce that (i) P[error|x]→ 0 as n→∞ with 1

n‖x‖
2
2 → γ

for any γ such that R > [1
2 log γ

D ]+; (ii) P[error|x]→ 1 as n→∞
with 1

n‖x‖
2
2 → γ for any γ such that R < [1

2 log γ
D ]+.

• Hence, the theorem follows from the fact that, for any memoryless
source with E[X2] = σ2, the law of large numbers implies that
1
n‖X‖

2
2 converges in probability to σ2.

A complete proof can be found in [54], and an alternative proof can
be found in [111] that also leads to refined asymptotic bounds. For the
i.i.d. ensemble, it can also be shown that Riid in (4.32) evaluates to
[1
2 log σ2

D ]+ when Q
X̂

is chosen as N(0, [σ2 −D]+) [28, Examples 1–2],
meaning that (4.54)–(4.55) follows from the first part of Theorem 4.5.



5
Multiple-Access Channels

5.1 Introduction

The main focus of this monograph, and of the relevant literature on
mismatched decoding, is on the point-to-point channel coding problem.
As outlined in Section 1, this is in itself a very challenging problem with
many important applications.

In this section, however, we turn the problem of coding for the
multiple-access channel (MAC), in which two (or more) users send
information to a common receiver. While this is a harder problem than
the already-challenging single-user problem, its study is of interest for
a number of reasons:

• The analysis of random coding comes with interesting new chal-
lenges not present in the single-user problem, both in terms of
the achievability and ensemble tightness.

• We will find that multiple-access coding techniques can be benefi-
cial even in the single-user setting, leading to rates strictly higher
than the LM rate of Section 2. We will treat this perspective rather
briefly in this section, focusing on the parallel BSC example of

266
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Section 2.4.5, and then explore multi-user coding techniques for
single-user channels in detail in Section 6.

The results of this section are mostly due to Lapidoth [58], but we will
generally adopt the more recent proof techniques of Scarlett et al. [81].

5.2 Problem Setup

The problem setting that we consider is in direct analogy with the
single-user setting of Section 1.1. We focus on the two-user MAC, which
is sufficient to convey the key ideas, but the analysis techniques that
we present can similarly be applied to any fixed number of users.

The input alphabets are denoted by X1 and X2, and the output
alphabet is denoted by Y. Except where stated otherwise, these are
assumed to be finite, so that we are considering a discrete memoryless
MAC (DM-MAC). The conditional transition law for a single channel
use is denoted by W (y|x1, x2), and the n-letter transition law is given
by Wn(y|x1,x2) ,

∏n
i=1W (yi|x1,i, x2,i).

Encoder ν = 1, 2 takes as input a message mν uniformly distributed
on the set {1, . . . ,Mν}, and transmits the corresponding codeword x

(mν)
ν

from a codebook Cν = {x(1)
ν , . . . ,x

(Mν)
ν }. Given the output sequence y

generated according to Wn( ·|x1,x2), the decoder forms an estimate
(m̂1, m̂2) of the message pair, given by

(m̂1, m̂2) = arg max
(i,j): i∈{1,...,M1}, j∈{1,...,M2}

qn(x(i)
1 ,x

(j)
2 ,y), (5.1)

where qn(x1,x2,y) ,
∏n
i=1 q(x1,i, x2,i, yi) for some decoding metric

q(x1, x2, y). The method of tie-breaking has no impact on any of the
results that we present, so we assume that ties are broken as errors.

The error probability for a given codebook pair (C1, C2) is given by

pe(C1, C2) = P[(m̂1, m̂2) 6= (m1,m2)]. (5.2)

For any given codebook pair (C1, C2), the decoding rule minimizing
pe is the maximum-likelihood (ML) rule, corresponding to (5.1) with
q(x1, x2, y) = W (y|x1, x2).

We consider a random coding scheme in which the codewords for
the two users are independently drawn from some distributions PX1
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and PX2 :

({X(i)
1 }

M1
i=1, {X

(j)
2 }

M2
j=1) ∼

M1∏
i=1

PX1(x(i)
1 )

M2∏
j=1

PX2(x(j)
2 ). (5.3)

The error probability averaged over the random codebooks is denoted
by pe(n,M1,M2).

Definition 5.1 (Mismatch Capacity Region). For a given mismatched DM-
MAC (W, q), a rate pair (R1, R2) is said to be achievable if, for all δ > 0,
there exist sequences of codebooks (C1,n, C2,n) of sizesM1 ≥ en(R1−δ) and
M2 ≥ en(R2−δ) such that pe(C1,n, C2,n) → 0 as n → ∞. The mismatch
capacity region R∗m is defined to be the set of all achievable rates.

To put our results in context, we recall the matched capacity region
corresponding to q(x1, x2, y) = W (y|x1, x2) [30, Ch. 4]:

R∗Matched = conv
( ⋃
Q1,Q2

R(Q1, Q2)
)
, (5.4)

where conv(·) denotes the closure of the convex hull, the union is over all
input distributions Q1 ∈ P(X1) and Q2 ∈ P(X2), and the set R(Q1, Q2)
contains all pairs (R1, R2) satisfying

R1 ≤ I(X1;Y |X2),
R2 ≤ I(X2;Y |X1),

R1 +R2 ≤ I(X1, X2;Y ), (5.5)

where (X1, X2, Y ) ∼ Q1 × Q2 ×W . These rates are associated with
three different types of errors, corresponding to the cases that (i) only
the estimate of m1 is incorrect; (ii) only the estimate of m2 is incorrect,
and (iii) both are incorrect. The achievability part is proved by applying
random coding with input distributions Q1 and Q2, and using a time-
sharing argument [30, Ch. 4] to achieve the convex hull.

5.3 Achievable Rate Region

In the single-user setting, we compared i.i.d. random coding and
constant-composition random coding for DMCs, and found the latter to
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provide better achievable rates. The same is true for the DM-MAC, so
to simplify the exposition, we focus exclusively on constant-composition
random coding.

For ν = 1, 2, we fix Qν ∈ P(Xν) and let PXν be the uniform
distribution on the type class T n(Qν,n), where Qν,n ∈ Pn(Xν) is a type
with the same support as Qν such that ‖Qν,n−Qν‖∞ ≤ 1

n . This yields

PXν (xν) = 1
|T n(Qν,n)|1

{
xν ∈ T n(Qν,n)

}
(5.6)

for ν = 1, 2.
We first state and discuss the achievable rate region [58]. We then

discuss a number of examples, before proceeding with the proof.

Theorem 5.1 (MAC Achievable Rate Region). For any mismatched DM-
MAC (W, q), and any input distributions Q1 ∈ P(X1) and Q2 ∈ P(X2),
we have RLM(Q1, Q2) ⊆ R∗m, where RLM(Q1, Q2) is the set of (R1, R2)
pairs satisfying

R1 ≤ min
P̃X1X2Y : P̃X1 =PX1 , P̃X2Y =PX2Y

E
P̃

[log q(X1,X2,Y )]≥EP [log q(X1,X2,Y )]

I
P̃

(X1;X2, Y ), (5.7)

R2 ≤ min
P̃X1X2Y : P̃X2 =PX2 , P̃X1Y =PX1Y

E
P̃

[log q(X1,X2,Y )]≥EP [log q(X1,X2,Y )]

I
P̃

(X2;X1, Y ), (5.8)

R1 +R2 ≤ min
P̃X1X2Y : P̃X1 =PX1 ,P̃X2 =PX2 ,P̃Y =PY

E
P̃

[log q(X1,X2,Y )]≥EP [log q(X1,X2,Y )],
I

P̃
(X1;Y )≤R1, I

P̃
(X2;Y )≤R2

D(P̃X1X2Y ‖Q1 ×Q2 × PY ),

(5.9)

where PX1X2Y = Q1×Q2×W . That is, any rate pair (R1, R2) satisfying
these conditions is achievable for the mismatched DM-MAC.

The proof is given in Section 5.5. Note that here and subsequently,
the minimizations are over all joint distributions P̃X1X2Y ∈ P(X1 ×
X2 × Y) satisfying the specified constraints, but we let the inclusion in
P(X1 ×X2 × Y) remain implicit.

Although the rate conditions in (5.7)–(5.9) appear complex, they
are natural generalizations of the primal expression for the LM rate
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(cf., Section 2.3). The condition in (5.7) arises by considering a typi-
cal realization of (X1,X2,Y ), and studying the probability that some
(X1,X2,Y ) has a higher decoding metric for some incorrect X1. Think-
ing of PX1X2Y and P̃X1X2Y as the corresponding joint types of these
triplets, the condition E

P̃
[log q(X1, X2, Y )] ≥ EP [log q(X1, X2, Y )] cor-

responds to the event q(X1,X2,Y ) ≥ q(X1,X2,Y ). Moreover, we
have P̃X2Y = PX2Y because the two triplets use the same pair (X2,Y ),
and P̃X1 = PX1 because we are considering constant-composition ran-
dom coding. A similar discussion applies to the condition (5.8).

The condition (5.8) corresponds to some triplet (X1,X2,Y ) hav-
ing a higher metric than (X1,X2,Y ), and has some features that are
somewhat less standard. In particular, the minimization problem con-
tains the additional constraints I

P̃
(X1;Y ) ≤ R1 and I

P̃
(X2;Y ) ≤ R2.

These constraints correspond to the fact that a random codebook Cν
(ν = 1, 2) of size enRν is unlikely to produce any non-transmitted
Xν such that the empirical mutual information of (Xν ,Y ) satisfies
I
P̃

(Xν ;Y ) > Rν . We will see that these constraints are crucial for the
ensemble tightness claim (see Section 5.6), in that the weaker achiev-
able rate region with these constraints removed can be strictly smaller.
In more detail, removing the constraints yields a pentagonal region
similar to the matched MAC (5.5), whereas the region RLM(Q1, Q2)
given above may be non-pentagonal and contain curved segments; see
Section 5.4.2 for an example. Since the right-hand side of (5.9) is
decreasing in R1 and R2, it is not even immediately obvious that
(R1, R2) ∈ RLM(Q1, Q2) =⇒ (R′1, R′2) ∈ RLM(Q1, Q2) when R′1 ≤ R1
and R′2 ≤ R2, but this property is indeed guaranteed, and can be seen
by noting that (5.9) holds with strict inequality if and only if

min
P̃X1X2Y : P̃X1=PX1 ,P̃X2=PX2 ,P̃Y =PY
E
P̃

[log q(X1,X2,Y )]≥EP [log q(X1,X2,Y )]

min{I
P̃

(X1;Y )−R1,

I
P̃

(X2;Y )−R2, D(P̃X1X2Y ‖Q1 ×Q2 × PY )− (R1 +R2)} > 0.
(5.10)

This equivalence will arise in the achievability proof in Section 5.5.
The standard time-sharing argument for multiple-access channels

[30, Ch. 4] applies without change for mismatched maximum-metric
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decoding, and hence, we deduce from Theorem 5.1 that

conv
( ⋃
Q1,Q2

RLM(Q1, Q2)
)
⊆ R∗m, (5.11)

where conv(·) denotes the closure of the convex hull. For the most part,
however, we will focus on random coding under a fixed pair (Q1, Q2).
A more detailed investigation of time-sharing for the mismatched MAC
can be found in [77], where the distinction between explicit time-sharing
and coded time-sharing is studied.

Since the achievable rate region of Theorem 5.1 is ensemble-tight (see
Section 5.6 for a formal statement), it must recover the matched MAC
conditions (5.5) in the case that q(x1, x2, y) = W (y|x1, x2). As a sanity
check, this can be checked directly via similar steps to (2.54)–(2.61)
[58], and by doing so, one finds that the constraints I

P̃
(X1;Y ) ≤ R1

and I
P̃

(X2;Y ) ≤ R2 in (5.9) have no impact in the matched case.

5.4 Examples

5.4.1 Parallel Binary Symmetric Channels

We return to the parallel binary symmetric channel (BSC) example
studied in the single-user setting in Section 2.4.5 [58]. We now study the
channel as a MAC, with inputs X1 and X2, and output Y = (Y1, Y2).
Recall that the channels from Xν to Yν (ν = 1, 2) are independent BSCs
with crossover probabilities δ1 and δ2, and the metric is

log q(x1, x2, (y1, y2)) = 1
2(1{x1 = y1}+ 1{x2 = y2}). (5.12)

We let the input distributions Q1, Q2 be equiprobable on {0, 1}.

Analysis of the Achievable Rate Region. The conditions (5.7)–(5.8)
are straightforward to analyze, reducing to Rν ≤ 1−H2(δν) bits/use for
ν = 1, 2. We therefore focus our attention on (5.9), which is the most
interesting of the three. The main step is to show that this constraint
is satisfied by the pair (R1, R2) = (1−H2(δ1), 1−H2(δ2)).
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Fixing any P̃X1X2Y satisfying the constraints in (5.9), we have

D(P̃X1X2Y ‖Q1 ×Q2 × PY )

= E
P̃

[
log P̃X1X2Y (X1, X2, Y )

P̃X1(X1)P̃X2(X2)P̃Y (Y )

]
(5.13)

= I
P̃

(X1, X2;Y ) + I
P̃

(X1;X2) (5.14)
≥ I

P̃
(X1, X2;Y ), (5.15)

where (5.13) makes use of the marginal constraints, and (5.14) follows
by multiplying and dividing by P̃X1X2 in (5.13). The mutual information
I
P̃

(X1, X2;Y ) was already analyzed in Section 2.4.5, where it was shown
that

I
P̃

(X1, X2;Y ) ≥ (1−H2(δ̃1)) + (1−H2(δ̃2)), (5.16)

where δ̃1 and δ̃2 are crossover probabilities corresponding to P̃Y1|X1 and
P̃Y2|X2 , both of which must take the form of a BSC.

The analysis now departs from that of Section 2.4.5 by incorporating
the constraints I

P̃
(X1;Y ) ≤ R1 and I

P̃
(X2;Y ) ≤ R2. Since we are

considering the rate pair with Rν = 1−H2(δν) for ν = 1, 2, and since
I
P̃

(Xν ;Yν) = 1 −H2(δ̃ν), the constraints reduce to H2(δν) ≤ H2(δ̃ν),
and we deduce from (5.16) that

I
P̃

(X1, X2;Y ) ≥ (1−H2(δ1)) + (1−H2(δ2)), (5.17)

and as a result, the condition (5.9) is indeed satisfied by (R1, R2) =
(1−H2(δ1), 1−H2(δ2)). This, in turn, implies the achievability of all rate
pairs within the rectangle with corners (0, 0) and (1−H2(δ1), 1−H2(δ2)),
which is the capacity region of the matched MAC, i.e., the capacity of
two parallel BSCs.

Discussion. Due to the parallel structure of the codebooks and the
channel, if we let log q be any positive weighted sum of 1{x1 = y1}
and 1{x2 = y2} (cf., (5.12)), we obtain a decoding rule that separately
minimizes the Hamming distance between (X1,Y 1) and (X2,Y 2),
which in turn is equivalent to maximum-likelihood decoding. Hence, it
should not be surprising that we achieve the matched capacity region.

Nevertheless, the above analysis highlights the importance of the
constraints I

P̃
(Xν ;Yν) ≤ Rν ; the analysis of Section 2.4.5 shows that
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in the absence of these constraints, the right-hand side of (5.9) is equal
to the suboptimal value 2(1−H2( δ1+δ2

2 )).
This example also highlights an interesting phenomenon that we will

return to in detail in Section 6: Multi-user coding techniques can provide
improved rates even for single-user mismatched channels. Indeed, we
saw that the LM rate fails to achieve the capacity C = (1−H2(δ1)) +
(1−H2(δ2)) under a uniform input distribution, and if we deviate from
a uniform input, then even optimal decoding fails to achieve capacity.
In contrast, we are always free to generate two codebooks in parallel
and treat the single-user channel as if it were a MAC, and the above
analysis reveals that doing so achieves the matched capacity (and hence
also the mismatch capacity).

5.4.2 Non-Convexity of RLM(Q1, Q2)

It is well-known that even in the matched case, the union of the region
(5.5) over all pairs (Q1, Q2) can be non-convex [30, Ch. 4], meaning that
the convex hull operation in (5.4) is not redundant. However, the rate
region (5.5) for a given pair (Q1, Q2) is always convex, and typically
pentagonal; in certain special cases, triangular and quadrilateral shapes
are also possible.

In contrast, in the mismatched setting, due to the constraints
I
P̃

(X1;Y ) ≤ R1 and I
P̃

(X2;Y ) ≤ R2 in (5.9), the achievable rate
region RLM(Q1, Q2) corresponding to fixed (Q1, Q2) can be non-convex
[77], and can have curved parts on the boundary rather than only
straight lines. To demonstrate this, we consider the mismatched MAC
with X1 = X2 = {0, 1}, Y = {0, 1, 2}, and

W (y|x1, x2) =

1− 2δx2 y = x1 + x2

δx2 otherwise,
(5.18)

q(x1, x2, y) =

1− 2δ y = x1 + x2

δ otherwise,
(5.19)

where we choose δ0 = 0.25 and δ1 = 0.01, and let δ equal an arbi-
trary value in (0, 1

3), any of which yields an equivalent metric. Hence,
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Figure 5.1: Achievable rate regions for the MAC in (5.18)–(5.19) in the matched
and mismatched settings, with input distributions Q1 = Q2 = ( 1

2 ,
1
2 ). The weakened

region removes the two mutual information constraints in (5.9).

the mismatched decoder incorrectly assumes both of the transition
probabilities δx2 are equal.

Figure 5.1 plots the achievable rate region RLM(Q1, Q2) correspond-
ing to Q1 = Q2 = (1

2 ,
1
2). We also plot the weakened region obtained

when the constraints I
P̃

(X1;Y ) ≤ R1 and I
P̃

(X2;Y ) ≤ R2 are removed
from (5.9), as well as the matched region (5.5).

We see that while the weakened and matched regions take the
usual pentagonal shape, the ensemble-tight region RLM(Q1, Q2) curves
upward near its upper “corner point”, and forms a non-convex shape.
This is due to the fact that the constraint I

P̃
(X1;Y ) ≤ R1 is active in

this part of the curve. In this example, the constraint I
P̃

(X2;Y ) ≤ R2
has no effect on the rate region.

5.5 Proof of Achievable Rate Region

In this subsection, we present the proof of Theorem 5.1. The original
proof of Lapidoth [58] and the more recent proof of Scarlett et al., [81]
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share several common ideas. In the following, we focus on the latter,
presenting the analysis in several steps.

5.5.1 Separation into Three Error Events

We study the random-coding error probability by considering the fol-
lowing three error types, where we assume without loss of generality
that the true messages are (m1,m2) = (1, 1):

(Type 1) qn(X(i)
1 ,X2,Y ) ≥ qn(X1,X2,Y ) for some i 6= 1;

(Type 2) qn(X1,X
(j)
2 ,Y ) ≥ qn(X1,X2,Y ) for some j 6= 1;

(Type 12) qn(X(i)
1 ,X

(j)
2 ,Y ) ≥ qn(X1,X2,Y ) for some i 6= 1, j 6= 1.

The corresponding probabilities of the error events are denoted by
pe,1(n,M1), pe,2(n,M2), and pe,12(n,M1,M2), respectively. Writing the
overall random-coding error probability as pe(n,M1,M2), we immedi-
ately obtain from the union bound that

pe(n,M1,M2) ≤ pe,1(n,M1) + pe,2(n,M2) + pe,12(n,M1,M2). (5.20)

Thus, we have pe → 0 as long as all three of pe,1, pe,2 and pe,12 vanish,
and we can consider the three error types separately.

The analysis of all three error events is similar, but pe,12 is the only
one that requires new tools compared to the single-user setting, studied
in Section 2.6. We therefore focus only on pe,12 in the remainder of the
proof.

5.5.2 Separation into Joint Types

The type-12 error probability pe,12(n,M1,M2) admits the following
exact expression:

pe,12 = E
[
P
[ ⋃
i 6=1,j 6=1

{
qn(X(i)

1 ,X
(j)
2 ,Y )

qn(X1,X2,Y ) ≥ 1
} ∣∣∣∣X1,X2,Y

]]
. (5.21)

In analogy with the primal-domain analysis of the single-user setting
(Section 2.6.3), we will rewrite (5.21) in terms of joint types. To lighten
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the notion, we introduce the sets

Sn(Qn) , {PX1X2Y ∈ Pn(X1 ×X2 × Y): PX1 = Q1,n, PX2 = Q2,n},
(5.22)

S ′12,n(PX1X2Y ) , {P̃X1X2Y ∈ Pn(X1 ×X2 × Y): P̃X1 = PX1 ,

P̃X2 = PX2 , P̃Y = PY ,EP̃ [log q(X1, X2, Y )] ≥ EP [log q(X1, X2, Y )]
}
,

(5.23)

where Sn(Qn) can be thought of as the set of possible joint types of
(X1,X2,Y ) when each user has a constant-composition codebook, and
S ′12,n(PX1X2Y ) can be thought of as the set of joint types of (X1,X2,Y )
that lead to a decoding error when (X1,X2,Y ) ∈ T n(PX1X2Y ).

Fixing PX1X2Y ∈ Sn(Qn) and letting (x1,x2,y) be an arbitrary
triplet such that (x1,x2,y) ∈ T n(PX1X2Y ), we find that the event in
(5.21) can be written as⋃
i 6=1,j 6=1

⋃
P̃X1X2Y ∈S

′
12,n(PX1X2Y )

{
(X(i)

1 ,X
(j)
2 ,Y ) ∈ T n(P̃X1X2Y )

}
. (5.24)

Writing the probability and expectation in (5.21) as summations over
joint types, substituting (5.24), and interchanging the order of the
unions, we obtain the following:

pe,12 =
∑

PX1X2Y ∈Sn(Qn)
P[(X1,X2,Y ) ∈ T n(PX1X2Y )]

× P
[ ⋃
P̃X1X2Y ∈S

′
12,n(PX1X2Y )

⋃
i 6=1,j 6=1

{
(X(i)

1 ,X
(j)
2 ,y) ∈ T n(P̃X1X2Y )

}]

(5.25)

≤
∑

PX1X2Y ∈Sn(Qn)
P
[
(X1,X2,Y ) ∈ T n(PX1X2Y )

]
min

{
1,

×
∑

P̃X1X2Y ∈S
′
12,n(PX1X2Y )

P
[ ⋃
i 6=1,j 6=1

{
(X(i)

1 ,X
(j)
2 ,y) ∈ T n(P̃X1X2Y )

}]}
,

(5.26)
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where y is an arbitrary element of T n(PY ) (hence depending implicitly
on PX1X2Y ), and (5.26) follows from the truncated union bound (i.e.,
the minimum of one and the union bound).

5.5.3 A Refined Union Bound

It is tempting, particularly based on the primal single-user analysis in
Section 2.6, to apply the truncated union bound to the inner probability
in (5.26) to obtain

P
[ ⋃
i 6=1,j 6=1

{
(X(i)

1 ,X
(j)
2 ,y) ∈ T n(P̃X1X2Y )

}]

≤ min
{

1, (M1 − 1)(M2 − 1)P
[
(X1,X2,y) ∈ T n(P̃X1X2Y )

]}
,

(5.27)

where (X1,X2) ∼ PX1 ×PX2 . However, proceeding with this standard
union bound would lead to a condition of the form (5.9) without the
constraints I

P̃
(X1;Y ) ≤ R1 and I

P̃
(X2;Y ) ≤ R2, and we know that

these constraints can strictly improve the achievable rate region.
Fortunately, a straightforward solution is available. Observe that in

order to have (X(i)
1 ,X

(j)
2 ,y) ∈ T n(P̃X1X2Y ), it must be the case that

(X(i)
1 ,y) ∈ T n(P̃X1Y ). This means that the left-hand side of (5.27) is

upper bounded by

P
[ ⋃
i 6=1

{
(X(i)

1 ,y) ∈ T n(P̃X1Y )
}]
≤ (M1 − 1)P

[
(X1,y) ∈ T n(P̃X1Y )

]
.

(5.28)
A similar bound follows by noting that (X(i)

1 ,X
(j)
2 ,y) ∈ T n(P̃X1X2Y )

implies (X(j)
2 ,y) ∈ T n(P̃X2Y ), and putting these bounds together with

(5.27) yields

P
[ ⋃
i 6=1,j 6=1

{
(X(i)

1 ,X
(j)
2 ,y) ∈ T n(P̃X1X2Y )

}]

≤ min
{

1, (M1 − 1)P
[
(X1,y) ∈ T n(P̃X1Y )

]
,
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(M2 − 1)P
[
(X2,y) ∈ T n(P̃X2Y )

]
,

(M1 − 1)(M2 − 1)P
[
(X1,X2,y) ∈ T n(P̃X1X2Y )

]}
. (5.29)

This refined bound turns out to be sufficient, and in fact, we will see in
Section 5.6 that it is tight to within a factor of four.

5.5.4 Deducing the Rate Condition

The remainder of the analysis is analogous to the single-user setting, so
we provide a relatively concise treatment. In the following, we let δ > 0
be an arbitrarily small positive constant.

By standard properties of types similar to Section 2.6.1, the three
probabilities in (5.29) respectively behave as e−nIP̃ (X1;Y ), e−nIP̃ (X2;Y ),
and e−nD(P̃X1X2Y ‖Q1×Q2×PY ) times sub-exponential factors. In addition,
the number of terms in the inner summation of (5.26) is polynomial
in n, so the summation can be upper bounded by a polynomial times
the corresponding maximum. It follows that for a given joint type
PX1X2Y ∈ Sn(Qn) corresponding to the outer summation of (5.26), the
min{1, ·} term vanishes as n→∞ as long as

min
P̃X1X2Y ∈S

′
12,n(PX1X2Y )

min
{
I
P̃

(X1;Y )−R1, IP̃ (X2;Y )−R2,

D(P̃X1X2Y ‖Q1 ×Q2 × PY )− (R1 +R2)
}
≥ δ. (5.30)

Using the definition of S ′12,n in (5.23) and lower bounding the minimum
over joint types by a minimum over all joint distributions, we find that
(5.30) holds as long as

min
P̃X1X2Y : P̃X1 =PX1 ,P̃X2 =PX2 ,P̃Y =PY

E
P̃

[log q(X1,X2,Y )]≥EP [log q(X1,X2,Y )]

min
{
I

P̃
(X1;Y )−R1, IP̃

(X2;Y )−R2,

D(P̃X1X2Y ‖Q1 ×Q2 × PY )− (R1 +R2)
}
≥ δ. (5.31)

Next, recall that the outer summation of (5.26) sums over the possible
joint types PX1X2Y of (X1,X2,Y ). Again using standard properties of
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types similar to Section 2.6.1, we have

P[(X1,X2,Y ) ∈ T n(PX1X2Y )] ≤ e−n(D(PX1X2Y ‖Q1×Q2×W )−δ′) (5.32)

for arbitrarily small δ′ > 0 and sufficiently large n. In particular, since
the divergence is only zero when the arguments are identical, the
contribution of joint types with ‖PX1X2Y − Q1 × Q2 ×W‖∞ > δ is
asymptotically negligible. This means that the error probability vanishes
as long as (5.31) holds for all PX1X2Y such that ‖PX1X2Y −Q1 ×Q2 ×
W‖∞ ≤ δ.

Following a similar continuity argument to the single-user setting (cf.,
Appendix A.1), one finds that the left-hand side of (5.31) is continuous
as a function of PX1X2Y . Hence, and since δ can be arbitrarily small, it
is sufficient for (5.31) to hold under the specific choice PX1X2Y = Q1 ×
Q2 ×W . Finally, since (5.31) trivially holds when R1 > I

P̃
(X1;Y ) + δ

or R2 > I
P̃

(X2;Y ) + δ, we can limit the minimum to distributions
satisfying I

P̃
(X1;Y ) ≤ R1 + δ and I

P̃
(X2;Y ) ≤ R2 + δ, yielding

R1 +R2 + δ

≤ min
P̃X1X2Y : P̃X1=PX1 ,P̃X2=PX2 ,P̃Y =PY
E
P̃

[log q(X1,X2,Y )]≥EP [log q(X1,X2,Y )]
I
P̃

(X1;Y )≤R1+δ, I
P̃

(X2;Y )≤R2+δ

D(P̃X1X2Y ‖Q1 ×Q2 × PY ).

(5.33)

Note that the first two terms of the min{·} in (5.31) become redundant
under the new constraints, and are therefore not included here. Finally,
a continuity argument reveals that the right-hand side of (5.33) is
continuous with respect to δ ≥ 0 [58, p. 1447], and taking δ → 0, we
obtain the final rate condition (5.9).

5.6 Ensemble Tightness

In Section 2.5.2, we introduced the notion of ensemble tightness of the
single-user GMI and LM rate, showing that although these do not equal
the mismatch capacity in general, no higher rates can be attained using
the respective random coding ensembles. The ensemble tightness proofs
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were based on the fact that the properties of types used in deriving the
primal expressions are exponentially tight.

For the achievable rate region of the MAC in Theorem 5.1, es-
tablishing ensemble tightness requires additional effort. As with the
achievability part, the difficulty lies in the rate condition (5.9), and
more specifically, establishing the tightness of the refined union bound
(5.29). To do this, we follow the approach of Scarlett et al. [81] and
make use of a general lower bound on the probability of a union due to
de Caen [27]. An alternative proof based on the second moment method
was given in the earlier work of Lapidoth [58].

Before proceeding, we formally state the ensemble tightness result.

Theorem 5.2 (Ensemble Tightness for the MAC). For any DM-MAC
(W, q), under constant-composition random coding (cf., Section (5.6))
with input distributions (Q1, Q2), for any rate pair (R1, R2) failing to
satisfy (5.7)–(5.9), we have

pe(n, benR1c, benR2c)→ 1 (5.34)

as n→∞.

The remainder of the subsection is devoted to the proof.

5.6.1 Separation into Three Error Events

As with the achievability part, we consider the separation into three
error types in Section 5.5.1, and note that

pe(n,M1,M2) ≥ max{pe,1(n,M1), pe,2(n,M2), pe,12(n,M1,M2)},
(5.35)

whereMν = benRνc for ν = 1, 2. The single-user analysis of Section 2.5.2
readily extends to the analysis of pe,1 and pe,2, revealing that the
respective error probabilities tend to one when (5.7) or (5.8) fail to hold.
We therefore focus our attention on the most difficult error event; we
will show that pe,12 → 1 whenever (5.9) fails to hold.

5.6.2 Separation into Joint Types

Recall that the exact type-12 error probability can be written as in (5.25).
Lower bounding the union over P̃X1X2Y therein by a maximum, we
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obtain

pe,12 ≥
∑

PX1X2Y ∈Sn(Qn)
P
[
(X1,X2,Y ) ∈ T n(PX1X2Y )

]
× max
P̃X1X2Y ∈S

′
12,n(PX1X2Y )

pe,12(P̃X1X2Y ), (5.36)

where, with a slight abuse of notation, we define

pe,12(P̃X1X2Y ) , P
[ ⋃
i 6=1,j 6=1

{
Eij(P̃X1X2Y )

}]
(5.37)

in terms of the event

Eij(P̃X1X2Y ) ,
{

(X(i)
1 ,X

(j)
2 ,y) ∈ T n(P̃X1X2Y )

}
. (5.38)

5.6.3 Lower Bound on the Doubly-Indexed Union

The key step in the analysis is to lower bound (5.37) using the following
result of de Caen [27].

Lemma 5.3 (de Caen’s Bound [27]). For any finite sequence of events
A1, . . . ,AN on a probability space, we have

P
[ N⋃
l=1
Al
]
≥

N∑
l=1

P[Al]2∑N
l′=1 P[Al ∩ Al′ ]

. (5.39)

To apply this result to (5.37), we identify l with (i, j) and N with
(M1−1)(M2−1), and distinguish between four cases for the denominator
term P

[
Eij(P̃X1X2Y ) ∩ Ei′j′(P̃X1X2Y )

]
:

• If i = i′ and j = j′, then the probability of the intersection is
simply

Ψ00 , P[(X1,X2,y) ∈ T n(P̃X1X2Y )], (5.40)

where here and subsequently, (X1,X2) ∼ PX1(x1)PX2(x2)
denote generic random codewords drawn independently from
(X1,X2,Y ).
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• If i 6= i′ and j = j′, then the probability of the intersection
simplifies to

Ψ10 , P[(X2,y) ∈ T n(P̃X2Y )]
× P[(X1,x2,y) ∈ T n(P̃X1X2Y )]2, (5.41)

where in the second probability, x2 is an arbitrary sequence
such that (x2,y) ∈ T n(P̃X2Y ). This is because the two relevant
(X(i)

1 ,X
(j)
2 ,y) triplets share the same X2 sequence, which must

have joint type P̃X2Y , whereas the two different X1 sequences
(which are independent of each other) both need to induce the
joint type P̃X1X2Y .

• Similarly, if i 6= i′ and j = j′, then the probability of the intersec-
tion simplifies to

Ψ01 , P
[
(X1,y) ∈ T n(P̃X1Y )

]
× P

[
(x1,X2,y) ∈ T n(P̃X1X2Y )

]2
. (5.42)

• If i 6= i′ and j 6= j′, then the two events in the intersection are
independent, and hence their joint probability is Ψ11 , Ψ2

00.

For any given pair (i, j), the number of (i′, j′) pairs falling into these
four categories is given by 1, M1 − 2, M2 − 2 and (M1 − 2)(M2 − 2),
respectively. As a result, Lemma 5.3 yields the following:

pe,12(P̃X1X2Y )

≥ (M1 − 1)(M2 − 1)Ψ2
00

Ψ00 + (M1 − 2)Ψ10 + (M1 − 2)Ψ01 + (M1 − 2)(M2 − 2)Ψ2
00

(5.43)

≥ (M1 − 1)(M2 − 1)Ψ2
00

Ψ00 + (M1 − 1)Ψ10 + (M1 − 1)Ψ01 + (M1 − 1)(M2 − 1)Ψ2
00

(5.44)
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≥ (M1 − 1)(M2 − 1)Ψ2
00

4 max
{
Ψ00, (M1 − 1)Ψ10, (M1 − 1)Ψ01, (M1 − 1)(M2 − 1)Ψ2

00
}

(5.45)

= 1
4 min

{
(M1 − 1)(M2 − 1)Ψ00, (M2 − 1)Ψ2

00
Ψ10

, (M1 − 1)Ψ2
00

Ψ01
, 1
}
.

(5.46)

Next, observe that Ψ00 in (5.40) can be rewritten as

Ψ00 = P[(X2,y) ∈ T n(P̃X2Y )]P[(X1,x2,y) ∈ T n(P̃X1X2Y )]
(5.47)

= P[(X1,y) ∈ T n(P̃X1Y )]P[(x1,X2,y) ∈ T n(P̃X1X2Y )],
(5.48)

which implies that
Ψ00
Ψ10

= P
[
(X1,y) ∈ T n(P̃X1Y )

]
, (5.49)

Ψ00
Ψ01

= P
[
(X2,y) ∈ T n(P̃X2Y )

]
. (5.50)

Putting everything back together into (5.46), we deduce that the upper
bound in (5.29) is tight to within a factor of four.

5.6.4 Deducing Ensemble Tightness

In the following, let δ > 0 be arbitrarily small. As we mentioned in
Section 5.5.4, the three probabilities in (5.29) behave as e−nIP̃ (X1;Y ),
e
−nI

P̃
(X2;Y ), and e−nD(P̃X1X2Y ‖Q1×Q2×PY ) times sub-exponential fac-

tors, and the joint type PX1X2Y being summed over in (5.36) satisfies
‖PX1X2Y −Q1×Q2×W‖∞ ≤ δ with probability approaching one. From
these facts, we deduce that pe,12 → 1 whenever the following condition
holds for all such PX1X2Y :

min
P̃X1X2Y ∈S

′
12,n(PX1X2Y )

min
{
I
P̃

(X1;Y )−R1, IP̃ (X2;Y )−R2,

D(P̃X1X2Y ‖Q1 ×Q2 × PY )− (R1 +R2)
}
≥ δ. (5.51)
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The main challenge now is to upper bound the minimum over joint
types (see (5.23)) in terms of the corresponding minimum over all
joint distributions. This is done in a similar way to the single-user
setting, which itself was rather technical; further details are given in
Appendix A.1. Once this is done, we obtain a matching converse bound
to (5.31), from which the necessity of the condition (5.9) follows.

5.7 Dual Expressions and Continuous Alphabets

The rate region of Theorem 5.1 is analogous to the primal expression
for the single-user LM rate. It is therefore natural to ask whether there
also exists a dual expression, written as a maximization over real-valued
parameters rather than a minimization over joint distributions. The
answer is affirmative, as the following theorem shows [81]. Here and
subsequently, we write EZ [·] to denote averaging over some random
variable Z while all other random variables are held fixed.

Theorem 5.4 (Dual Expression for the Achievable Rate Region). The
region RLM(Q1, Q2) described by (5.7)–(5.9) can be expressed as the
set of rate pairs (R1, R2) satisfying

R1 ≤ sup
s≥0,a1(·)

E
[
log q(X1, X2, Y )sea1(X1)

E
[
q(X1, X2, Y )sea1(X1)|X2, Y

]] , (5.52)

R2 ≤ sup
s≥0,a2(·)

E
[
log q(X1, X2, Y )sea2(X2)

E
[
q(X1, X2, Y )sea2(X2)|X1, Y

]] , (5.53)

and at least one of the following:

R1 ≤ sup
ρ2∈[0,1],s≥0,a1(·),a2(·)

−ρ2R2

+ E

log
(
q(X1, X2, Y )sea2(X2))ρ2ea1(X1)

EX1

[(
EX2

[
q(X1, X2, Y )sea2(X2)])ρ2

ea1(X1)
]
 ,

(5.54)
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R2 ≤ sup
ρ1∈[0,1],s≥0,a1(·),a2(·)

−ρ1R1

+ E

log
(
q(X1, X2, Y )sea1(X1))ρ1ea2(X2)

EX2

[(
EX1

[
q(X1, X2, Y )sea1(X1)])ρ1

ea2(X2)
]
 .

(5.55)

where (X1, X2, Y,X1, X2) ∼ Q1(x1)Q2(x2)W (y|x1, x2)Q1(x1)Q2(x2).

The most interesting feature of this result is the presence of the
additional optimization variables ρ1 and ρ2 in (5.54)–(5.55). The pres-
ence of these variables is closely related to the presence of the mutual
information constraints in (5.9): If we were to remove these primal-
domain constraints, then the equivalent dual expression would only
allow ρ1 = ρ2 = 1 in (5.54)–(5.55), in which case the two conditions
would be identical.

5.7.1 Overview of the Analysis

The equivalence to the primal expression is proved using Lagrange
duality, but with a non-trivial additional step to handle the constraints
I
P̃

(X1;Y ) ≤ R1 and I
P̃

(X2;Y ) ≤ R2 in (5.9). Indeed, forming a simple
dual expression directly from (5.9) via Lagrange duality appears to
be difficult. However, the following result from [81] establishes that at
most one of the two mutual information constraints is active at a time,
leading to a formulation more amenable to forming a Lagrange dual.

Lemma 5.5 (Equivalent Formulation of Sum Rate Condition). For any
mismatched DM-MAC (W, q) and input distributions (Q1, Q2), the
condition (5.9) holds if and only if at least one of the following holds:

R1 +R2 ≤ min
P̃X1X2Y : P̃X1=PX1 ,P̃X2=PX2 ,P̃Y =PY
E
P̃

[log q(X1,X2,Y )]≥EP [log q(X1,X2,Y )],
I
P̃

(X1;Y )≤R1

D(P̃X1X2Y ‖PX1X2 × PY ),

(5.56)
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R1 +R2 ≤ min
P̃X1X2Y : P̃X1=PX1 ,P̃X2=PX2 ,P̃Y =PY
E
P̃

[log q(X1,X2,Y )]≥EP [log q(X1,X2,Y )],
I
P̃

(X2;Y )≤R2

D(P̃X1X2Y ‖PX1X2 × PY ),

(5.57)

where PX1X2Y = Q1 ×Q2 ×W .

The expressions in (5.56)–(5.57) constitute the primal forms of the
dual expressions in (5.54)–(5.55), with the equivalence proved using
Lagrange duality. Much like the single-user setting, the dual expressions
also permits a direct derivation using cost-constrained random coding,
which again extends to continuous-alphabet settings. The conditions
(5.52)–(5.53) are attained using a near-identical analysis to the single-
user setting (Section 2.6). While deriving the conditions (5.54)–(5.55) is
less straightforward, the steps are still standard once the right counter-
part of the non-asymptotic bound (2.81) is in place. For a fixed triplet
(x1,x2,y), we are interested in the probability

P

 ⋃
i 6=1,j 6=1

{
qn(X(i)

1 ,X
(j)
2 ,y)

qn(x1,x2,y) ≥ 1
} . (5.58)

The key idea is to avoid applying the truncated union bound P
[
∪ijEij

]
≤

min
{
1,
∑
i,j P[Eij ]

}
over all (M1 − 1)(M2 − 1) incorrect message pairs

simultaneously, and to instead apply it to one user’s indices at a time.
There are two possible orders in which this can be done; one leads to
an upper bound on (5.58) of the form

min
{

1, (M1 − 1)EX1

[
min

{
1, (M2 − 1)PX2

[
qn(X1,X2,y)
qn(x1,x2,y) ≥ 1

]}]}
(5.59)

and the other leads to a similar bound with the roles of X1 and X2
reversed. Here the subscript of E indicates which random variable the
averaging is with respect to, and similarly for P. Once (5.59) has been
obtained, the direct derivation uses the same tools as the single-user
setting (e.g., Markov’s inequality), along with the standard inequality
min{1, α} ≤ αρ for ρ ∈ [0, 1].
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Another feature that distinguishes the analysis from the single-user
setting is that we use cost-constrained coding with multiple auxiliary
costs, as introduced in Section 3.5. Specifically, each user’s codeword
distribution takes the form (3.7), with two auxiliary costs per user. By
doing so, we can introduce two different functions a1(x1) in (5.52) and
(5.54)–(5.55), and similarly for a2(x2) in (5.53) and (5.54)–(5.55). It
suffices to let the choices of a1 and a2 in (5.54)–(5.55) be identical, since
the theorem statement only requires one of the two to hold.

The interested reader is referred to [81] for the details of the above-
outlined techniques.



6
Multi-User Coding Techniques

for Single-User Channels

6.1 Introduction

The parallel channel example of Section 5.4.1 reveals the somewhat sur-
prising fact that multiple-access coding techniques can lead to improved
achievable rates when applied to single-user channels. This suggests
that other multi-user coding techniques may also be beneficial for the
single-user setting, i.e., that certain types of structure in the codebook
can be preferable to letting all of the codewords be independent. In this
section, we explore this phenomenon in detail, with a particular empha-
sis on superposition coding techniques. We consider the point-to-point
setup described in Section 1.1, assuming finite alphabets except where
stated otherwise.

The improvements of constant-composition and cost-constrained
random coding over i.i.d. random coding (cf., Sections 2–3) can also be
interpreted as being due to a form of structure in the code. The difference
is that such improvements are a result of introducing dependencies
between the symbols of individual codewords, whereas the techniques
of this section introduce dependencies between the different codewords
of the codebook.

288
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The random coding constructions of this section, as well as those
of Section 2, can be summarized as follows, in non-increasing order of
achievable rate:

1. Refined superposition coding (Theorem 6.6);

2. Standard superposition coding (Theorem 6.3);

3. Expurgated parallel coding (Theorem 6.1);

4. Constant-composition or cost-constrained coding with indepen-
dent codewords (Theorem 2.3);

5. i.i.d. coding with independent codewords (Theorem 2.2).

We will see that the gap between (1) and (2) can be strict for a given
input distribution; no examples are known where the gap between (2)
and (3) is strict; and the gaps between the remaining three can be strict
even for an optimized input distribution.

Throughout the section, we will focus primarily on proving the
achievability of primal-domain expressions. Similarly to the previous
sections, the rates will exhibit ensemble tightness and permit equivalent
dual expressions and continuous-alphabet extensions. However, many of
these results become increasingly cumbersome to state and prove, so for
the most part, we will refer the interested reader to [77, 81] for the details.

This section is predominantly based on the works of Lapidoth [58],
Scarlett et al. [77, 81], and Somekh-Baruch [93].

6.2 Expurgated Parallel Coding

We saw in Section 5 that by applying the achievable rate of the mis-
matched MAC to the single-user setting, it is possible to improve on
the LM rate. In particular, we saw an example where such an approach
proves that the mismatch capacity equals the matched capacity, but
the LM rate is strictly smaller.

While we only demonstrated this phenomenon in a single example,
one can use the same idea to establish a general achievable rate: Fix
any finite alphabets X1,X2, input distributions Q1, Q2, and a function
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ψ: X1 × X2 → X , and apply Theorem 5.1 to the mismatched DM-
MAC W (y|ψ(x1, x2)) with metric q(ψ(x1, x2), y). It follows that any
rate R = R1 +R2 satisfying the conditions therein is achievable for the
mismatched single-user channel W (y|x) with metric q(x, y).

It was shown by Lapidoth [58] that we can in fact do better by
considering the collection of random codeword pairs (X(i)

1 ,X
(j)
2 ), and

keeping only the pairs whose empirical distribution is close to Q1 ×Q2.
This expurgation of non-typical codeword pairs has a negligible impact on
the coding rates, but can lead to improved conditions for vanishing error
probability. One cannot apply this argument to the mismatched MAC
itself, as it breaks the requirement of having two distinct codebooks
(one per user). In the single-user setting, there is no such requirement,
so we are free to pick subsets of the pairs (X(i)

1 ,X
(j)
2 ) to our liking.

The resulting single-user achievable rate is stated as follows; we
omit the proof, since in Section 6.3 we will use a simpler superposition
coding technique to derive an achievable rate that can be weakened to
this one.

Theorem 6.1 (Expurgated Parallel Coding Rate). Consider a mismatched
DMC (W, q), and fix the finite alphabets (X1,X2), input distributions
(Q1, Q2), and function ψ: X1 ×X2 → X . Then, the rate

R = R1 +R2 (6.1)

is achievable for (W, q) provided that the pair (R1, R2) satisfies

R1 ≤ min
P̃X1X2Y : P̃X1X2=PX1X2 , P̃X2Y =PX2Y

E
P̃

[log q(ψ(X1,X2),Y )]≥EP [log q(ψ(X1,X2),Y )]

I
P̃

(X1;Y |X2), (6.2)

R2 ≤ min
P̃X1X2Y : P̃X1X2=PX1X2 , P̃X1Y =PX1Y

E
P̃

[log q(ψ(X1,X2),Y )]≥EP [log q(ψ(X1,X2),Y )]

I
P̃

(X2;Y |X1), (6.3)

R1 +R2 ≤ min
P̃X1X2Y : P̃X1X2=PX1X2 , P̃Y =PY

E
P̃

[log q(ψ(X1,X2),Y )]≥EP [log q(ψ(X1,X2),Y )],
I
P̃

(X1;Y )≤R1, I
P̃

(X2;Y )≤R2

I
P̃

(X1, X2;Y ),

(6.4)

where PX1X2Y (x1, x2, y) = Q1(x)Q2(x)W (y|ψ(x1, x2)).
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The above rate conditions are identical to those of the achievable
rate region for the MAC in Theorem 5.1, except that each minimization
is further subject to P̃X1X2 = PX1X2 . This results from the fact that
each codeword pair is constructed to have empirical distribution close
to PX1X2 = Q1 × Q2. Since the minimization problems in the rate
conditions are more constrained, the resulting rate is at least as high
as that attained directly from Theorem 5.1. We also recall that the
constraints I

P̃
(X1;Y ) ≤ R1 and I

P̃
(X2;Y ) ≤ R2 in (6.4) are non-

standard; their main implications discussed following Theorem 5.1 also
apply here.

A disadvantage of the achievable rate in Theorem 6.1 is that it has
numerous auxiliary parameters, namely, X1, X2, Q1, Q2, and ψ. While
natural choices arose in the parallel channel example of Section 5.4,
it is generally difficult to jointly optimize them. This will be another
advantage of superposition coding in Section 6.3, which will have fewer
auxiliary parameters.

We briefly mention that equivalent dual expressions for (6.2)–(6.4)
can be found in [77]; these are nearly identical to those of Theorem 5.4,
except that the separate functions a1(x1) and a2(x2) are replaced by
joint functions a(x1, x2).

6.2.1 Comparison to the LM Rate

The easiest way to recover the LM rate (in its primal form (2.15)) from
Theorem 6.1 is to trivially choose |X2| = 1, R2 = 0, and ψ(x1, x2) = x1.
By doing so, conditions (6.2) and (6.4) both weaken to R1 ≤ Ilm(QX1).
In fact, under the preceding choices, we not only recover the LM rate,
but the random-coding ensemble itself reduces to constant-composition
random coding with independent codewords.

It is also worth noting the following general statement: Upon remov-
ing the two mutual information constraints from (6.4), the right-hand
side reduces to the LM rate with input distribution QX equal to the
marginal distribution of (X1, X2, X) ∼ Q1(x)Q2(x)1{x = ψ(x1, x2)}.
This is formalized as follows.
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Lemma 6.2 (Expurgated Parallel Coding and the LM Rate). Under the
setup of Theorem 6.1, we have

min
P̃X1X2Y : P̃X1X2=PX1X2 , P̃Y =PY

E
P̃

[log q(ψ(X1,X2),Y )]≥EP [log q(ψ(X1,X2),Y )]

I
P̃

(X1, X2;Y )

= min
P̃XY : P̃X=PX ,P̃Y =PY ,

E
P̃

[log q(X,Y )]≥EP [log q(X,Y )]

I
P̃

(X;Y ), (6.5)

where PX1X2XY (x1, x2, x, y) is given by the joint distribution
Q1(x)Q2(x)1{x = ψ(x1, x2)}}W (y|ψ(x1, x2)).
Proof. Fixing any feasible P̃X1X2Y on the left-hand side of (6.5), and
letting P̃X1X2XY be an arbitrary joint distribution consistent with
P̃X1X2Y such that X = ψ(X1, X2), we have

I
P̃

(X1, X2;Y ) = I
P̃

(X1, X2, X;Y ) (6.6)
= I

P̃
(X;Y ) + I

P̃
(X1, X2;Y |X) (6.7)

≥ I
P̃

(X;Y ). (6.8)

We now minimize both sides of this inequality over all P̃X1X2XY

such that P̃X1X2Y is feasible on the left-hand side of (6.5), and
X = ψ(X1, X2). The left-hand side is as in (6.5), and the right-hand
side yields the minimization problem

min
P̃X1X2XY : P̃X1X2=PX1X2 , X=ψ(X1,X2), P̃Y =PY ,

E
P̃

[log q(X,Y )]≥EP [log q(X,Y )]

I
P̃

(X;Y ). (6.9)

Since the inequality constraint and objective depend on P̃X1X2XY only
through P̃XY , the first two constraints only amount to constraining
P̃X = PX , and we therefore recover the right-hand side of (6.5).

We have established that the right-hand side of (6.5) is lower-
bounded by the right-hand side. However, the only step containing
an inequality is (6.8), and this holds with equality when P̃X1X2XY is
chosen such that (X1, X2)→ X → Y forms a Markov chain. Hence, the
minimizer must have this property, implying (6.5).

Lemma 6.2 further highlights the importance of the mutual informa-
tion constraints in (6.4): For all mismatched DMCs, if these constraints
are removed, then we cannot hope to improve on the LM rate.
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6.3 Superposition Coding

One of the most fundamental multi-user coding techniques in network
information theory is superposition coding, which has been applied
to broadcast channels, interference channels, and more [30]. The idea
is to generate a number of independent “cloud centers” {U (i)}, and
then for each corresponding index i, generate a number of codewords
{X(i,j)} that are conditionally independent given U (i). In the degraded
broadcast channel model [30, Ch. 5], this is done in a manner such that
one user can identify the cloud center, while the other user can recover
the precise codeword within the cloud.

In this subsection, we derive an achievable rate based on superpo-
sition coding with constant-composition codewords [81, 93]. We will
show in Section 6.3.5 that this rate is at least as high as that of expur-
gated parallel coding (Theorem 6.1). We will also see that superposition
coding requires fewer auxiliary parameters, and hence, even when a
strict improvement over Theorem 6.1 is not possible, the difficult task
of finding a good set of parameters may be simplified.

6.3.1 Codebook Construction

The random-coding ensemble depends on an auxiliary alphabet U ,
an auxiliary codeword distribution PU ∈ P(Un), and a conditional
codeword distribution PX|U ∈ P(X n|Un). We fix a pair (R0, R1) and
generate the codewords in two steps:

1. An auxiliary codebook {U (i)}M0
i=1 with M0 , benR0c codewords of

length n is generated, with each auxiliary codeword independently
drawn from PU .

2. For each i = 1, . . . ,M0, a codebook {X(i,j)}M1
j=1 withM1 , benR1c

codewords of length n is generated, with each codeword condi-
tionally independently drawn from PX|U ( · |U (i)).

The message m at the input to the encoder is indexed as (m0,m1), and
for any such pair, the corresponding transmitted codeword is X(m0,m1).
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Stated concisely, we have

{(
U (i),

{
X(i,j)}M1

j=1

)}M0

i=1
∼

M0∏
i=1

PU (u(i))
M1∏
j=1

PX|U (x(i,j)|u(i)). (6.10)

We consider constant-composition coding with an input distribution
QUX ∈ P(U × X ). Specifically, letting QUX,n ∈ Pn(U × X ) be a joint
type with the same support as QUX such that ‖QUX,n −QUX‖∞ ≤ 1

n ,
we set

PU (u) = 1
|T n(QU,n)|1{u ∈ T

n(QU,n)}, (6.11)

PX|U (x|u) = 1
|T nu (QUX,n)|1{(u,x) ∈ T n(QUX,n)}, (6.12)

where T nu (QUX,n) is a conditional type class, i.e., the set of all x such
that (u,x) has the specified joint type. This construction is referred to
as constant-composition superposition coding.

One could also consider i.i.d. superposition coding, which is the
standard choice in matched multi-user settings (e.g., the broadcast
channel) [30]. Similarly to Section 2, this choice leads to achievable rates
that are similar to the constant-composition ensemble, but generally
weaker. For brevity, we focus our attention on the constant-composition
case. We briefly discuss a cost-constrained ensemble for continuous-
alphabet channels in Section 6.3.6.

6.3.2 Statement of Achievable Rate

We proceed by stating the achievable rate, first in the primal form and
then in the dual form. The proofs are discussed in Section 6.3.6.

Theorem 6.3 (Superposition Coding Rate). Consider a DMC (W, q). For
any finite auxiliary alphabet U and input distribution QUX ∈ P(U ×X ),
the rate

R = R0 +R1 (6.13)
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is achievable provided that (R0, R1) satisfy

R1 ≤ min
P̃UXY : P̃UX=PUX , P̃Y =PY ,

E
P̃

[log q(X,Y )]≥EP [log q(X,Y )]

I
P̃

(X;Y |U) (6.14)

R0 +R1 ≤ min
P̃UXY : P̃UX=PUX , P̃UY =PUY ,
E
P̃

[log q(X,Y )]≥EP [log q(X,Y )],
I
P̃

(U ;Y )≤R0

I
P̃

(U,X;Y ). (6.15)

Moreover, this rate is ensemble-tight for constant-composition superpo-
sition coding.

We notice that these conditions bear a strong resemblance to those
of Theorem 6.1. In fact, the two constructions are not as different
as they may seem; both can be viewed as constructing a 2D grid of
codewords, one indexed by (X(i)

1 ,X
(j)
2 ), and the other by (U (i),X(i,j)).

The main difference is that under superposition coding, the rows are
independent; this simplifies the construction and analysis, as it allows
us to let all (U ,X) pairs have a fixed joint composition without any
need for expurgation.

It may appear that this extra independence of superposition coding
makes it “less structured” than expurgated parallel coding, or that it
weakens the rate due to a single mutual information constraint in (6.15)
in contrast with the two in (6.4). However, we will see in Section 6.3.5
that Theorem 6.3 can be weakened to Theorem 6.1, and this will crucially
rely on the fact that only one of the two mutual information constraints
in (6.4) can be active at a time (similarly to Lemma 5.5).

The preceding rate conditions admit a similar dual formulation to
Theorem 5.4, as stated in the following result. Recall that EZ [·] denotes
averaging over some random variable Z with all other random variables
held fixed.

Theorem 6.4 (Dual Form of Superposition Coding Rate). For any mis-
matched DMC (W, q) and input distribution QUX , the rate conditions
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in (6.14)–(6.15) can be written as

R1 ≤ sup
s≥0,a(·,·)

E
[
log q(X,Y )sea(U,X)

E[q(X̃, Y )sea(U,X̃)|U, Y ]

]
, (6.16)

R0 ≤ sup
ρ∈[0,1],s≥0,a(·,·)

E

log
(
q(X,Y )sea(U,X))ρ

EU
[(

EX
[
q(X,Y )sea(U,X)])ρ]

− ρR1,

(6.17)

where (U,X, Y, X̃, U,X) ∼ QUX(u, x)W (y|x)QX|U (x̃|u)QUX(u, x).

We will briefly discuss a direct derivation of this dual form in
Section 6.3.6, as well as its extension to continuous-alphabet channels.

6.3.3 Example 1: Zero-Undetected Error Capacity

We return to the example of Section 2.4.3, where X = Y = {0, 1, 2},
and the channel and metric are described by the entries of the matrices

W =

0.75 0.25 0
0 0.75 0.25

0.25 0 0.75

 , q =

1 1 0
0 1 1
1 0 1

 , (6.18)

where x indexes the rows, and y indexes the columns. We saw in
Section 2.4.3 that the optimized LM rate is Clm = 0.599 bits/use, and
is attained using the input distribution QX = (0.449, 0.551, 0).

It was stated in [2] that the rate C(2)
lm obtained by considering

the second-order product of the channel and metric (see Section 2.7)
is equal to C

(2)
lm = 0.616 bits/use. Using local optimization tech-

niques, we verified that this rate is achieved by the input distribution
(0, 0.250, 0, 0.319, 0, 0, 0, 0.181, 0.250), where the order of the inputs is
(0, 0), (0, 1), (0, 2), (1, 0), . . . , (2, 2).

The global optimization of (6.14)–(6.15) over U and QUX appears
to be difficult. However, setting |U| = 2 and applying local optimization
techniques using a number of starting points, we obtained an achievable
rate of R∗sc = 0.695 bits/use, with QU = (0.645, 0.355), QX|U (·|1) =
(0.3, 0.7, 0), and QX|U (·|2) = (0, 0, 1). Hence, even if this is not the
globally optimal choice of parameters, it reveals the interesting fact
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that superposition coding not only yields a strict improvement over the
single-letter LM rate, but also over the two-letter version.

6.3.4 Example 2: The LM Rate is Not Tight for Binary-Input
DMCs

It was claimed in an early work of Balakirsky [14] that for binary-input
DMCs, the LM rate with an optimized input distribution is tight, i.e.,
Cm = Clm. However, a recent work of the present authors provided a
counter-example to this claim [76], which we describe in the following.
We let X = {0, 1} and Y = {0, 1, 2}, and consider the channel and
metric described by the entries of the |X | × |Y| matrices

W =
[
0.97 0.03 0
0.1 0.1 0.8

]
, q =

[
1 1 1
1 0.5 1.36

]
. (6.19)

LM Rate. Using numerical evaluations and a brute force search over
QX , along with theoretical results quantifying the approximation errors
incurred, it was shown in [76] that the LM rate with an optimized input
distribution, Clm = maxQX Ilm(QX), satisfies

0.19746 ≤ Clm ≤ 0.19751 bits/use. (6.20)

The optimal input distribution, rounded to five decimal places, is given
by QX = (0.75597, 0.24403).

Superposition Coding Rate. When we applied the superposition cod-
ing rate of Theorem 6.3 directly to (W, q), we only managed to obtain
a rate coinciding with Clm. However, the technique of passing to the
k-th order product alphabet, introduced in Section 2.7, is equally valid
for other random-coding rates, including the superposition coding rate
of Theorem 6.3. We consider the case k = 2, and denote the resulting
rate with an optimized input distribution QUX2 as C(2)

sc . The counter-
example to [14] follows by combining (6.20) with the following:

C
(2)
sc ≥ 0.19908 bits/use, (6.21)

which clearly implies Cm > Clm.
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Figure 6.1: Binary-input example: LM rate and second-order superposition coding
rate as a function of Q0 for the mismatched channel described by (6.19).

To establish (6.21), we set |U| = 2, and choose the input distribution
QUX2 on U × X 2 as follows:

QU =
[
1−Q2

1 Q2
1

]
(6.22)

QX2|U=0 = 1
1−Q2

1

[
Q2

0 Q0Q1 Q0Q1 0
]

(6.23)

QX2|U=1 =
[
0 0 0 1

]
(6.24)

with Q0 = 0.749 and Q1 = 0.251. Here, the alphabet X 2 is listed
in the order (0, 0), (0, 1), (1, 0), (1, 1). Note that this choice of QUX2

ensures that the marginal distribution QX2 is the two-fold product of
QX = (Q0, Q1).

Other Input Distributions. The construction in (6.24) is valid for any
pair (Q0, Q1) summing to one, and it is interesting to compare the
resulting rate with the LM rate applied to QX = (Q0, Q1). The rates
are shown in Figure 6.1, where we observe that superposition coding
consistently improves on the LM rate for the values of Q0 shown.
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6.3.5 Comparison to Expurgated Parallel Coding

The following lemma formally states that Theorem 6.3 provides an
achievable rate at least as high as that of Theorem 6.1. No examples
are known where a strict improvement is attained, suggesting that the
two rates could be equivalent. Superposition coding, however, has the
advantage of having fewer parameters (namely, (U , QUX) instead of
(X1,X2, ψ,Q1, Q2)), and in the authors’ experience, this usually makes it
easier to find good choices (e.g., based on intuition, or local optimization
techniques).

Lemma 6.5 (Comparison of Superposition Coding and Expurgated Parallel
Coding). For any mismatched DMC (W, q), we have

sup
X1,X2,ψ,Q1,Q2

max
(R1,R2)∈Rmac

R1 +R2 ≤ sup
U ,QUX

max
(R0,R1)∈Rsc

R0 +R1, (6.25)

where Rmac = Rmac(X1,X2, ψ,Q1, Q2) is the set of rate pairs satisfying
(6.2)–(6.4), and Rsc = Rsc(U , QUX) is the set of rate pairs satisfying
(6.14)–(6.15).

We only outline the proof here, and refer the reader to [77] for the
full details. First, analogously to Lemma 5.5, the condition in (6.4)
holds if and only if at least one of the following hold:

R1 +R2 ≤ min
P̃X1X2Y : P̃X1X2=PX1X2 , P̃Y =PY

E
P̃

[log q(ψ(X1,X2),Y )]≥EP [log q(ψ(X1,X2),Y )],
I
P̃

(X1;Y )≤R1

I
P̃

(X1, X2;Y )

(6.26)
R1 +R2 ≤ min

P̃X1X2Y : P̃X1X2=PX1X2 , P̃Y =PY
E
P̃

[log q(ψ(X1,X2),Y )]≥EP [log q(ψ(X1,X2),Y )],
I
P̃

(X2;Y )≤R2

I
P̃

(X1, X2;Y ).

(6.27)

In other words, the two mutual information constraints in (6.4) can be
considered one at a time without affecting the rates.

Once this is established, the proof proceeds in two parts:

1. Show that by identifying U sc = Xex
2 , Rsc

1 = Rex
1 and Rsc

0 = Rex
2 ,

we can weaken (6.14) to (6.2), and (6.15) to (6.27).
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2. Show that by identifying U sc = Xex
1 , Rsc

1 = Rex
2 and Rsc

0 = Rex
1 ,

we can weaken (6.14) to (6.3), and (6.15) to (6.26).

Here, the superscript explicitly denotes which coding technique the pa-
rameters correspond to. The above two claims are proved using identical
steps, so we consider the former. We choose the input distribution in
terms of the expurgated parallel coding parameters as

QUX(u, x) =
∑
x1

Q1(x1)Q2(u)1{x = ψ(x1, u)}. (6.28)

By doing so, simple manipulations to the objective functions and con-
straints in (6.14) and (6.15) allow us to recover the conditions (6.2)
and (6.27). For example, if we substitute this choice of QUX into the
superposition coding metric constraint∑

u,x,y

QUX(u, x)P̃Y |UX(y|u, x)log q(x, y)≥
∑
x,y

QX(x)W (y|x) log q(x, y),

(6.29)
then we get the following upon renaming u as x2:∑

x1,x2,y

Q1(x1)Q2(x2)P̃Y |X1X2(y|x1, x2) log q(ψ(x1, x2), y)

≥
∑

x1,x2,y

Q1(x1)Q2(x2)W (y|ψ(x1, x2)) log q(ψ(x1, x2), y),

(6.30)

where P̃Y |X1X2(y|x1, x2) = P̃Y |X1X(y|x1, ψ(x1, x2)). This is precisely
the metric constraint for expurgated parallel coding. The desired claim
follows by treating the other constraints and objective functions similarly,
and then minimizing over P̃Y |X1X2 .

We note that a similar argument is also given [93, Prop. 1], in which
a form of superposition coding is considered with MAC-like parameters
X1, X2, and ψ, as opposed to the parameters U and QUX considered here.
The parameters (X1,X2, ψ) are viewed as a forming a cognitive MAC in
which one user knows both messages, meaning that superposition coding
can be used to induce general joint input distributions QX1X2 , rather
than only product distributions of the form QX1×QX2 . An advantage of
this perspective is that it permits the direct comparison of superposition
coding and expurgated parallel coding for fixed parameters (X1,X2, ψ).
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In particular, the following argument from [93] highlights that the
superposition coding rates can indeed be strictly higher with fixed
parameters: Fix (X1,X2) and X with |X | = |X1| · |X2|, and let ψ be
any one-to-one mapping from X1 × X2 to X . Then, varying QX1X2

can induce any distribution on X, but varying QX1 and QX2 can only
induce a narrower range of distributions (e.g., any symbol having zero
probability forces others to also be zero, due to the product structure).
This restriction lowers the achievable rate, for example, when matched
decoding (q = W ) is used and the capacity-achieving input distribution
does not conform to the product structure.

6.3.6 Proof Techniques for the Achievable Rate

The proof of Theorem 6.3 is comparatively simpler than that of the
multiple-access channel (Theorem 5.1), so we focus mostly on the ideas
and intuition rather than the full details.

Separation into Two Error Events. Recalling the codebook construc-
tion in Section 6.3.1, we assume without loss of generality that the
transmitted codeword corresponds to (m0,m1) = (1, 1), and we define
the following two error events:

(Type 0) qn(X(i,j),Y ) ≥ qn(X,Y ) for some i 6= 1, j;
(Type 1) qn(X(1,j),Y ) ≥ qn(X,Y ) for some j 6= 1.

Denoting the probabilities of these events by pe,0(n,M0,M1) and
pe,1(n,M1) respectively, it follows that the overall random-coding error
probability pe(n,M0,M1) satisfies

max{pe,0, pe,1} ≤ pe ≤ pe,0 + pe,1. (6.31)

Non-Asymptotic Bounds. The first step of the analysis is to establish
the following non-asymptotic bounds:

pe,0 ≤ EU ,X,Y

[
min

{
1,(M0 − 1)EU

[
min

{
1,

M1PX

[
qn(X,Y ) ≥ qn(X,Y )

]}]}]
, (6.32)
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pe,1 ≤ E
[

min
{

1, (M1 − 1)P
[
qn(X̃,Y ) ≥ qn(X,Y )

∣∣U ,X,Y
]}]

,

(6.33)

where

(U ,X,Y , X̃,U ,X) ∼PU (u)PX|U (x|u)Wn(y|x)
× PX|U (x̃|u)PU (u)PX|U (x|u). (6.34)

For the type-1 error probability, (6.33) follows by conditioning on
(U ,X,Y ) and applying the truncated union bound (i.e., the minimum
of one and the standard union bound) over the error events. On the
other hand, more care is needed for the type-0 error probability. We
first write

pe,0 = E
[
P
[ ⋃
i 6=1,j 6=1

{
qn(X(i,j),Y ) ≥ qn(X,Y )

} ∣∣∣U ,X,Y

]]
, (6.35)

where we assume without loss of generality that (m0,m1) = (1, 1). The
upper bound (6.32) then follows by applying the truncated union bound
first to the union over i, and then to the union over j, similarly to the
analysis of the DM-MAC in Section 5.7.

Primal Analysis Techniques. Once the above bounds are in place, we
can apply similar techniques to the single-user setting (cf., Section 2).
Focusing on the more interesting type-0 error event, we write (6.32) in
terms of joint types as follows:

pe,0 ≤
∑

PUXY ∈Pn(U×X×Y):
PUX=QUX,n

P
[(

U ,X,Y
)
∈ T n(PUXY )

]

×min
{

1, (M0 − 1)
∑

P̃UXY ∈Pn(U×X×Y):
PUX=QUX,n, P̃Y =PY

E
P̃

[log q(X,Y )]≥EP [log q(X,Y )]

P
[(

U ,y
)
∈ T n(P̃UY )

]

×min
{

1,M1P
[(

u,X,y
)
∈ T n(P̃UXY )

∣∣U = u
]}]}

,

(6.36)
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where (u,y) denotes an arbitrary pair such that y ∈ T n(PY ) and
(u,y) ∈ T n(P̃UY ). Here the constraints on (U,X) arise due the constant-
composition construction, and the constraint P̃Y = PY arises since
(U ,X,Y ) and (U ,X(j),Y ) share the same Y sequence.

The proof now proceeds as in the previous sections by applying
standard properties of types, using the law of large numbers to establish
‖PUXY −QUX ×W‖∞ ≤ δ, and applying a continuity argument similar
to Appendix A.1. The probabilities in the second and third lines of (6.36)
give rise to the mutual information terms I

P̃
(U ;Y ) and I

P̃
(U ;Y |X)

respectively, and the resulting rate condition is

R0 ≤ min
P̃UXY : P̃UX=PUX , P̃UY =PUY ,
E
P̃

[log q(X,Y )]≥EP [log q(X,Y )]

I
P̃

(U ;Y )+[I
P̃

(X;Y |U)−R1]+. (6.37)

This condition is trivially satisfied when I
P̃

(U ;Y ) > R0, so we can
further constrain I

P̃
(U ;Y ) ≤ R0 in the minimization, and then lower

bound the function [·]+ by its argument to obtain (6.15).

Ensemble Tightness. The ensemble tightness proof for the type-1
error probability (i.e., the condition (6.14)) directly follows that of the
single-user setting. For the type-0 error probability (i.e., the condition
(6.15)), we need to avoid the two union bounds used in weakening (6.35)
to (6.32). However, this is also straightforward: For the union over i
we instead resort to the exact expression similarly to the single-user
setting (cf., (2.109)), and for the union over j, it suffices to note that
for independent events the truncated union bound is tight to within a
factor of 1

2 (e.g., see [90, Lemma A.2]).

Dual Analysis Techniques. To obtain the dual expression of Theo-
rem 6.4, we can weaken (6.32) and (6.33) using standard tools such as
Markov’s inequality and min{1, z} ≤ zρ, as well as the fact that for any
function a(u, x), the quantity

∑n
i=1 a(ui, xi) takes the same value for

any (U ,X) occurring with positive probability. Beyond handling the
unions one at a time to obtain (6.32), no new tools are needed compared
to the single-user dual analysis for constant-composition random coding
(cf., Section 2).
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Similarly to Section 3, it is of interest to extend the dual analysis to
channels with continuous alphabets. To do so, we need to define PU and
PX|U in terms of an input distribution QUX and auxiliary cost a(u, x)
in such a way that (i)

∑n
i=1 a(Ui, Xi) is almost surely close to its mean,

and (ii) PU and PX|U can be upper bounded by i.i.d. distributions on
QU and QX|U times sub-exponential pre-factors. It was shown in [77]
that such distributions exist, requiring only simple tricks following the
cost-constrained codeword distributions used in Section 3.

6.4 Refined Superposition Coding

Superposition coding leads to a structured codebook in which the code-
words {X(i,j)}M1

j=1 are correlated through their dependence on U (i), and
we have seen that this can lead to strict improvements over indepen-
dent codewords. In this subsection, we present a variation of this idea
that adds another level of structure, namely, the codewords {X(i,j)}M1

j=1
are dependent even conditioned on U (i). We call the technique refined
superposition coding [81], and we will see that it yields a rate at least as
good as the standard version, with strict improvements being possible
(at least for fixed (U , QUX)).

6.4.1 Codebook Construction

As with superposition coding, the main parameters to the ensemble
are the finite alphabet U and input distribution QUX ∈ P(U × X ). In
addition, we fix the rates R0 and {R1u}u∈U , and accordingly define
M0 , benR0c and M1u , benR1uc.

The codewords are generated in three steps:

• Generate the length-n auxiliary codewords {U (i)}M0
i=1 indepen-

dently according to the following constant-composition distribu-
tion PU :

PU (u) = 1
|T n(QU,n)|1

{
u ∈ T n(QU,n)

}
, (6.38)

where QU,n ∈ Pn(X ) is a type with the same support as QU such
that ‖QU,n −QU‖∞ ≤ 1

n .
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• For each u ∈ U , we define

nu , QU,n(u)n (6.39)

and fix a partial codeword distribution PXu ∈ P(X nu). For each
i = 1, . . . ,M0 and u ∈ U , we draw the length-nu partial codewords
{X(i,ju)

u }M1u
ju=1 independently from PXu .

• A given message m is indexed as (m0,m11, . . . ,m1|U|), and the
corresponding codeword X(m) is constructed by treating U (m0)

as a time-sharing sequence: At the indices where U (m0) equals u,
we transmit the symbols of X(m0,m1u)

u .

The first two steps are summarized as follows:{(
U (i),

{
X

(i,j1)
1

}M11
j1=1, . . . ,

{
X

(i,j|U|)
|U|

}M1|U|
j|U|=1

)}M0

i=1

∼
M0∏
i=1

(
PU (u(i))

∏
u∈U

( M1u∏
ju=1

PXu(x(i,ju)
u )

))
. (6.40)

From the third step, there are M = M0 ×
∏|U|
u=1M1u codewords, and

hence the overall rate is

R = R0 +
|U|∑
u=1

QU,n(u)R1u. (6.41)

An example of the construction of the codeword x from the auxiliary
sequence u and partial codewords x1, x2 and x3 is shown in Figure 6.2,
where we have U = {1, 2, 3} and X = {a, b, c}.

It remains to specify the partial codeword distributions PXu . Letting
QUX,n be a joint type with the same support asQUX satisfying ‖QUX,n−
QUX‖∞ ≤ 1

n , we choose PXu to be the uniform distribution on the type
class T nu

(
QX|U,n(·|u)

)
:

PXu(xu) = 1
|T nu(QX|U,n(·|u))|1{xu ∈ T

nu(QX|U,n(·|u))}. (6.42)

Combining this with (6.38), we have by symmetry that each pair
(U (i),X(i,j1,...,j|U|)) is uniformly distributed on T n(QUX). Hence, the



306 Multi-User Coding Techniques for Single-User Channels

Figure 6.2: The construction of the codeword from the auxiliary sequence u and
the partial codewords x1, x2 and x3 for refined SC. Here we have U = {1, 2, 3},
X = {a, b, c}, n1 = n2 = n3 = 4, and n = 12.

marginal distribution of each (U ,X) pair is the same as superposi-
tion coding, but the joint codebook distribution has some additional
structure. We refer to the overall construction as constant-composition
refined superposition coding.

Considering the case |U| = 2, one can picture the structure of the
codewords {X(i,j1,j2)}j1,j2 by imagining them arranged in an M11 ×
M12 grid. Given {U (i)}M0

i=1, refined superposition coding generates two
separate codebooks of partial codewords {X1}M11

j1=1 and {X2}M12
j2=1 and

fills in the grid accordingly, whereas standard superposition coding fills
every entry of the grid in a conditionally independent manner given
{U (i)}M0

i=1. As a result, the added structure is analogous to that of using
multiple-access coding (Section 5) in place of mutually independent
codewords (Section 2).

6.4.2 Statement of Achievable Rate

The achievable rate of constant-composition refined superposition coding
is stated as follows [81]. We make use of the definition of the LM rate
in (2.15).

Theorem 6.6 (Refined Superposition Coding Rate). Consider a DMC
(W, q). For any finite set U and input distribution QUX ∈ P(U × X ),
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the rate

R = R0 +
|U|∑
u=1

QU (u)R1u (6.43)

is achievable provided that R0 and {R1u}|U|u=1 satisfy

R1u ≤ Ilm
(
QX|U (·|u)

)
, ∀u ∈ U , (6.44)

R0 ≤ min
P̃UXY : P̃UX=PUX , P̃UY =PUY ,
E
P̃

[log q(X,Y )]≥EP [log q(X,Y )]

I
P̃

(U ;Y )

+
[

max
K⊆U ,K6=∅

∑
u∈K

QU (u)
(
I
P̃

(X;Y |U = u)−R1u
)]+

. (6.45)

Moreover, this rate is ensemble-tight for constant-composition refined
superposition coding.

We will show in Section 6.4.5 that this rate is at least high as that
of that of standard superposition coding (Theorem 6.3) for any pair
(U , QUX) of auxiliary parameters.

A dual formulation of Theorem 6.6 was given in [81] for the special
case |U| = 2, along with a direct derivation using cost-constrained
coding that generalizes to continuous-alphabet channels. The statement
and proof of the dual equivalence are rather cumbersome even in the
simplest case |U| = 2, and they are therefore omitted here.

Before comparing to standard superposition and discussing the proof
of Theorem 6.6, we present some examples from [81].

6.4.3 Example 1: Sum Channel

The notions of product channels and sum channels were introduced
in Shannon’s original paper [87]. We have already studied product
channels (i.e., parallel channels) in detail in Sections 2.4.5 and 5.4; here
we provide an analogous example regarding the sum channel.

Given two channels (W1,W2) respectively defined on the alphabets
(X1,Y1) and (X2,Y2), the sum channel is defined to be the channel
W (y|x) with |X | = |X1|+ |X2| and |Y| = |Y1|+ |Y2| such that one of
the two subchannels is used on each transmission. One can similarly
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Figure 6.3: Sum of two binary symmetric channels with crossover probabilities
(δ1, δ2).

combine two metrics q1(x1, y1) and q2(x2, y2) to form a sum metric
q(x, y): Assuming without loss of generality that X1 and X2 are disjoint
and Y1 and Y2 are disjoint, we have

q(x, y) =


q1(x1, y1) x1 ∈ X1 and y1 ∈ Y1
q2(x2, y2) x2 ∈ X2 and y2 ∈ Y2

0 otherwise,
(6.46)

and similarly for W (y|x).
An example of a sum channel is shown in Figure 6.3, where both

subchannels are binary symmetric channels (BSCs). The corresponding
channel and metric matrices are given by

W =


1− δ1 δ1 0 0
δ1 1− δ1 0 0
0 0 1− δ2 δ2
0 0 δ2 1− δ2

. (6.47)

While the channel diagram is similar to that of the product channel
of Figure 2.3, the two are fundamentally different: Here we are not
transmitting over both subchannels simultaneously, but rather, choosing
one to transmit over at each time instant. To appreciate the difference,
observe that we can transmit one bit across the sum channel with zero
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error by using only the symbols {0, 2}, whereas we can never achieve
an error probability of zero in the product channel.

We use Theorem 6.6 to provide an achievable rate for a general sum
channel, and then specialize it to the BSC example. Let Q1 and Q2
be the distributions that maximize the LM rate in (2.15) on the two
subchannels. We set U = {1, 2}, QX|U (·|1) = (Q1,0) and QX|U (·|2) =
(0, Q2), where 0 denotes the zero vector of length two. We leave QU to
be specified.

Combining the constraints P̃UX = QUX and E
P̃

[log q(X,Y )] ≥
EP [log q(X,Y )] in (6.45), it can be shown that the minimizing P̃UXY
only takes non-zero values for (u, x, y) such that (i) u = 1, x ∈ X1
and y ∈ Y1, or (ii) u = 2, x ∈ X2 and y ∈ Y2. It follows that U is a
deterministic function of Y under the minimizing P̃UXY , and hence

I
P̃

(U ;Y ) = H(QU )−H
P̃

(U |Y ) = H(QU ). (6.48)

Therefore, the right-hand side of (6.45) is lower bounded by H(QU ).
Using (6.43), it follows that we can achieve the rate

R∗ = H(QU ) +QU (1)Ilm(Q1,W1) +QU (2)Ilm(Q2,W2) (6.49)
= log

(
eIlm(Q1,W1) + eIlm(Q2,W2)), (6.50)

where Ilm(Qu,Wu) is the LM rate for subchannel u ∈ {1, 2}, and (6.50)
holds under the optimal auxiliary distribution QU (1) = 1−QU (2) =

eIlm(Q1,W1)

eIlm(Q1,W1)+eIlm(Q2,W2) , analogously to the matched case [87, Sec. 16].
Now, suppose that the two subchannels are BSCs with different

crossover probabilities δ1, δ2 ∈
(
0, 1

2
)
, whereas the mismatched decoder

assumes a common crossover probability δ ∈
(
0, 1

2
)
. By the binary

example in Section 2.4.1, we have for u = 1, 2 that the choiceQu =
(1

2 ,
1
2
)

yields Ilm(Qu,Wu) = 1 −H2(δu) bits/use, which equals the matched
capacity Cu of the subchannel. As a result, from (6.50) and the sum
channel capacity formula C∗ = log

(
eC1 +eC2

)
[87, Sec. 16], the mismatch

capacity is identical to the matched capacity. In contrast, it can be
shown that the LM rate is strictly less than the matched capacity
whenever δ1 6= δ2. We illustrate this numerically in Figure 6.4, where
we plot the matched rate (achieved by refined SC), as well as the LM
rate under the (matched) capacity-achieving input distribution.
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Figure 6.4: Sum channel example: Achievable rates with δ1 = 0.11, as a function
of δ2. The refined SC rate and the LM rate only coincide when δ1 = δ2.

6.4.4 Example 2: Comparison of Superposition Coding Methods

We now turn to an example comparing the standard superposition
coding rate of Theorem 6.3 with the refined superposition coding rate
of Theorem 6.6. We consider the channel and decoding metric described
by the entries of the matrices

W =


0.99 0.01 0 0
0.01 0.99 0 0
0.1 0.1 0.7 0.1
0.1 0.1 0.1 0.7

 , q =


1 0.5 0 0

0.5 1 0 0
0.05 0.15 1 0.05
0.15 0.05 0.5 1

 .
(6.51)

This is an admittedly artificial example, but we will see that it consti-
tutes an interesting example for the purpose of comparison.

Using an exhaustive search to three decimal places, we obtained the
following: (i) the optimized LM rate is Clm = 1.111 bits/use, and is
achieved by the input distribution QX = (0.403, 0.418, 0, 0.179); (ii) the
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Table 6.1: Achievable rates (bits/use) for the mismatched channel in (6.51). In
addition, Clm = 1.111 bits/use, and Cgmi = 0.954 bits/use

Input Distribution Refined SC Standard SC

Q
(1)
UX 1.313 1.060

Q
(2)
UX 1.236 1.236

optimized GMI is Cgmi = 0.954 bits/use, and is achieved by the input
distribution QX = (0.330, 0.331, 0.155, 0.184).

For refined superposition coding, setting |U| = 2 and applying local
optimization techniques using a number of starting points, we obtained
an achievable rate of R∗rsc = 1.313 bits/use, with QU = (0.698, 0.302),
QX|U (·|1) = (0.5, 0.5, 0, 0) and QX|U (·|u) = (0, 0, 0.528, 0.472). We
denote the corresponding input distribution by Q(1)

UX .
Applying similar local optimization techniques for standard su-

perposition coding, we obtained an achievable rate of R∗sc = 1.236
bits/use, with QU = (0.830, 0.170), QX|U (·|1) = (0.435, 0.450, 0.115, 0)
and QX|U (·|2) = (0, 0, 0, 1). We denote the corresponding input distri-
bution by Q(2)

UX .
The superposition coding rates are summarized in Table 6.1. While

the achievable rate of Theorem 6.6 coincides with that of Theorem 6.3
under Q(2)

UX , the former is significantly higher under Q(1)
UX . Both types

of superposition coding yield a strict improvement over the LM rate,
which in turn provides a strict improvement over the GMI.

Since we did not perform a global optimization of (U , QUX), we
cannot necessarily include that refined superposition coding beats the
standard version for the best possible choices of U and QUX . Neverthe-
less, at the very least, this example highlights that refined superposition
coding can facilitate the search for a good set of parameters, and can
provide significant improvements for a fixed set of parameters.
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6.4.5 Comparison to Standard Superposition Coding

As mentioned previously, the refined superposition coding rate is always
at least as high as that of standard superposition coding. This is formally
stated in the following.

Lemma 6.7 (Comparison of Superposition Coding Rates). For any mis-
matched DMC (W, q), any pair of parameters (U , QUX) such that |U|
is finite, we have

max
(R0,R1)∈Rsc(QUX)

R0 +R1 ≤ max
(R0,R1,...,R|U|)∈Rrsc(QUX)

R0 +
∑
u

QU (u)R1u,

(6.52)
where Rsc(QUX) is the set of rate pairs satisfying (6.14)–(6.15), and
Rrsc(QUX) is the set of rate tuples satisfying (6.44)–(6.45).

Proof. We will show that for the tuple (R0, R1, . . . , R|U|) achieving
equality in the refined superposition coding conditions (6.44)–(6.45),
we can lower bound R0 to recover (6.15), and we can lower bound

R1 ,
∑
u

QU (u)R1u (6.53)

to recover (6.14).
For the condition on R0, we lower bound the right-hand side of

(6.45) by replacing the maximum over K by the particular choice K = U ,
meaning the highest possible value R∗0 of R0 satisfies

R∗0 ≥ min
P̃UXY : P̃UX=PUX , P̃UY =PUY ,
E
P̃

[log q(X,Y )]≥EP [log q(X,Y )]

I
P̃

(U ;Y ) +
[
I
P̃

(X;Y |U)−R1
]+
,

(6.54)
where we have used (6.53) and the definition of conditional mutual
information. Since the condition in (6.54) trivially holds I

P̃
(U ;Y ) > R0,

this condition is unchanged when we constrain the minimum to satisfy
I
P̃

(U ;Y ) ≤ R0. By doing so, and lower bounding the [·]+ function by
its argument, we recover (6.15).
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Next, defining P̃XY |U (·, ·|u) to be the minimizer in (2.15) corre-
sponding to a given u ∈ U in (6.44), and recalling (6.53), we have

R1 =
∑
u

QU (u)I
P̃

(X;Y |U = u) (6.55)

= I
P̃

(X;Y |U), (6.56)

where in (6.56), we define P̃UXY according to the above marginals along
with P̃U = QU . The proof now simply amounts to showing that the
constraints on the LM rate in (2.15) for each u ∈ U imply the superposi-
tion coding constraints in (6.14). This is a straightforward exercise; for
instance, we have E

P̃
[log q(X,Y )|U = u] ≥ EP [log q(X,Y )|U = u]

for all u ∈ U , and averaging over U gives the desired constraint
E
P̃

[log q(X,Y )] ≥ EP [log q(X,Y )].

6.4.6 Proof Techniques

Here we describe the key idea behind the proof of Theorem 6.6; we
omit the full details, which can be found in [81]. We focus on the case
U = {1, 2} for clarity, but the same arguments apply more generally.

Separation into Three Error Events. Recalling the codebook con-
struction described in Section 6.4.1, we rewrite the maximum-metric
decoding rule as follows:

(m̂0, m̂11, m̂12) = arg max
(i,j1,j2)

qn(x(i,j1,j2),y) (6.57)

= arg max
(i,j1,j2)

qn1
(
x

(i,j1)
1 ,y1(u(i))

)
qn2
(
x

(i,j2)
2 ,y2(u(i))

)
,

(6.58)

where yu(u) denotes the subsequence of y corresponding to the indices
where u equals u. The objective in (6.58) follows by separating the
indices where u = 1 from those where u = 2.

From (6.58), we see that for any given i, the pair (j1, j2) with the
highest metric is the one for which j1 maximizes qn1(x(i,j1)

1 ,y1(u(i)))
and j2 maximizes qn2(x(i,j2)

2 ,y2(u(i))). As a result, we can split the error
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event into the following three types, assuming without loss of generality
that the transmitted message corresponds to (m0,m11,m12) = (1, 1, 1):

(Type 0) qn(X(i,j1,j2),Y ) ≥ qn(X,Y ) for some i 6= 1, j1, j2;
(Type 1) qn1(X(1,j1)

1 ,Y1(U)) ≥ qn1(X1,Y1(U)) for some j1 6= 1;
(Type 2) qn2(X(1,j2)

2 ,Y2(U)) ≥ qn2(X2,Y2(U)) for some j2 6= 1.

By the union bound, the overall error probability is upper bounded by
the sum over these three error types.

Observe that the type-1 error event corresponds to the error event
for the standard constant-composition ensemble (cf., Section 2.3.2)
with rate R11, length n1 = nQU (1), and input distribution QX|U (·|1).
A similar statement holds for the type-2 error probability pe,2. As a
result, we de not need to re-analyze these events; we immediately obtain
the condition (6.44) from Theorem 2.3. In the following, we focus on
the more difficult type-0 error event.

Separation into Joint Types. The error probability for the type-0
error event is given by

pe,0 = P
[ ⋃
i 6=1

⋃
j1,j2

{
qn(X(i,j1,j2),Y ) ≥ qn(X,Y )

}]
, (6.59)

where (Y |X = x) ∼Wn(·|x). Writing the probability as an expectation
given (U ,X,Y ) and applying the truncated union bound, we obtain

pe,0 ≤ EU ,X,Y

[
min

{
1, (M0 − 1)

× EU

[
P{X(j1,j2)}

[ ⋃
j1,j2

{
qn(X(j1,j2),Y ) ≥ qn(X,Y )

}]]}]
, (6.60)

where the codewords X(j1,j2) correspond to the auxiliary codeword U

(e.g., U = U (2) and X(j1,j2) = X(2,j1,j2)).
As with the other achievable rates in the monograph, one can write

(6.60) in terms of joint types. The resulting counterpart to (6.36) is
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given by

pe,0 ≤
∑

PUXY ∈Pn(U×X×Y):
PUX=QUX,n

P
[(

U ,X,Y
)
∈ T n(PUXY )

]

×min
{

1, (M0 − 1)
∑

P̃UXY ∈Pn(U×X×Y):
PUX=QUX,n, P̃Y =PY

E
P̃

[log q(X,Y )]≥EP [log q(X,Y )]

P
[(

U ,y
)
∈ T n(P̃UY )

]

× P
[ ⋃
j1,j2

{(
u,X(j1,j2),y

)
∈ T n(P̃UXY )

}]}
, (6.61)

where (u,y) denotes an arbitrary pair such that y ∈ T n(PY ) and
(u,y) ∈ T n(P̃UY ).

Bounding the Double Union. We bound the doubly-indexed union
in (6.61) using a similar approach to the multiple-access channel in
Section 5.5. Recalling the definition of yu following (6.58), we have(

u,X(j1,j2),y
)
∈ T n(P̃UXY )

⇐⇒
(
X(ju)

u ,yu(u)
)
∈ T nu(P̃XY |U (·, ·|u)), u = 1, 2, (6.62)

where {Xu}u=1,2 are the partial codewords such that X(j1,j2) is con-
structed from (u,X1,X2). We then claim that

P
[ ⋃
j1,j2

{(
u,X(j1,j2),y

)
∈ T n(P̃UXY )

}]

≤ min
{

1, min
u=1,2

M1uP
[(

Xu,yu(u)
)
∈ T nu

(
P̃XY |U (·, ·|u)

)]
,

M11M12P
[ ⋂
u=1,2

{(
Xu,yu(u)

)
∈ T nu

(
P̃XY |U (·, ·|u)

)}]}
. (6.63)

The first term is trivial, the last term is the standard union bound,
and the middle term corresponds to restricting the above condition for
u = 1, 2 to only hold for either u = 1 or u = 2, rather than both. One
can view (6.63) as taking the minimum over the four subsets K ⊆ U ,
including the empty set.
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Wrapping Up. The remainder of the proof amounts to the same
techniques as the previous sections, namely, applying standard prop-
erties of types, using the law of large numbers to establish ‖PUXY −
QUX ×W‖∞ ≤ δ, and applying a continuity argument similarly to
Appendix A.1. Regarding the first of these, we note that up to sub-
exponential pre-factors, P

[(
U ,y

)
∈ T n(P̃UY )

]
behaves as e−nIP̃ (U ;Y ),

and P
[(

Xu,yu(u)
)
∈ T nu

(
P̃XY |U (·, ·|u)

)]
behaves as e−nuIP̃ (X;Y |U=u);

these mutual information quantities arise accordingly in the rate condi-
tion (6.45).

Further Analysis Techniques. The ensemble tightness of the rate in
Theorem 6.6 can be established using similar techniques to those of
the multiple-access channel (cf., Section 5.6). The details can be found
in [81], along with the corresponding dual expressions and continuous-
alphabet extensions.



7
Error Exponents

7.1 Introduction

Throughout the monograph, our focus has been on achievable rates via
random coding. A notable limitation of studying achievable rates is that
they only establish the first-order conditions for attaining asymptotically
vanishing error probability, meaning that in principle the block length
may need to be very large to achieve a given target.

In this section, we survey developments in random-coding error
exponents, which provide refined asymptotic achievability bounds char-
acterizing the speed of convergence of the error probability to zero
at fixed rates. While error exponents are a classical topic in Shannon
theory [24, 38], their study in the presence of mismatched decoding
comes with interesting new challenges and insights, e.g., regarding the
number of auxiliary costs (cf., Section 3.5) required to maximize the
exponent. While other refined asymptotics (e.g., speed of convergence
to the first-order rate for a fixed error probability) have also been con-
sidered under mismatched decoding [79], we focus on error exponents,
which are generally better understood.

317
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Before proceeding, we formalize the notion of an achievable error
exponent and ensemble tightness, focusing on the single-user mismatched
decoding setting of Sections 2 and 3.

Definition 7.1 (Error Exponents). For a mismatched memoryless channel
described by (W, q), we say that E(R) is an achievable error exponent
at rate R if, for any δ > 0, there exists a sequence of codebooks Cn with
M ≥ en(R−δ) codewords such that

lim sup
n→∞

1
n

log pe(Cn) ≥ E(R). (7.1)

In addition, for a given random coding ensemble with random-coding
error probability pe(n,M), we say that E(R) is the ensemble-tight error
exponent at rate R if

lim
n→∞

1
n

log pe(n, benRc) = E(R). (7.2)

As with the achievable rates, we will focus on i.i.d. random coding
(Definition 2.1), constant-composition random coding (Definition 2.2),
and various forms of cost-constrained random coding (Sections 3.4
and 3.5), and we will first consider independently-generated codewords
before turning to multi-user coding techniques (Sections 5 and 6).

The results of this section are due to Csiszár and Körner [23], Kaplan
and Shamai [48], Scarlett et al. [79, 81, 83], and Somekh-Baruch et
al. [97].

7.2 Random-Coding Exponents for DMCs

We first consider discrete memoryless channels (DMCs), in which the
input and output alphabets are finite. As is the case for the GMI and
the LM rate (cf., Section 2.3), the random-coding error exponents of
i.i.d. random coding and constant-composition random coding can be
written in both primal and dual forms. In fact, analogous primal and dual
forms have long been known in the matched case (e.g., see [37]), with
Csiszár and Körner’s type-based analysis giving the primal form [24],
and Gallager’s analysis giving the dual form [38].

We proceed by defining the primal and dual forms of the relevant
error exponents under mismatched decoding, and then formally state
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their achievability and ensemble tightness. For i.i.d. random coding, the
primal expression is given by

Eiid
r (QX , R) = min

PXY
min

P̃XY : P̃Y =PY ,
E
P̃

[log q(X,Y )]≥EP [log q(X,Y )]

D(PXY ‖QX ×W ) +
[
D(P̃XY ‖QX × P̃Y )−R

]+
, (7.3)

and the dual expression is given by [48]

Eiid
r (QX , R) , max

ρ∈[0,1]
Eiid

0 (QX , ρ)− ρR, (7.4)

where

Eiid
0 (QX , ρ) , sup

s≥0
− log

∑
x

QX(x)
∑
y

W (y|x)
(∑

xQX(x)q(x, y)s

q(x, y)s
)ρ
.

(7.5)
For constant-composition random coding, the primal expression is given
by [23]

Ecc
r (QX , R) = min

PXY : PX=QX
min

P̃XY : P̃X=QX ,P̃Y =PY ,
E
P̃

[log q(X,Y )]≥EP [log q(X,Y )]

(7.6)

D(PXY ‖QX ×W ) +
[
I
P̃

(X;Y )−R
]+
, (7.7)

and the dual expression is given by [79]

Ecc
r (QX , R) = max

ρ∈[0,1]
Ecc

0 (QX , ρ)− ρR, (7.8)

where

Ecc
0 (QX , ρ)

= sup
s≥0,a(·)

−
∑
x

QX(x) log
∑
y

W (y|x)
(∑

xQX(x)q(x, y)sea(x)

q(x, y)sea(x)

)ρ
.

(7.9)

Similarly to the primal-dual equivalences for achievable rates in Section
2.5.3, the proofs are based on Lagrange duality. The details can be
found in [79].
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Theorem 7.1 (Ensemble-Tight Error Exponents for DMCs). For any
mismatched DMC (W, q), input distribution QX ∈ P(X ), and rate
R > 0, we have under i.i.d. random coding that

lim
n→∞

− 1
n

log pe(n, benRc) = Eiid
r (QX , R), (7.10)

and under constant-composition random coding that

lim
n→∞

− 1
n

log pe(n, benRc) = Ecc
r (QX , R). (7.11)

It is straightforward to show that the i.i.d. and constant-composition
exponents are positive for R < Igmi(QX) and R < Ilm(QX), respectively.
We outline the proof of this claim for the constant-composition case [26],
and note that similar arguments hold for the i.i.d. case:

• In the primal expression (7.7), the term D(PXY ‖QX × W ) is
always positive when PXY is not equal to QX ×W . Hence, we
can take PXY → QX ×W , and upon doing so, it only remains to
apply the continuity of the LM rate (cf., Lemma 2.5).

• In the dual expression, we can lower bound Ecc
0 (QX , ρ) in (7.9)

by the value Ecc
0 (QX , ρ, s, a) corresponding to any fixed choices of

s ≥ 0 and a(·). Following the analysis of Gallager [38], one finds
that the exponent is positive for all rates up to ∂Ecc

0 (QX ,ρ,s,a)
∂ρ

∣∣
ρ=0,

and a direct calculation reveals that this derivative equals the
objective function in (2.16). Optimizing s ≥ 0 and a(·) recovers
the LM rate.

The mismatched decoding error exponents also bear a strong resem-
blance to the above-mentioned error exponents for maximum-likelihood
decoding, and in fact recover them as a special case [26, 79] by setting
q(x, y) = W (y|x). In this case, the minimizations in the primal expres-
sions are achieved with P̃XY = PXY , and the maximizations in the dual
expressions are achieved with s = 1

1+ρ .
In analogy with the fact that Igmi(QX) ≤ Ilm(QX), we observe that

Eiid
r (QX , R) ≤ Ecc

r (QX , R) (7.12)
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for any channel (W, q), input distribution QX , and rate R. This can
be seen from the primal expressions by noting that the minimiza-
tions in (7.7) are more constrained than those in (7.3) (note also that
D(P̃XY ‖QX × PY ) and I

P̃
(X;Y ) are identical under the constraints

P̃X = QX and P̃Y = PY ). Alternatively, using the dual expressions,
we see that setting a(·) = 0 in (7.9) and applying Jensen’s inequality
recovers (7.5).

7.2.1 Proof Outline

Initial Non-Asymptotic Bounds. The starting point of the analysis is
the following upper bound on the random-coding error probability when
the M codewords are independently drawn from a common distribution
PX (see (2.81)):

pe ≤ E
[

min
{
1, (M − 1)P

[
qn(X,Y ) ≥ qn(X,Y )|X,Y

]}]
, (7.13)

where (X,Y ,X) ∼ PX(x)Wn(y|x)PX(x). We will also use the fact
that

pe ≥
1
2 E
[

min
{
1, (M − 1)P

[
qn(X,Y ) ≥ qn(X,Y )|X,Y

]}]
, (7.14)

which follows by recalling the step from (2.80) to (2.81), and noting
that the truncated union bound is tight to within a factor of 1

2 for
independent events [90, Lemma A.2].

With (7.13)–(7.14) in place, Theorem 7.1 is attained via suitable
modifications of the achievable rate analysis of Section 2.6. We first
outline the primal analysis, and then the dual analysis.

Achievability and Ensemble Tightness – Primal Expressions. For the
primal expressions, the idea is to avoid using the law of large numbers
to establish ‖PXY −Q×W‖∞ ≤ δ (as was done in Section 2.6), and to
instead use the following exponential characterization of the probability
of a joint type PXY occurring:

e−n(D(PXY ‖QX×W )+δ)≤P[(X,Y ) ∈ T n(PXY )]≤e−n(D(PXY ‖QX×W )−δ)

(7.15)
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for arbitrarily small δ > 0 and sufficiently large n. This bound holds
under both i.i.d. and constant-composition coding, with the latter
requiring PX to coincide with the input distribution QX (otherwise the
probability in (7.15) is zero).

In more detail, we first write the expectation in (7.13) in terms of
the joint type PXY of (X,Y ) as

pe ≤
∑

PXY ∈Pn(X×Y)
P[(X,Y ) ∈ T n(PXY )]

×min
{

1, (M − 1)P
[
qn(X,y) ≥ qn(x,y)

]}
, (7.16)

where in the inner probability, (x,y) is an arbitrary pair with joint type
PXY . Upon substituting (7.15) and the previously-obtained bounds on
P[qn(X,y) ≥ qn(x,y)] (see (2.89) for the i.i.d. ensemble and (2.94) for
the constant-composition ensemble) into (7.13), and upper bounding
the outer summation by (n+ 1)|X |·|Y|−1 times the maximum, we readily
obtain the exponents (7.3) and (7.7). The ensemble tightness is proved
similarly by starting from (7.14) and using the lower bound counterparts
when applying each property of types, along with a continuity argument
(cf., Appendix A.1).

Achievability – Dual Expressions. The dual analysis is similarly
straightforward given the corresponding rate derivations. Applying
Markov’s inequality and the inequality min{1, z} ≤ zρ (for ρ ∈ [0, 1]) in
(7.13), we obtain

pe ≤ E
[(
ME

[(
qn(X,Y )
qn(X,Y )

)s ∣∣∣∣X,Y

])ρ]
. (7.17)

This step strengthens the step (2.97) that we used for the derivation of
the rate, and leads to the presence of the free parameter ρ ∈ [0, 1] in both
(7.4) and (7.8). Since the subsequent analysis under i.i.d. or constant-
composition random coding is similar to that of cost-constrained coding
in the following subsection, and also straightforward given the dual
analysis in Section 2.6, we omit the details.
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7.3 Random-Coding Exponents with Continuous Alphabets

In this subsection, we consider the setup of Section 3, in which the
channel alphabets may be continuous, and the transmission is subject
to a system cost 1

n

∑n
i=1 c(xi) ≤ Γ.

In this setting, we introduced the cost-constrained random coding
ensemble in Section 3.4 with a single auxiliary cost, which is used
to recover the optimization variable a(·) in the dual form of the LM
rate. In Section 3.5, we generalized this ensemble to contain multiple
auxiliary costs a1(·), . . . , aL(·), with the motivation being that one may
not always have knowledge of the optimal (single) choice of a(x). We
also briefly mentioned in Section 5.7 that the use of multiple auxiliary
costs is beneficial in the multiple-access setting. In this subsection and
the subsequent subsections, we will see that yet another benefit of using
multiple auxiliary costs is in attaining improved error exponents [79].

For convenience, we repeat the definition of the codeword distri-
bution: With input distribution QX , system cost c(·), auxiliary costs
{al}Ll=1, and parameter δ > 0, we have

PX(x) = 1
Ωn

n∏
i=1

QX(xi)1
{
x ∈ Dn

}
, (7.18)

where

Dn ,
{

x:
∣∣∣∣ 1n

n∑
i=1

c(xi)− φc
∣∣∣∣ ≤ δ,∣∣∣∣ 1n

n∑
i=1

al(xi)− φl
∣∣∣∣ ≤ δ, ∀l = 1, . . . , L

}
, (7.19)

and where φc = EQ[c(X)], φa = EQ[a(X)], and Ωn is a normalizing
constant.

Two Auxiliary Costs. Here we show that two suitably optimized aux-
iliary costs suffice to obtain an error exponent matching that of the
constant-composition ensemble. Specifically, we generalize the achiev-
ability of Ecc

r (cf., Theorem 7.1) to continuous alphabets. The analogous
generalization of the achievability of Eiid

r is similar, but is omitted here.



324 Error Exponents

The generalized exponent is given by

Ecc
r (QX , R) = max

ρ∈[0,1]
Ecc

0 (QX , ρ)− ρR, (7.20)

where

Ecc
0 (QX , ρ) = sup

s≥0,a(·)
E
[
− log E

[(E
[
q(X,Y )sea(X)|Y

]
q(X,Y )sea(X)

)ρ ∣∣∣∣X]
]

(7.21)

and where (X,Y,X) ∼ QX(x)W (y|x)QX(x), and the supremum is over
all a(·) such that EQ[a(X)] <∞.

While the expression (7.21) only contains a single auxiliary function
a(·) (corresponding to one of the auxiliary costs), a second auxiliary
cost is used to ensure that the average over X in (7.21) is outside the
logarithm, which is preferable due to Jensen’s inequality. To derive an
exponent with the expectation inside the logarithm, a single auxiliary
cost suffices [86]; such an exponent is positive for all R < Ilm(QX), but
can be smaller than Ecc

r in general [79].

Theorem 7.2 (Error Exponent for Cost-Constrained Coding). For any
mismatched memoryless channel (W, q), we have the following under
cost-constrained random coding with L = 2 and suitably-chosen a1(·),
a2(·), and δ > 0:

pe(n, benRc) ≤ e−n(Ecc
r (QX ,R)−δ′) (7.22)

for an arbitrarily small constant δ′ > 0 and sufficiently large n. Hence,
under an input constraint (c,Γ), if EQ[c(X)] < Γ, then Ecc

r (QX , R) is
an achievable error exponent at rate R.

We provide an outline of the proof (see [79] for the details), highlight-
ing the fact that the two auxiliary costs a1(·) and a2(·) play different
roles. As in Section 7.2, the analysis is based on the bound

pe ≤ E
[(
ME

[(
qn(X,Y )
qn(X,Y )

)s ∣∣∣∣X,Y

])ρ]
. (7.23)

We fix a1(·) to be specified later, and analyze the inner expectation in
the same way as Section 3.6. After doing so, we find that the exponential
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decay of the error probability given X = x is dictated by the following
quantity:

− 1
n

n∑
i=1

log E
[(E

[
q(X, y)sea1(X)|Y

]
q(X,Y )sea1(X)

)ρ ∣∣∣∣X = xi

]
. (7.24)

In order to replace this empirical average by an average over QX , we
choose the second auxiliary cost as

a2(x) = − log E
[(E

[
q(X,Y )sea1(X)|Y

]
q(X,Y )sea1(X)

)ρ ∣∣∣∣X = x

]
. (7.25)

Since
∣∣ 1
n

∑n
i=1 a2(xi) − EQ[a2(X)]

∣∣ ≤ δ by construction in (7.19), this
means that (7.24) can be lower bounded by the argument to the supre-
mum in (7.21), up to an arbitrarily small loss of δ. The proof is completed
by noting that δ can be arbitrarily small, optimizing the free parameters
s ≥ 0 and a1(·), and renaming a1(·) to a(·).

Additional Auxiliary Costs. In analogy with Theorem 3.4, one can
use similar analysis techniques to deduce an achievable error exponent
for a fixed and possibly suboptimal set of auxiliary costs. We state the
resulting error exponent without proof, and refer the reader to [79] for
the details:

Ecost
r (QX , R, {al}) = max

ρ∈[0,1]
Ecost

0 (QX , ρ, {al})− ρR, (7.26)

where

Ecost
0 (QX , ρ, {al}) , sup

s≥0,{rl},{rl}

− log E

(E
[
q(X,Y )se

∑L

l=1 rl(al(X)−φl)|Y
]

q(X,Y )se
∑L

l=1 rl(al(X)−φl)

)ρ , (7.27)

and where {al}Ll=1 are the auxiliary costs, and φ` = EQ[al(X)].
Similarly to the achievable rates, the use of L > 2 auxiliary costs

may be useful when one does not have knowledge of the optimal a1(·)
and a2(·) in the proof of Theorem 7.2. It is tempting to ask whether
using L > 2 optimized auxiliary costs can lead to a better exponent
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than that of Theorem 7.2; however, the answer turns out to be negative,
since

Eiid
r (QX , R) ≤ Ecost

r (QX , R, {al}) ≤ Ecc
r (QX , R). (7.28)

The left inequality follows by setting each rl = rl = 0 in (7.27), and
the right inequality follows from two steps: (i) use Jensen’s inequality
to take the outer expectation over X outside the logarithm in (7.27);
(ii) define a(x) =

∑L
l=1 rl(al(X)− φl) to recover the objective function

in (7.21).

7.4 Expurgated Exponents

Expurgation is a classical technique for attaining improved error ex-
ponents at low rates [36]. The technique consists of removing, from a
randomly generated codebook, a given fraction of codewords whose con-
ditional error probability is the highest. In this subsection, we overview
an extension of Gallager’s expurgation technique [38, Sec. 5.7] to the
mismatched setting [83]. In Section 7.5, we will discuss alternative
techniques that also provide these low-rate improvements.

The derivation of primal and dual expurgated exponents follows sim-
ilar steps to those of the random coding exponent once the appropriate
initial non-asymptotic bound (i.e., a counterpart to (7.13)) is obtained.
Such a bound is given in the following theorem.

Theorem 7.3 (Non-Asymptotic Expurgated Bound). For any mismatched
memoryless channel (W, q) and codeword distribution PX , there exists
a codebook Cn with M codewords of length n whose error probability
satisfies

pe(Cn) ≤ inf
ρ≥1

(
4(M − 1)E

[
P
[
qn(X,Y ) ≥ qn(X,Y )

∣∣X,X
]1/ρ])ρ

,

(7.29)
where (X,Y ,X) ∼ PX(x)Wn(y|x)PX(x).

The proof closely follows the analysis of Gallager [38, Sec. 5.7], and
is outlined as follows:

• Let Cn be a codebook with M ′ = 2M − 1 codewords drawn
independently from PX , and let pe,m(Cn) be the conditional error
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probability associated with the m-th message. We have from
Markov’s inequality that at least half of the codewords satisfy
pe,m(Cn)1/ρ ≤ 2E

[
pe,m(Cn)1/ρ]; hence, there exists a codebook Cn

with M codewords such that

pe(Cn) ≤
(
2E
[
pe,m(Cn)1/ρ])ρ. (7.30)

• We obtain (7.29) by using the union bound to upper bound
E
[
pe,m(Cn)1/ρ] in terms of M ′ − 1 = 2(M − 1) error events

{qn(X(m),Y ) ≥ qn(X(m),Y )}m6=m, and then applying the in-
equality

(∑
i αi
)1/ρ ≤∑i α

1/ρ
i for ρ ≥ 1.

With Theorem 7.3 in place, we can consider the same choices of
PX as those of Sections 7.2 and 7.3: i.i.d., constant-composition, and
cost-constrained. We focus on the latter two, as they attain higher
exponents. Starting with the discrete memoryless setting, the primal
form of the constant-composition exponent is given by

Ecc
ex(QX , R) , min

P
XX̃Y

: PX=P
X̃

=QX ,

EP [log q(X̃,Y )]≥EP [log q(X,Y )]
IP (X;X̃)≤R

D(P
XX̃Y

‖QX ×QX ×W )−R,

(7.31)
and the dual expression is given by

Ecc
ex(QX , R) = sup

ρ≥1
Ecc

x (QX , ρ)− ρR, (7.32)

where

Ecc
x (QX , ρ) = sup

s≥0,a(·)
−ρ

∑
x

QX(x)

× log
∑
x

QX(x)
(∑

y

W (y|x)
(
q(x, y)
q(x, y)

)s ea(x)

ea(x)

)1/ρ

.

(7.33)

Once again, the equivalence between the two is proved via Lagrange
duality [83].

Theorem 7.4 (Expurgated Error Exponent for DMCs). For any mis-
matched DMC (W, q), input distribution QX ∈ P(X ), and rate R > 0,
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there exists a sequence of codebooks Cn with M = benRc messages of
length n such that

lim
n→∞

− 1
n

log pe(Cn) ≥ Ecc
ex(QX , R). (7.34)

The primal expression is derived from (7.29) using the method of
types. The dual expression is derived by fixing s ≥ 0 and weaken-
ing (7.29) as follows via Markov’s inequality:

pe(Cn) ≤
(

4(M − 1)E
[
E
[(

qn(X,Y )
qn(X,Y )

)s ∣∣∣∣∣X,X

]1/ρ])ρ
. (7.35)

With this bound in place, the desired error exponent is obtained via
further bounding techniques similar to the dual derivation of the random-
coding exponent.

The extension of Theorem 7.4 to continuous alphabets follows similar
steps to Section 7.3 via cost-constrained random coding with L = 2: We
let one auxiliary cost a1(·) correspond to a(·) in (7.33), and we choose
the other auxiliary cost as

a2(x) = − log E
[(

E
[(
q(X,Y )
q(x, Y )

)s ea1(X)

ea1(x)

∣∣∣X,X = x

])1/ρ]
, (7.36)

in analogy with (7.25). The details can be found in [83].

7.5 Attaining the Best of Both Exponents

In addition to the constant-composition expurgated exponent Ecc
ex in

(7.31), recall from (7.7) that the primal form of the constant-composition
random-coding exponent Ecc

r is given by

Ecc
r (QX , R) = min

PXY : PX=QX
min

P̃XY : P̃X=QX ,P̃Y =PY ,
E
P̃

[log q(X,Y )]≥EP [log q(X,Y )]

D(PXY ‖QX ×W ) +
[
I
P̃

(X;Y )−R
]+
. (7.37)
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With these two achievable error exponents established, we highlight
the following limitations of Theorem 7.4:

• Despite the low-rate improvement, the exponent Ecc
ex is loose at

high rates, in particular falling to zero at a rate strictly below
Ilm(QX), in contrast with Ecc

r (see Section 7.6 for an example).
While one could overcome this by simply using the fact that
max{Ecc

r , E
cc
ex} is clearly an achievable exponent, it is also of

interest to find a construction that directly attains the best of
both exponents simultaneously.

• While a random codebook Cn is considered as a step towards
constructing the codebook Cn, the structure of Cn is less clear (i.e.,
it is difficult to characterize properties of the removed vs. retained
codewords). Hence, the standard expurgation argument is, in a
sense, less constructive than standard random-coding methods.

• In contrast with the second part of Theorem 7.1 concerning Ecc
r ,

Theorem 7.4 does not make any claim of ensemble tightness, so
it is unclear to what extent the exponent could be improved via
refined analysis techniques.

The first of these limitations was addressed in an early work of Csiszár
and Körner [23], who derived the following error exponent:

Eck(QX , R)
= min

P
XX̃Y

: PX=P
X̃

=QX ,

EP [log q(X̃,Y )]≥EP [log q(X,Y )],
IP (X;X̃)≤R

D(PY |X‖W |QX) + [I(X̃;Y,X)−R]+.

(7.38)

This can be weakened to Ecc
ex by lower bounding [·]+ by its argument,

or can be weakened to Ecc
r by dropping the constraint IP (X; X̃) ≤ R

and lower bounding IP (X̃;Y,X) ≥ IP (X̃;Y ). In the latter case, the
resulting optimization problem in (7.38) depends on P

XX̃Y
only through

(PXY , P̃XY ), and the minimization can be split into two minimizations
of the form (7.37) accordingly.
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The derivation of Eck in [23] uses combinatorial arguments to estab-
lish the existence of a constant-composition code with certain properties,
but the proof is highly non-constructive in the sense discussed above.
In addition, the analysis in [23] appears to be unsuitable for channels
with continuous alphabets, and leaves open the question of ensemble
tightness. In the following, we outline a recent alternative derivation of
(7.38) that addresses both of these limitations [97].

The analysis in [97] is based on a sequential random coding construc-
tion resembling the Gilbert-Varshamov construction for binary codes
[41, 103]. Fixing an input distribution QX , a generic “distance” function
d(x,x′), and a constant ∆, the codebook is generated as follows:

1. The first codeword, X1, is drawn uniformly from the type class
T n(QX,n), where QX,n is a type approximating QX ;

2. Given X1 = x1, the second codeword X2 is drawn uniformly
from the set

T n(QX,n,x1) , {x ∈ T n(QX,n): d(x,x1) > ∆} (7.39)
= T n(QX,n)\ {x ∈ T n(QX,n): d(x,x1) ≤ ∆} ,

(7.40)

i.e., the set of sequences with composition QX,n whose distance
to x1 exceeds ∆;

3. Continuing recursively, if the first i − 1 codewords are xi−1
1 ,

(x1, . . . ,xi−1), then the i-th codeword Xi is drawn uniformly from
the set

T n(QX,n,xi−1
1 )

, {x ∈ T n(QX,n): d(x,xj) > ∆, ∀j = 1, . . . , i− 1} (7.41)

= T n(QX,n,xi−2
1 )\

{
x ∈ T n(QX,n,xi−2

1 ): d(x,xi−1) ≤ ∆
}
.

(7.42)

Essentially, we sequentially perform random coding while avoiding any
codewords that are too close to those already selected, according to
a generic distance d(·, ·). This procedure was termed the (generalized)
random Gilbert-Varshamov (RGV) construction in [97].
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While we use the terminology “distance”, d(·, ·) need not be a
distance function in the topological sense. However, for the analysis,
it is required to be symmetric, bounded, and dependent only on the
joint empirical distribution of its arguments. To highlight the latter
condition, we henceforth write d(P

XX̃
) as a function on the probability

simplex. For instance, the choice d(P
XX̃

) = P[X 6= X̃] corresponds to a
normalized Hamming distance, and the negative mutual information
d(P

XX̃
) = −IP (X; X̃) will be highlighted below.

If the recursive procedure is continued for too many iterations,
the entire space of codewords may be exhausted. To ensure that this
does not occur, it suffices to enforce that M times the volume of the
appropriate d-ball is smaller than the size of the type class |T (QX,n)|.
Asymptotically, this translates into the following rate condition [97]:

R ≤ min
P
XX̃

: d(P
XX̃

)≤∆,
PX=P

X̃
=QX

IP (X; X̃)− 2δ (7.43)

for arbitrarily small δ > 0. Under this condition, it was shown in [97]
that the above sequential random coding scheme attains the following
strengthened (albeit asymptotic) variant of (7.13):

pe
.=

∑
x∈T n(QX,n),y

1
|T n(QX,n)|W

n(y|x)

×min
{

1, (M − 1)
∑

x′∈T n(QX,n): qn(x′,y)≥qn(x,y)
d(x,x′)≥∆

1
|T n(QX,n)|

}
, (7.44)

where .= denotes asymptotic equality up to a sub-exponential pre-
factor. Note that the key difference compared to (7.13) is the constraint
d(x,x′) ≥ ∆. With this expression in place, an analysis based on the
method of types yields the following theorem [97].

Theorem 7.5 (Ensemble-Tight Exponent for the RGV Construction). For
any mismatched DMC (W, q), input distribution QX ∈ P(X ), bounded
symmetric type-dependent distance function d(P

XX̃
), parameters ∆ and

δ > 0, and rate R satisfying (7.43), we have under the RGV construction



332 Error Exponents

that

lim inf
n→∞

− 1
n

log pe(n, benRc) ≥ Ergv(QX , R,∆), (7.45)

lim sup
n→∞

− 1
n

log pe(n, benRc) ≤ Ergv(QX , R,∆ + ε), (7.46)

where ε > 0 is arbitrarily small, and

Ergv(QX , R,∆)
= min

P
XX̃Y

: PX=P
X̃

=QX ,

EP [log q(X̃,Y )]≥EP [log q(X,Y )],
d(P

XX̃
)≥∆

D(PY |X‖W |QX) + [IP (X̃;Y,X)−R]+.

(7.47)

In addition, (7.45) holds even in the case that d(·) is non-symmetric.

Observe that (7.45) and (7.46) establish ensemble tightness under
the technical condition that Ergv is continuous in ∆ at the speci-
fied input. The final claim of the theorem concerning non-symmetric
d(x,x′) is proved by considering a symmetrized distance of the form
min{d(x,x′), d(x′,x)} and applying the first part of the theorem [97].

Setting d(P
XX̃

) = −IP (X; X̃) in (7.47) readily recovers Eck in
(7.38), but the more general form here also provides insight into other
distance functions (though it can be shown that no choice provides a
better exponent than Eck), e.g., see (7.51) below.

In the case of additive distance functions, i.e., d(x,x′) =
1
n

∑n
i=1 d(xi, x′i),1 one can use Lagrange duality to establish an equiva-

lent dual form of (7.47), given by [97]

Ergv(QX , R,∆) = sup
ρ∈[0,1]

E0,rgv(QX , ρ,∆)− ρR, (7.48)

where

E0,rgv(QX , ρ,∆) = sup
r≥0,s≥0,a(·)

−
∑
x

QX(x)

× log
∑
y

W (y|x)
(∑

xQX(x)q(x, y)sea(x)er(d(x,x)−∆)

q(x, y)sea(x)

)ρ
. (7.49)

1Here we normalize by 1
n

in contrast with the previous sections; this is for
consistency with the assumption that the distance can be expressed in terms of the
joint type: d(P

XX̃
) = EP [d(X, X̃)] is equivalent to d(x,x′) = 1

n

∑n

i=1 d(xi, x′i).
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Similarly, one can obtain the following dual expression for the rate
condition (7.43):

R ≤ sup
r≥0,a(·)

∑
x

QX(x) log
∑
x

QX(x)ea(x)−φae−r(d(x,x)−∆) − 2δ, (7.50)

where φa = EQ[a(X)]. Setting r = 0 in (7.49) readily recovers Ecc
r

(cf., (7.37)). With some additional effort, we can also show that (7.48)
recovers Ecc

ex (cf., (7.32)). The idea is to use the final claim of Theorem 7.5
concerning non-symmetric distance functions, setting ρ = 1 in (7.49)
and choosing

d(x, x) = − log
∑
y

W (y|x)
(q(x, y)
q(x, y)

)s
(7.51)

for some s ≥ 0. With a suitable choice of ∆, it can be shown that
(7.49) recovers Ecc

x in (7.33), while also maintaining the rate condition
(7.50) [97].

Finally, we briefly discuss the generalization of (7.48)–(7.50) to
continuous alphabets, which can be achieved (for additive distance func-
tions) by suitably modifying the recursive random coding construction.
The idea is to recursively draw from a cost-constrained codeword distri-
bution conditioned on the distance to each previously-selected codeword
being at least ∆, and to derive an upper bound analogous to (7.44),
with the cost-constrained codeword distribution in place of 1

|T n(QX,n)| .
The interested reader is referred to [97] for the details.

7.6 Numerical Example

Here we present a numerical example from [79] that serves to compare
the exponents attained by i.i.d. vs. constant-composition coding, as well
as random coding vs. expurgated exponents. We consider an asymmet-
ric channel, as we found that this better highlights these differences.
Specifically, the channel and metric are defined by the entries of the
|X | × |Y| matrices

W =

1− 2δ0 δ0 δ0
δ1 1− 2δ1 δ1
δ2 δ2 1− 2δ2

 , q =

1− 2δ δ δ

δ 1− 2δ δ

δ δ 1− 2δ


(7.52)
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Figure 7.1: Mismatched random-coding and expurgated exponents under constant-
composition and i.i.d. random coding. The GMI and LM rate are marked on the
horizontal axis.

with X = Y = {0, 1, 2}, and with δ0, δ1, δ2, and δ taking values in(
0, 1

3
)
. We set δ0 = 0.01, δ1 = 0.05, δ2 = 0.25, and QX = (0.1, 0.3, 0.6),

and note that any choice of δ ∈
(
0, 1

3
)
yields an equivalent decoder

(namely, minimum-distance decoding). Under these parameters, we have
Igmi(QX) = 0.387, Ilm(QX) = 0.449, and I(X;Y ) = 0.471 bits/use. The
resulting error exponents are shown in Figure 7.1.

As expected, constant-composition random coding consistently yields
a higher exponent than i.i.d. random coding. For both ensembles, the
random-coding exponent is positive for all rates below the corresponding
achievable rate, whereas this fails to hold for the expurgated exponents.
On the other hand, the expurgated exponents are better at low rates.

In the limit of zero rate, the i.i.d. and constant-composition expur-
gated exponents approach the same value, i.e., Ecc

ex(0) = Eiid
ex (0). In fact,

this behavior is not specific to this example, but rather a general phe-
nomenon for any channel, decoding metric, and input distribution [83].

7.7 Error Exponents for Multi-User Coding Techniques

The analysis leading to the achievable rates for the multiple-access
channel (Section 5) and superposition coding (Section 6) can also be
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adapted to obtain achievable error exponents. The modifications are
similar to those above for the single-user channel, but somewhat more
technical [77].

Starting with the multiple-access channel, the main modification
required is to use the exponential upper bound (5.32) directly (as well
as a matching lower bound for the ensemble tightness part), rather
than only using it to infer that ‖PX1X2Y − Q1 × Q2 ×W‖∞ ≤ δ. By
doing so, we find that the three rate conditions in (5.7)–(5.9) each
have a corresponding error exponent containing the divergence term
D(PX1X2Y ‖Q1×Q2×W ) from (5.32), and the overall error exponent is
the minimum of the three. For instance, the error exponent associated
with (5.9) is given by

Ecc
r,12(Q, R1, R2)

= min
PX1X2Y : PX1=Q1,PX2=Q2

min
P̃X1X2Y : P̃X1=PX1 ,P̃X2=PX2 ,P̃Y =PY
E
P̃

[log q(X1,X2,Y )]≥EP [log q(X1,X2,Y )]

D(PX1X2Y ‖Q1 ×Q2 ×W ) +
[

max
{
I
P̃

(X1;Y )−R1,

I
P̃

(X2;Y )−R2, D
(
P̃X1X2Y ‖Q1 ×Q2 × PY

)
−R1 −R2

}]+
.

(7.53)

Dual expressions for the error exponents, along with direct derivations,
can be obtained using analogous (albeit more cumbersome) techniques
to those for the achievable rate region. As was the case in the single-user
setting, the number of auxiliary costs used is higher when it comes to
attaining the error exponents; it was shown in [81] that five per user is
sufficient.

Similar ideas apply in the context of superposition coding (cf.,
Section 6) [77]. While we saw that refined superposition coding (cf.,
Section 6.4) provides an achievable rate at least as high as all other
known achievable rates, it is worth noting that the error exponent may
be small due to the use of shorter “sub-codes” of length nu = nQU (u)
for each auxiliary symbol u ∈ U . If such a sub-code has error probability
decaying as e−nuEu for some Eu > 0, then its error exponent with respect
to the full block length n is QU (u)Eu, which may be low if QU (u) is
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small. In contrast, for standard superposition coding (cf., Section 6.3),
all of the error events directly correspond to a block length of n.

To demonstrate this difference, and also compare against the ex-
ponents of standard random coding (i.e., independent codewords), we
revisit the example from Section 6.4.4, in which the refined superpo-
sition coding rate was strictly higher than the standard version. We
compare the exponents as follows:

• We let Q∗UX be the optimized input distribution attaining the
highest refined superposition coding rate, and let (R∗0, R∗11, R

∗
12) be

the corresponding triplet attaining equality in each rate condition
of Theorem 6.6. For a range of α ∈ [0, 1], we compute the error
exponent for the rate triplets (R0, R11, R12) = (αR∗0, αR∗11, αR

∗
12),

with rate R = R0 +Q∗U (1)R11 +Q∗U (2)R12.

• Similarly, for the same Q∗UX , letting (R∗0, R∗1) be the pair attaining
equality in the rate conditions for standard superposition coding
(Theorem 6.3), we plot the exponent for various pairs (R0, R1) =
(αR∗0, αR∗1), with rate R = R0 +R1.

The resulting error exponents are shown in Figure 7.2, along with the
error exponents for i.i.d. and constant-composition random coding with
independent codewords and an input distribution chosen to maximize
the respective rate (see Section 6.4.4).

Although refined superposition coding has the highest achievable
rate, we see that the corresponding error exponent is much smaller than
the standard version at lower rates, likely as a result of using shorter
sub-codes. Interestingly, a similar phenomenon also occurs when moving
from standard superposition coding to independent codewords: The
superposition coding rate is comparable to the LM rate and higher
than the GMI, yet its exponent is smaller at lower rates. A possible
reason for this is that superposition coding yields the minimum of two
error exponents – one for each error type – whereas with independent
codewords we only have a single error type.

This example indicates a trend of ensembles with higher rates tend-
ing to yield lower exponents at smaller rates (with the exception of
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Figure 7.2: Error exponents of superposition coding for the example in Section 6.4.4,
using the input distribution optimized for the refined superposition coding rate.
The exponents under independent codewords are also shown, in which the input
distribution is chosen to optimize the corresponding rate (GMI or LM rate). The
achievable rates are marked on the horizontal axis.

i.i.d. vs. constant-composition random coding), and suggests an inter-
esting open problem of finding an ensemble that naturally attains the
best of both worlds.

We conclude this discussion by mentioning another example high-
lighting that the error exponents attained by multi-user coding tech-
niques may have no general ordering (i.e., neither exponent can be
weakened to one another). In [93], a cognitive variant of the multiple-
access channel was considered, in which one user has access to both
messages. Under this setting, the standard superposition coding tech-
nique was compared to a random binning technique, and it was shown
that neither of the two dominate each other in general. This suggests
that unlike most achievable rates, one may not typically expect to be
able to weaken one mismatched decoding error exponent to another
without imposing additional assumptions.



8
Upper Bounds on the Mismatch Capacity

8.1 Introduction

In contrast with the extensive results on achievable rates that we
surveyed in the preceding sections, studies of mismatch capacity upper
bounds (i.e., converse results) have produced relatively fewer results. In
this section, we survey the main upper bounds that are known to date.
We focus on discrete memoryless channels (DMCs), as considered in
Section 2.

In Section 8.2, we overview some early observations that were made
having a converse flavor. We then return to the Csiszár–Narayan con-
jecture on the multi-letter extension of the LM rate (cf., Section 2.7)
in Section 8.3, and give some partial results suggesting its validity.
In Section 8.4, we provide related results for other decoders beyond
the standard maximum-metric decoder. Additional multi-letter upper
bounds are presented in Section 8.5, and we conclude by presenting a
recent single-letter upper bound in Section 8.6.

Before proceeding, we recall some of the notation from Sections 1
and 2. The mismatch capacity (Definition 1.1) is denoted by Cm. We will
frequently make use of the LM rate Ilm(QX), whose primal expression

338
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(2.15) is repeated as follows:

Ilm(QX) = min
P̃XY ∈P(X×Y): P̃X=QX ,P̃Y =PY

E
P̃

[log q(X,Y )]≥EP [log q(X,Y )]

I
P̃

(X;Y ), (8.1)

where PXY = QX ×W . The input-optimized LM rate (cf., (2.17)) is
defined as

Clm = max
QX∈P(X )

Ilm(QX), (8.2)

and its k-letter extension (cf., (2.121)) is given by

C
(k)
lm = 1

k
max
Q
Xk

Ilm(QXk ,W k, qk). (8.3)

We will often make the dependence of the preceding quantities on the
channel W and decoding metric q explicit by writing Ilm(QX ,W, q),
Clm(W, q), Cm(W, q), C(k)

lm (W, q), and so on.
This section is predominantly based on the works of Csiszár and

Narayan [26], Somekh-Baruch [91, 92], and Asadi Kangarshahi and
Guillén i Fàbregas [11].

8.2 Initial Results

Perhaps the most elementary known result with a converse flavor is
that of [26, Thm. 2], which gives a necessary and sufficient condition
for the positivity of the mismatch capacity. This result was stated in
Lemma 2.6, and is repeated as follows in a slightly different form.

Lemma 8.1 (Condition for Positive Mismatch Capacity). For any mis-
matched DMC (W, q), we have

Cm > 0 ⇐⇒ Clm > 0, (8.4)

with both inequalities holding if and only if there exists QX ∈ P(X )
such that

EQX×W [log q(X,Y )] > EQX×PY [log q(X,Y )], (8.5)

where PY is the Y -marginal of PXY = QX ×W .
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While this result precisely establishes the conditions under which
Cm = 0 vs. Cm > 0, it does not provide any further information about
how high Cm may be when it is positive; for a given value C > 0 of the
matched capacity, all we can immediately deduce is that Cm ∈ (0, C].

As we saw in Section 2.4.1, the mismatch capacity is completely
characterized in the special case of binary channels, i.e., |X | = |Y| =
2 [26]. We formalize this statement in the following lemma, in which we
let C denote the matched capacity and write the sign function as

sign(z) =


1 z > 0
0 z = 0
−1 z < 0,

(8.6)

where we also allow sign(∞) = 1 and sign(−∞) = −1.

Lemma 8.2 (Mismatch Capacity of Binary Channels). For any mis-
matched DMC (W, q) with |X | = |Y| = 2, we have

Cm = Clm =


C sign

(
log q(1, 1)q(2, 2)

q(1, 2)q(2, 1)

)
= sign

(
log W (1|1)W (2|2)

W (2|1)W (1|2)

)
0 otherwise,

(8.7)
where C is the matched capacity of W .

Throughout the monograph, we have presented several ensemble
tightness results [65], upper bounding the maximal rate for which the
random-coding error probability pe tends to zero for a given random-
coding ensemble. While such results do not provide upper bounds on Cm,
they are helpful in ruling out the possibility of weaknesses in the proofs
of the achievable rates. For convenience, Lemma 2.9 is re-stated as
follows (see also Section 3.7 regarding the GMI for continuous-alphabet
channels).

Lemma 8.3 (Ensemble Tightness). For any mismatched DMC (W, q)
and any given input distribution QX ∈ P(X ), we have the following:

• Under i.i.d. random coding, pe(n, benRc)→ 1 as n→∞ for any
R > Igmi(QX);
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• Under constant-composition random coding, pe(n, benRc)→ 1 as
n→∞ for any R > Ilm(QX).

Another result having a converse flavor is that of [65, Lemma 1],
which we briefly outline as follows. Consider the special case that q(x, y)
represents a conditional distribution, written as V (y|x) to highlight this
distinction. Consider a constant-composition codebook whose codewords
have type QX ,1 let PY be the induced output distribution, and for
a small constant ε > 0, let T nε (PY ) be the set of sequences whose
empirical distribution is ε-close to PY in the `∞ sense. That is, T nε (PY )
represents a typical (high-probability) set of output sequences. For a
fixed codeword x, the set

Sd(x) =
{
y ∈ T nε (PY ) : − log V n(y|x) ≤ nd

}
(8.8)

can be interpreted as a decoding sphere with normalized radius d. By a
concentration argument, the transmitted codeword will, with high prob-
ability, lie near the surface of this sphere when d = EQX×W [log V (Y |X)].
In [65, Lemma 1], it is shown that if there exist enR disjoint decoding
spheres {Sd(xj)}e

nR

j=1 in T nε (PY ) for some R and the preceding choice
of d, then it must be the case that R < Clm. A strengthened statement
is also given in [65, Lemma 2], characterizing the amount of overlap
in the case that R > Clm. In any case, overlapping decoding spheres
does not imply an upper bound on Cm, since it may be the case that
the overlapping parts have low probability with respect to Wn.

Finally, we recall that an early work of Balakirsky [14] reported that
Clm = Cm for general binary-input channels, which would considerably
generalize the fact that this holds for |X | = |Y| = 2 (cf., Lemma 8.2).
However, as we saw in Section 6.3.4, this claim was refuted via a counter-
example in which the 2-letter extension of superposition coding attains
a rate exceeding Clm for a binary-input ternary-output channel [76].

8.3 The Csiszár–Narayan Conjecture

As discussed in Section 2.7, applying the LM rate to the product channel
W k from X k to Yk yields an achievable rate C(k)

lm (see (8.3)) for the

1This is without loss of generality, since any code has a constant-composition
sub-code with the same asymptotic rate, as outlined in Section 2.2.
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original channel. It is known that even when k = 2, this rate can exceed
the LM rate Clm = C

(1)
lm (e.g., see Section 6.3.3). Additionally, since

C
(k)
lm is achievable for any positive integer k, we deduce that

C
(∞)
lm , sup

k∈Z
C

(k)
lm (8.9)

is also an achievable rate. In other words,

Cm ≥ C(∞)
lm . (8.10)

In addition, the supremum over k in (8.10) can be replaced by the limit
as k tends to infinity, yielding

C
(∞)
lm = lim

k→∞
C

(k)
lm . (8.11)

Indeed, C(k)
lm is a uniformly bounded sequence, and for every pair of

integers (k1, k2) we have C(k1k2)
lm ≥ max{C(k1)

lm , C
(k2)
lm }, since coding of

blocks of length k1 (or k2) is a special case of coding over blocks of
length k1k2.

Csiszár and Narayan [26] conjectured that the mismatch capacity
is equal to the multi-letter extension of the LM rate, in the sense that
inequality (8.10) holds with equality:

Cm
?= C

(∞)
lm . (8.12)

Even if this conjecture were proved to be true, this would not directly
provide a computable expression for the mismatch capacity, since (i)
in itself, (8.12) does not indicate how close C(k)

lm is to C(∞)
lm for any

finite value of k, and (ii) the optimization over QXk in the definition
C

(k)
lm (W, q) = 1

k maxQ
Xk
Ilm(QXk ,W k, qk) becomes computationally in-

tractable as k increases, particularly since Ilm is non-concave with
respect to the input distribution in general (see Lemma 2.12).

Nevertheless, the conjecture would yield some interesting observa-
tions; for instance, if (8.12) is true, then all of the following statements
also hold:

(i) We can attain a rate arbitrarily close to Cm by employing ran-
dom coding over the k-letter extension W k (with metric qk) for
sufficiently large k.
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(ii) At any rate below Cm, there exist sequences of codes whose error
probability decays exponentially in the block length.

(iii) Mismatched maximum-metric decoding and mismatched
threshold-based decoding lead to the same mismatch capacity
(see Section 8.4.2).

Given the (hypothetical) validity of (8.12), the first two implications
follow immediately from the fact that constant-composition random
coding achieves Ilm(QX) (see Section 2) and yields a positive error
exponent (see Section 7), and the third follows since derivations of the
LM rate already exist that upper bound the maximum-metric decoding
error probability by that of threshold decoding (see Section 8.4.2).

At the time of writing, the Csiszár–Narayan conjecture remains
unresolved in general. It was proved in [26] that the conjecture is
true in the case of the erasures-only metrics, and further partial results
suggesting its validity were given by Somekh-Baruch [96]. These findings
are surveyed in more detail below.

8.3.1 Erasures-Only Metrics

Recall from Section 1.2.7 that the mismatched decoding problem with
metric q(x, y) = 1{W (y|x) > 0} yields the zero-undetected error capac-
ity, which is a problem of independent interest. It was shown in [26,
Thm. 3] that (8.12) is true not only in this special case, but also for
any decoding metric q(x, y) satisfying the condition

q(x, y) = qmax, ∀(x, y) such that W (y|x) > 0, (8.13)

where qmax = maxx∈X ,y∈Y q(x, y). Metrics satisfying (8.13) are referred
to as erasures-only metrics, because they lead to an error whenever
there exist two or more codewords consistent with the output, which
implies that all errors are detectable. Not all metrics satisfying (8.13)
yield the zero-undetected error capacity, since there could also exist
(x, y) pairs such that q(x, y) = qmax and W (y|x) = 0; the metric used to
recover the zero-error capacity (see Section 1.2.8) is one such example.

The validity of the Csiszár–Narayan conjecture for erasures-only
metrics is formally stated as follows.
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Theorem 8.4 (Mismatch Capacity for Erasures-Only Metrics). For any
mismatched DMC (W, q), if q is an erasures-only metric (i.e., satis-
fies (8.13)), then we have

Cm = C
(∞)
lm . (8.14)

Proof. We know that Cm ≥ C(∞)
lm , so it suffices to establish that Cm ≤

C
(∞)
lm . We consider a sequence of codebooks Ck with block length k such

that the error probability satisfies limk→∞ pe(Ck)→ 0. For brevity, we
denote εk = pe(Ck). Here we use k instead of n for the block length
to highlight the fact that we consider C(k)

lm in (8.3) and choose QXk

depending on Ck.
We first consider the case that all codewords of Ck are distinct, and

then discuss the general case at the end of the proof. Let PXk be the
equiprobable distribution over the codebook Ck, i.e., for x ∈ X k,

PXk(x) =


1
M

x ∈ Ck

0 otherwise,
(8.15)

and let PXkY k = PXk ×W k be the corresponding joint distribution
under the channel W k. For a given input distribution QXk , we define
the joint distribution QXkY k = QXk ×W k, yielding

C
(k)
lm = 1

k
max
Q
Xk

min
P̃
XkY k

: P̃
Xk

=Q
Xk

,P̃
Y k

=Q
Y k

E
P̃

[log qk(Xk,Y k)]≥EQ[log qk(Xk,Y k)]

I
P̃

(Xk;Y k) (8.16)

≥ 1
k

min
P̃
XkY k

: P̃
Xk

=P
Xk

,P̃
Y k

=P
Y k

E
P̃

[log qk(Xk,Y k)]≥EP [log qk(Xk,Y k)]

I
P̃

(Xk;Y k) (8.17)

= 1
k
HP (Xk)− 1

k
max

P̃
XkY k

: P̃
Xk

=P
Xk

,P̃
Y k

=P
Y k
,

E
P̃

[log qk(Xk,Y k)]≥EP [log qk(Xk,Y k)]

H
P̃

(Xk|Y k),

(8.18)

where (8.17) follows by bounding maxQ
Xk

by the specific choice QXk =
PXk , and (8.18) follows by expanding the mutual information.
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Since we are considering the case that all codewords in Ck are
distinct, and PXk is uniform over the codebook, we obtain

1
k
HP (Xk) = 1

k
log |Ck|. (8.19)

The second term in (8.18) requires more effort. Since the met-
ric satisfies (8.13), we have EP [log qk(Xk, Y k)] = k log qmax and
qk(xk, yk) ≤ qkmax for all (xk, yk), so the constraint E

P̃
[log qk(Xk, Y k)] ≥

EP [log qk(Xk, Y k)] is equivalent to P
P̃

[qk(Xk, Y k) = qkmax] = 1.
Let Ak denote the set of all yk ∈ Yk for which there is a unique

maximizer of maxxk∈Ck q
k(xk, yk). If qk(Xk, Y k) = qkmax with probability

one, then given Y k = yk with yk ∈ Ak, the sequence Xk can only equal
this unique maximizer, implying that H

P̃
(Xk|Y k = yk) = 0. This

observation allows us to simplify the second term in (8.18) to the
following:

1
k

max
P̃
XkY k

: P̃
Xk

=P
Xk

,P̃
Y k

=P
Y k
,

P
P̃

[qk(Xk,Y k)=qkmax]=1

H
P̃

(Xk|Y k) (8.20)

= 1
k

max
P̃
XkY k

: P̃
Xk

=P
Xk

,P̃
Y k

=P
Y k
,

P
P̃

[qk(Xk,Y k)=qkmax]=1

∑
yk∈Ac

k

PY k(yk)H
P̃

(Xk|Y k = yk)

(8.21)

≤ 1
k

∑
yk∈Ac

k

PY k(yk) · log |Ck|, (8.22)

since Xk takes one of at most |Ck| values under PXk .
Substituting (8.19) and (8.22) into (8.18), we obtain

C
(k)
lm ≥

1
k

log |Ck| ·
(

1−
∑

yk∈Ac
k

PY k(yk)
)
. (8.23)

Now, since we assume that ties are broken as errors (cf., Section 1.1),
any yk ∈ Ack produces an error, and hence

∑
yk∈Ac

k
PY k(yk) → 0 due

to our assumption εk → 0. Taking k →∞ on both sides of (8.23), we
deduce that

lim sup
k→∞

1
k

log |Ck| ≤ C
(∞)
lm . (8.24)
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Having shown this to be true for codebooks with distinct codewords,
it is straightforward to generalize to arbitrary codebooks. Specifically,
since we assume that limk→∞ εk → 0, we have for k sufficiently large
that at least half of the codewords of Ck must be unique. By applying
the above argument to a smaller codebook with only these unique
codewords, we deduce that (8.24) still holds, since removing half the
codewords amounts to a negligible loss in the rate.

Since (8.24) holds for any sequence of codebooks Ck with vanishing
error probability, it follows that Cm ≤ C(∞)

lm , as desired.

8.3.2 A Soft Converse for Rational Metrics

A partial result was given in [96, Thm. 3] stating conditions under which
any length-n code attaining error probability pe � 1

n (i.e., npe → 0)
must have a rate no higher than C(∞)

lm . We refer to this as a soft converse,
since it does not directly preclude the possibility of higher-rate codes
whose error probability tends to zero at a slower speed, such as 1√

n
or

1
logn .

We proceed by stating the result formally. We say that a decoding
metric is rational if each of its (log-)values can be written as

log q(x, y) = j(x, y)
jdenom

(8.25)

for some integers j(x, y) and jdenom.2 In addition, we assume that the
metric can only equal zero when the channel transition probability is
also zero:

q(x, y) = 0 =⇒ W (y|x) = 0. (8.26)

This is a mild assumption, since, assuming without loss of generality
that all inputs are used, the mismatch capacity is zero when (8.26) fails
(see the discussion following Lemma 2.5).

We again let Ck be a codebook with block length k, and let εk be its
associated average error probability when applied to the mismatched
DMC (W, q). The following result is stated in [96, Thm. 3].

2The denominator jdenom being independent of (x, y) is without loss of generality,
since one could always take the lowest common denominator.
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Theorem 8.5 (Soft Converse for Rational Metrics). For any mismatched
DMC (W, q), if the decoding metric is rational (cf., (8.25)) and satisfies
(8.26), and Ck (k = 1, 2, ...) is a sequence of length-k codebooks whose
average error probability εk = pe(Ck) satisfies limk→∞ k · εk = 0, then it
holds that

lim sup
k→∞

1
k

log |Ck| ≤ C
(∞)
lm . (8.27)

Proof. The proof in [96] was based on the dual expression (2.16) for
the LM rate; here we provide an alternative proof based on the primal
expression (2.15), also re-using some of the general steps given in the
proof of Theorem 8.4. By the same argument used therein, it suffices to
prove the result for codebooks Ck whose codewords are all distinct; we
henceforth assume that this is the case.

Let ηk > 0 denote the minimal difference between distinct k-letter
log-metric values with respect to the same length-k output sequence:

ηk = min
(xk,x̄k,yk)∈Xk×Xk×Yk:
qk(xk,yk)>qk(x̄k,yk)

(
log qk(xk, yk)− log qk(x̄k, yk)

)
. (8.28)

Note that if the minimization in (8.28) is empty, then we must have
q(x, y) = q(x̄, y) for all (x, x̄, y). This case can be excluded, as it trivially
gives a mismatch capacity of zero.

We observe that the assumptions of the theorem imply the following:

1. By (8.26), we can find a number B ∈ (0,∞) such that the metric
is bounded as follows for all (x, y):

log q(x, y) ≤ B, ∀x, y,
log q(x, y) ≥ −B ∀x, y s.t. W (y|x) > 0. (8.29)

Indeed, the choice B = maxx,y | log q(x, y)|1{W (y|x) > 0} is finite
and satisfies both of these conditions.

2. By the assumption of a rational metric, it is straightforward to
show that ηk is bounded away from zero uniformly in k; see [96,
Lemma 4] for a formal argument.3

3In [96] the log-metric is normalized by 1
k
, so in the notation therein the statement

is that the decay rate of ηk to zero is no faster than 1
k
(rather than being bounded

away from zero).
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Hence, to prove the theorem, it suffices to establish the following more
general claim: For any mismatched DMC (W, q), if the metric is bounded
according to (8.29), and limk→∞

kεk
ηk

= 0, then

lim sup
k→∞

1
k

log |Ck| ≤ C
(∞)
lm . (8.30)

We proceed with the proof of this claim.
As was done in the proof of Theorem 8.4, we let PXk be uniformly

distributed over the codebook Ck, and define PXkY k = PXk×W k. Recall
the chain of inequalities leading to (8.18), which is re-stated here for
convenience:

C
(k)
lm ≥

1
k
HP (Xk)− 1

k
max

P̃
XkY k

: P̃
Xk

=P
Xk

,P̃
Y k

=P
Y k
,

E
P̃

[log qk(Xk,Y k)]≥EP [log qk(Xk,Y k)]

H
P̃

(Xk|Y k).

(8.31)
We fix P̃XkY k satisfying the constraints in (8.31), and seek to simplify the
condition E

P̃
[log qk(Xk, Y k)] ≥ EP [log qk(Xk, Y k)], which is equivalent

to
E[log qk(Xk, Y k)− log qk(Xk, Y k)] ≥ 0 (8.32)

for any triplet (Xk, Y k, Xk) with marginals (Xk, Y k) ∼ PXkY k and
(Xk, Y k) ∼ P̃XkY k . In addition to these random variables, we define

qkmax(Y k) = max
xk∈Ck

qk(xk, Y k), (8.33)

and we let X̂k be the estimate of Xk produced when the mismatched
decoder is applied to Y k (i.e., X̂k is the codeword in Ck corresponding
to the message estimate m̂). Then, we simplify (8.32) by considering
the following:

E[log qk(Xk, Y k)− log qk(Xk, Y k)]

= E
[
1{X̂k 6= Xk}

(
log qk(Xk, Y k)− log qk(Xk, Y k)

)]
+ E

[
1{X̂k = Xk}

(
log qk(Xk, Y k)− log qk(Xk, Y k)

)]
(8.34)
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≤ 2kB · εk + E
[
1{X̂k = Xk}

(
log qk(Xk, Y k)− log qk(Xk, Y k)

)]
(8.35)

= 2kB · εk + E
[
1{X̂k = Xk}

(
log qk(Xk, Y k)− log qkmax(Y k)

)]
(8.36)

= 2kB · εk + E
[
1{X̂k = Xk, qk(Xk, Y k) < qkmax(Y k)}

×
(

log qk(Xk, Y k)− log qkmax(Y k)
)]

(8.37)

≤ 2kB · εk − ηkP[X̂k = Xk, qk(Xk, Y k) < qkmax(Y k)] (8.38)
≤ 2kB · εk − ηk

(
(1− εk) + P[qk(Xk, Y k) < qkmax(Y k)]− 1

)
(8.39)

= 2kB · εk + ηk
(
εk − P[qk(Xk, Y k) < qkmax(Y k)]

)
, (8.40)

where:

• (8.35) follows from the upper bound log qk(Xk, Y k) −
log qk(Xk, Y k) ≤ 2kB, which holds due to (8.29);

• (8.36) holds since whenever X̂k = Xk, one has qk(Xk, Y k) =
qkmax(Y k) by the definition of X̂k as a codeword attaining the
highest metric;

• (8.37) follows since the difference in log-metric values is trivially
zero when qk(Xk, Y k) = qkmax(Y k);

• (8.38) holds since the condition qk(Xk, Y k) < qkmax(Y k) combined
with the definition of ηk yields log qk(Xk, Y k)− log qk(Xk, Y k) ≤
−ηk;

• (8.39) follows from the fact that P[E1 ∩ E2] ≥ P[E1] + P[E2]− 1 for
any two events E1 and E2, and since P[X̂k = Xk] = 1− εk under
our assumption that the codewords of Ck are distinct.

Re-arranging (8.40), we deduce that if (8.32) holds, then

P[qk(Xk, Y k) < qkmax(Y k)] ≤ 2kB · εk
ηk

+ εk, (8.41)

or equivalently, taking one minus both sides,

P[qk(Xk, Y k) = qkmax(Y k)] ≥ 1−
(2kB
ηk

+ 1
)
εk. (8.42)
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Letting Ak denote the set of yk sequences for which the maximizer of
maxxk∈Ck q

k(xk, yk) is unique, we can upper bound the left-hand side
of (8.42) as follows:

P
[
qk(Xk, Y k) = qkmax(Y k)

]
(8.43)

≤ P
[
qk(Xk, Y k) = qkmax(Y k), Y k ∈ Ak

]
+ P[Y k ∈ Ack] (8.44)

≤ P
[
qk(Xk, Y k) = qkmax(Y k), Y k ∈ Ak

]
+ εk, (8.45)

where (8.46) follows since the event Ack implies a decoding error, due
to the fact that ties are decoded as errors (see Section 1.1). Hence,
combining (8.42) and (8.45), we have

P
[
qk(Xk, Y k) = qkmax(Y k), Y k ∈ Ak

]
≥ 1− 2

(
kB

ηk
+ 1

)
εk. (8.46)

Recall that the preceding analysis (and hence (8.46)) holds when-
ever (Xk, Y k) ∼ PXkY k and (Xk, Y k) ∼ P̃XkY k with P̃XkY k satisfying
the constraints in (8.31). Hence, reverting back from the notation
(Xk, Xk, Y k) to the notation P

P̃
[·], we can write (8.46) as

P
P̃

[
qk(Xk, Y k) = qkmax(Y k), Y k ∈ Ak

]
≥ 1− 2

(
kB

ηk
+ 1

)
εk. (8.47)

Now, similarly to the derivation of Fano’s inequality, we introduce the
binary random variable

S = 1{qk(Xk, Y k) = qkmax(Y k), Y k ∈ Ak}. (8.48)

By the definition of Ak following (8.42), and the definition of qkmax in
(8.33), we see that when S = 1 it must be the case that Xk is the
unique maximizer of the k-letter decoding metric. This means that
H
P̃

(Xk|Y k, S = 1) = 0, and hence

H
P̃

(Xk|Y k) ≤ H
P̃

(Xk, S|Y k) (8.49)
= H

P̃
(S|Y k) +H

P̃
(Xk|Y k, S) (8.50)

≤ 1 + P
P̃

[S = 0]H
P̃

(Xk|Y k, S = 0) (8.51)

≤ 1 + 2
(
kB

ηk
+ 1

)
εk log |Ck|, (8.52)

where (8.50) follows from the chain rule, (8.51) uses the fact that
H
P̃

(Xk|Y k, S = 1) = 0, and (8.52) follows by upper bounding
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P
P̃

[S = 0] = 1−P
P̃

[S = 1] using (8.47), and by trivially upper bounding
the conditional entropy by log |Ck|.

We are now ready to simplify the expression given in (8.31). As we
already established in (8.19), the first term equals 1

k log |Ck| under our
assumption that the codewords of Ck are distinct. As for the second
term, we have

1
k

max
P̃
Xk,Y k

: P̃
Xk

=P
Xk

,P̃
Y k

=P
Y k
,

E
P̃

[log qk(Xk,Y k)]≥E
P̃

[log qk(Xk,Y k)]

H
P̃

(Xk|Y k) (8.53)

≤ 1
k

max
P̃
Xk,Y k

: P̃
Xk

=P
Xk

,P̃
Y k

=P
Y k
,

P
P̃

[qk(Xk,Y k)=qkmax(Y k),Y k∈Ak]≥1−2
(
kB
ηk

+1
)
εk

H
P̃

(Xk|Y k) (8.54)

≤ 1
k

(
1 + 2

(
kB

ηk
+ 1

)
εk · log |Ck|

)
, (8.55)

where (8.54) follows from the fact established above that the constraint
E
P̃

[log qk(Xk, Y k)] ≥ E
P̃

[log qk(Xk, Y k)] implies (8.47), and (8.55) fol-
lows from (8.52).

Substituting (8.19) and (8.55) into (8.31), we find that

C
(k)
lm ≥

(
1− 2

(
kB

ηk
+ 1

)
εk

)
· 1
k

log |Ck| −
1
k
. (8.56)

Taking the limit as k tends to infinity, and recalling the assumption
limk→∞

kεk
ηk

= 0 stated above (8.30), we obtain (8.27) as desired.

By the results of Section 7 (applied to the product channel), we know
that at any rate below C

(k)
lm , there exist sequences of codes whose error

probability vanishes exponentially fast. Combined with Theorem 8.5,
we deduce that for rational metrics, C(∞)

lm is the supremum of all rates
for which such exponential decay can be attained.

8.4 Other Decoding Rules

Throughout the monograph, we have focused on the standard maximum-
metric decoder defined in (1.1). In this subsection, we consider two
variations of this decoder in which C(∞)

lm can be deduced as an upper
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bound on the mismatch capacity: maximum-metric decoding with a
margin, and threshold decoding.

8.4.1 Maximum-Metric Decoding with a Margin

We consider mismatched decoding with a δ-margin, meaning that the
decoder selects a message whose codeword yields a normalized log-
metric exceeding that of all other codewords by at least δ, i.e., the
decoder chooses message m̂ if and only if the codeword x(m̂) is the only
codeword such that

1
n

log qn(x(m̂),y) ≥ 1
n

log qn(x(j),y) + δ, ∀j 6= m̂. (8.57)

If no such codeword exists, then an error is declared. This decoder is
clearly no better than the standard maximum-metric decoder, since
whenever m̂ is selected it must be the case that x(m̂) is the maximum-
metric codeword.

For this setup, the following was proved in [96].

Theorem 8.6 (Mismatch Capacity for Maximum-Metric Decoding with
a Margin). For any mismatched DMC (W, q), under maximum-metric
decoding with a margin according to (8.57), we have the following:

(i) For any given ε > 0, there exists δ > 0 such that the rate C(∞)
lm − ε

is achievable when the margin parameter is δ.

(ii) For any given δ > 0 and ε > 0, there does not exist any sequence
of codes having rate R > C

(∞)
lm + ε such that the error probability

vanishes when the margin parameter is δ.

The first of these claims (i.e., achievability) is proved via a straight-
forward extension of that of the analogous claim for maximum-metric
decoding, with the additional step of showing that the function

Cmarg
lm (δ) = max

QX
min

P̃XY : P̃X=QX ,P̃Y =QY
E
P̃

[log q(X,Y )]≥EP [log q(X,Y )]−δ

I
P̃

(X;Y ) (8.58)

(which equals the LM rate Clm when δ = 0) is continuous as δ → 0 from
above. The second claim above (i.e., the converse result) is proved using
similar ideas to the proof of Theorem 8.5; the details can be found in
[96, Thm. 1].
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8.4.2 Mismatched Threshold Decoding

Another important decoding rule that is related to the mismatched
maximum-metric decoder is the mismatched threshold decoder, defined
as follows: For a fixed threshold τ > 0, the decoded message m̂ is the
unique message whose decoding metric is above the threshold, i.e., the
decoder outputs m̂ if and only if

1
n

log qn(x(m̂),y) ≥ τ and 1
n

log qn(x(j),y) < τ, ∀j 6= m̂. (8.59)

If no such codeword exists, then an error is declared. Similarly to the
margin decoder introduced above, this decoder is no better than the
standard maximum-metric decoder, since whenever the decoder declares
m̂ it must be the case that m̂ yields the highest metric. In principle, the
threshold τ could vary with n, and with the channel output y, but the
result given below has only been proved in the fixed-threshold setting.

For this setup, we have the following result [96], which is analogous
to Theorem 8.6, but has additional technical assumptions in the converse
part.

Theorem 8.7 (Mismatch Capacity for Threshold Decoding). For any
mismatched DMC (W, q), under threshold decoding according to (8.59),
we have the following:

(i) For any given ε > 0, there exists τ > 0 such that the rate C(∞)
lm − ε

is achievable when the threshold parameter is τ .

(ii) Suppose that there exists at least one symbol x∗ such that

max
y,y′∈Y

{W (y|x∗)q(x∗, y)−W (y′|x∗)q(x∗, y′)} 6= 0. (8.60)

Then, for any fixed threshold τ > 0 and constant ε > 0, and any
sequence of codebooks (indexed by the block length n) having code-
words of the same type QX,n converging to a limiting distribution
QX sufficiently fast so that limn→∞

√
nmaxx |QX,n(x)−QX(x)| =

0, if R > C
(∞)
lm + ε, then the error probability is bounded away

from zero as n→∞.

The first claim (i.e., achievability) is implicit in the derivation of the
LM rate in [39] that is based on upper bounding the maximum-metric
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decoding achievable rate in terms of that of threshold decoding. The
idea is that by employing constant-composition random coding and
setting τ = EP [log q(X,Y )]− ε for some ε > 0, the resulting achievable
rate is

Cthresh
lm (τ) = max

QX
min

P̃XY : P̃X=QX ,P̃Y =QY
E
P̃

[log q(X,Y )]≥τ

I
P̃

(X;Y ), (8.61)

which can be made arbitrarily close to the LM rate Clm for small enough
ε > 0.

For the second claim (i.e., the converse) we outline the main ideas
of the proof as follows. First, it is shown that for successful threshold
decoding, the threshold must be strictly less than EQX×W [log q(X,Y )],
where QX is the limiting distribution in the theorem statement. In-
tuitively, this is because the normalized log-metric 1

n log qn(X,Y ) for
the transmitted codeword X concentrates around this value. This
is formalized using the central limit theorem (CLT), and making
use of the assumptions in the theorem: (i) the assumption (8.60)
ensures that 1

n log qn(X,Y ) has positive variance;4 (ii) the assump-
tion limn→∞

√
nmaxx |QX,n(x) − QX(x)| = 0 is utilized since the

CLT concerns deviations on the order of 1√
n

from the mean. Since
we consider the case that τ does not depend on n, we deduce that
τ = EQ×W [log q(X,Y )]− ε′ for some ε′ > 0.

The second idea is to relate the performance of threshold decoding
to that of maximum-metric decoding with a margin (cf., Section 8.4.1).
Specifically, letting p(τ)

e,thresh and p(δ′)
e,marg be the corresponding error prob-

abilities, it can be shown that p(δ′)
e,marg ≤ p(τ)

e,thresh + P
[ 1
n log qn(X,Y ) ≤

τ+δ′
]
. By the above choice of τ and the law of large numbers, the second

term on the right-hand side tends to zero under the choice δ′ = ε′/2,
and the second claim of Theorem 8.7 then follows from the analogous
claim for maximum-metric decoding with a margin. The details can be
found in [96, Thm. 2].

4In fact, if the assumption (8.60) does not hold, then one can prove that C(∞)
lm

upper bounds the mismatch capacity by following the approach used for erasures-only
metrics, cf., (8.13).
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8.5 Further Multi-Letter Upper Bounds

The quantity C(∞)
lm (cf., (8.9)) is multi-letter, in the sense that it is not

expressed as the optimization of information measures on X and Y , but
rather, on X k and Yk (with k →∞). Further multi-letter upper bounds
on Cm were derived in [91, 96], some in the spirit of C(∞)

lm , and others
building on information-spectrum methods [45, 104]. In this subsection,
we overview some of the results attained.

Before proceeding, we briefly discuss the merit in deriving multi-
letter upper bounds on Cm, which may appear to be of limited value
due to being non-computable. Despite this limitation, such bounds can
serve to deduce certain properties of the mismatch capacity Cm and
related quantities. For instance, by a suitable comparison of multi-letter
expressions, a precise characterization was given in [94] on how much
the mismatch capacity increases under certain list decoding recovery
criteria. Multi-letter bounds could also potentially serve as starting
points towards further results, such as settling the Csiszár and Narayan
conjecture, attaining new single-letter bounds, and so on. In fact, such
benefits have already been observed in other topics in information
theory, e.g., a multi-letter characterization of the interference channel
capacity region [3] was used to derive single-letter outer bounds, and to
characterize certain extreme points [66].

We also briefly mention that multi-letter achievability bounds have
been established, including a multi-letter counterpart to the LM rate
[39] and lower bounds on Cm with a similar flavor to the upper bounds
summarized below [96]. These achievability results are omitted from
our discussion, as the focus of this section is on converse results.

8.5.1 A Max-Min Multi-Letter Upper Bound

Substituting the LM rate expression (8.1) into (8.9), we find that C(∞)
lm

can be written as

C
(∞)
lm = lim

k→∞
max
Q
Xk

min
P̃
XkY k

: P̃
Xk

=Q
Xk

,P̃
Y k

=P
Y k
,

E
P̃

[log qk(Xk,Y k)]≥EP [log qk(Xk,Y k)]

1
k
I
P̃

(Xk;Y k),

(8.62)
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where PXkY k = QXk × W k. The following upper bound on Cm has
the same form as (8.62), but differs in the set over which the inner
minimization is performed.

Theorem 8.8 (Multi-Letter Upper Bound). For any mismatched DMC
(W, q), we have

Cm ≤ lim inf
k→∞

max
Q
Xk

min
P̃
XkY k

: P̃
Xk

=Q
Xk

,

P
Y k,qk(Xk,Y k)=P̃

Y k,qk(Xk,Y k)

1
k
I
P̃

(Xk;Y k), (8.63)

where P̃Y k,qk(Xk,Y k) is the joint distribution of Y k and the metric
value qk(Xk, Y k) at the output of the auxiliary channel P̃Y k|Xk , and
PY k,qk(Xk,Y k) is the corresponding joint distribution for the true channel
W k.

The idea of the proof is the following [96]: If two (multi-letter)
channels lead to the same joint distribution of Y k and qk(Xk, Y k), then
they have the same average probability of error under metric q. For any
such channel, at most I

P̃
(Xk;Y k) bits of information can be reliably

transmitted, and the result follows by minimizing over all such channels.

8.5.2 Information-Spectrum Formula for the Mismatch Capacity

Next, we turn to an exact formula for the mismatch capacity derived
in [91] using the the information-spectrum method. While the result
in [91] applies to general channels and metrics with memory, we restrict
our attention to the case of mismatched DMCs here. For a sequence of
real-valued random variables {Xi}∞i=1, the limit inferior in probability
is defined as follows

p - lim inf
n→∞

Xn = sup
{
t : lim

n→∞
P[Xn < t] = 0

}
. (8.64)

In the following, we consider an n-letter input distribution QX , and
define the pairwise error probability random variable

Φn(X,Y ) = P[qn(X,Y ) ≥ qn(X,Y )|X,Y ], (8.65)

where (X,Y ,X) ∼ QX(x)Wn(y|x)QX(x̄). This is the conditional
probability of a codeword X independently drawn from QX yielding a
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higher decoding metric than qn(X,Y ), and this also appeared in the
derivation of the GMI and LM rate (see Section 2.6).

Theorem 8.9 (Multi-Letter Expression for the Mismatch Capacity). For
any mismatched DMC (W, q), the mismatch capacity is given by

Cm = sup
Q

p - lim inf
n→∞

− 1
n

log Φn(X,Y ), (8.66)

where (X,Y ) ∼ QX×Wn, Φn is defined in (8.65), and Q denotes the in-
finite sequence of multi-letter input distributions (QX1 , QX2 , QX3 , . . . ).

The proof is based on the following observation, providing an exact
expression for the error probability for a given length-n codebook Cn in
terms of Φn. Let X be a random variable equiprobable over Cn, and let
Y be the output of Wn with X as the input. Then, we have

pe(Cn) = P
[
− 1
n

log Φn(X,Y ) < 1
n

log |Cn|
]
, (8.67)

where Φn is computed with respect to QX , the equiprobable distribution
on Cn. Theorem 8.9 can then be deduced using the definition of lim inf
in probability. The details can be found in [91].

The exact expression of Theorem 8.9 can be upper bounded by the
same expression with the limit inferior in probability replaced by the
limit inferior of the series of expectations (see [91, Cor. 2]), yielding

Cm ≤ sup
Q

lim inf
n→∞

− 1
n

E
[
log Φn(X,Y )

]
. (8.68)

Moreover, this bound was shown be tight for finite-input channels
whenever the strong converse property holds for mismatched decoding
(see [91, Lemma 7]), though understanding when the latter property
holds remains an open problem.

The bound (8.68) was also shown to be tight in the case of the
erasures-only metric q(x, y) = 1{W (y|x) > 0}, in which case we have

Φn(X,Y ) = P
[
Wn(Y |X) > 0|Y

]
. (8.69)

Hence, in this case, the multi-letter capacity formula becomes [91,
Proposition 1]

Cm = sup
Q

lim inf
n→∞

− 1
n

E
[

log P
[
Wn(Y |X) > 0|Y

]]
. (8.70)
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8.6 A Single-Letter Upper Bound

The task of attaining single-letter upper bounds on the mismatch
capacity for general mismatched DMCs has proved to be notoriously
difficult since the introduction of the mismatched decoding problem.
In this subsection, we present a recent result providing a single-letter
upper bound on the mismatch capacity that can be strictly smaller
than the matched capacity [11] (see also [9, 10]).

The high-level idea of the upper bound is to relate the error proba-
bility of the mismatched DMC (W, q) to the error probability associated
with an auxiliary channel PY |X under optimal maximum-likelihood (ML)
decoding. Then, a standard mutual information based upper bound on
the capacity of PY |X translates to a non-trivial upper bound on the
mismatch capacity of (W, q).

In order to state the upper bound, we introduce some definitions.
For any two outputs y, y ∈ Y, we define the following set of inputs
maximizing the difference of log-metric values:

X ∗q (y, y) =
{
x ∈ X : x ∈ arg max

x′∈X

(
log q(x′, y)− log q(x′, y)

)}
. (8.71)

In addition, we define

Mmax(q),
{
PY Y |X ∈P(Y2|X ): PY Y |X(y, ȳ|x) = 0, ∀x /∈X ∗q (y, y)

}
,

(8.72)
which is the set of conditional joint distributions such that x maximizes
the log-metric difference in (8.71) with probability one. We henceforth
refer to any conditional joint distribution inMmax(q) as being maximal.

Theorem 8.10 (Single Letter Upper Bound on the Mismatch Capacity).
For any mismatched DMC (W, q), we have

Cm(W, q) ≤ R(W, q), (8.73)

where
R(W, q) , max

QX∈P(X )
min

P
Y Y |X∈Mmax(q):

PY |X=W

IP (X;Y ), (8.74)

where IP (X;Y ) is computed with respect to QX × PY |X .
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Observe that R(W, q) has a similar form to the input-optimized LM
rate Clm in its primal form (cf., (8.1)–(8.2)), with a maximization over
the input distribution and a minimization over the (joint) auxiliary
channel. The defining feature here is the constraint that PY Y |X is
maximal.

Before outlining the proof of Theorem 8.10, we present some exam-
ples and properties of R(W, q).

Examples. We return to the binary-input ternary-output example of
Section 6.3.4, in which X = {0, 1}, Y = {0, 1, 2}, and the channel and
metric are described by the entries of the |X | × |Y| matrices

W =
[
0.97 0.03 0
0.1 0.1 0.8

]
, q =

[
1 1 1
1 0.5 1.36

]
. (8.75)

We saw in Section 6.3.4 that the 2-letter superposition coding rate
C

(2)
sc = 0.19908 bits/use is strictly higher than the LM rate 0.19746 ≤

Clm ≤ 0.19751, implying that Cm > Clm [76].
Since (8.74) minimizes over PY Y |X , we can substitute any specific

choice therein and still have a valid upper bound on Cm. We consider
the choice in Table 8.1 (with all triplets not shown therein having
probability zero), which is easily verified to be maximal and to satisfy
PY |X = W . Marginalizing out the Y variable, we find that

[
PY |X(y|x)

]
x∈X ,y∈Y =

[
0.5 0.5 0
0.1 0.1 0.8

]
. (8.76)

A numerical calculation with an efficient iterative algorithm (discussed
below) establishes that the joint conditional distribution in Table 8.1
attains the minimum in (8.74), and gives the following (to five decimal
places):

R(W, q) = 0.61823 bits/use. (8.77)

On the other hand, a basic numerical calculation establishes that W
has matched capacity

C(W ) = 0.71329 bits/use. (8.78)
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Table 8.1: Non-zero entries of PY Y |X(y, y|x) for the example in (8.75)

(x, y, ȳ) PY Y |X(y, ȳ|x) (x, y, ȳ) PY Ȳ |X(y, y|x)

(0, 0, 0) 0.5 (1, 0, 0) 0.1
(0, 0, 1) 0.47 (1, 1, 1) 0.1
(0, 1, 1) 0.03 (1, 2, 2) 0.8

Hence, the upper bound R(W, q) is strictly smaller than the matched
capacity, albeit still far from the best known achievable rate (i.e., lower
bound on the mismatch capacity) in this example.

In addition to the above example, the following observations were
made in [11]:

• If we change q(2, 2) from 0.5 to 1 in (8.75), then the choice of
PY Y |X in Table 8.1 remains the optimal solution of the iterative al-
gorithm, meaning that R = 0.61823 bits/use. In this case, however,
a numerical evaluation of the LM rate also gives Clm = 0.61823
bits/use, and hence, the upper and lower bounds coincide (at least
numerically).

• In the binary-input binary-output case |X | = |Y| = 2, the upper
bound R(W, q) always equals the mismatch capacity, as charac-
terized in Lemma 8.2.

• A sufficient condition can be given for a binary-input mismatched
DMC to have Cm < C, where C is the matched capacity. To
state this condition, we start with the following definition: Two
sequences {αk}Kk=1 and {βk}Kk=1 are said to have the same order
if, for all k1, k2 ∈ {1, . . . ,K}, it holds that

αk1 ≥ αk2 ⇒ βk1 ≥ βk2 . (8.79)

Then, if maxx,yW (y|x) > 0 and the sequences
{

logW (yk|1) −
logW (yk|2)

}|Y|
k=1 and

{
log q(1, yk)− log q(2, yk)

}|Y|
k=1 do not have

the same order, then Cm < C.

• As for a non-binary example, consider the following ternary-input
quaternary-output channel and the corresponding erasures-only



8.6. A Single-Letter Upper Bound 361

metric (Section 1.2.7):

W =

0.25 0 0.05 0.7
0.3 0.55 0 0.15
0.05 0.5 0.45 0

 , q =

1 0 1 1
1 1 0 1
1 1 1 0

 . (8.80)

The matched capacity of W is C = 0.78537 bits/use, and the
above-mentioned iterative algorithm gives R = 0.62318 bits/use.
The LM rate computed by an exhaustive search over the input
distributions is approximately Clm = 0.42922 bits/use.

Properties of R(W, q). Here we discuss some convexity properties
of R(W, q) and their implications for its computation. We first present
a lemma stating that the minimization in (8.74) is performed over a
convex set. The proof is straightforward, and can be found in [11].

Lemma 8.11 (Convexity of the Constraint Set). For any mismatched
DMC (W, q), the set of conditional joint distributions PY Y |X ∈Mmax(q)
such that PY |X = W is convex.

Since the mutual information is concave in QX and convex in PY |X ,
Lemma 8.11 implies that the optimization problem in (8.74) is a convex-
concave saddlepoint problem, and can be simplified as follows:

R(W, q) = max
QX

min
P
Y Y |X∈Mmax(q) :

PY |X=W

IP (X;Y ) (8.81)

= min
P
Y Y |X∈Mmax(q) :

PY |X=W

max
QX

IP (X;Y ) (8.82)

= min
P
Y Y |X∈Mmax(q) :

PY |X=W

C(PY |X). (8.83)

Two further implications of the convex-concave structure of (8.74) are
as follows (see [11] for details): (i) One can establish an efficient iterative
algorithm to compute R(W, q); (ii) Multi-letter extensions of the bound
do not yield any improvement, i.e., we have for any positive integer k
that 1

k
R(k)(W, q) = R(W, q), (8.84)
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where R(k)(W, q) denotes the multi-letter extension of R(W, q). This is
shown by first deriving the KKT conditions for both the single-letter
and multi-letter problems, and then showing that the k-fold product of
any optimal distribution for the single-letter problem also satisfies the
KKT conditions for the multi-letter problem.

Outline of the Derivation of R(W, q). We provide a brief overview
of the proof of Theorem 8.10, and refer the reader to [11] for the details.
As we mentioned previously, the key idea is to lower bound the error
probability of a codebook Cn applied to the mismatched DMC (W, q) by
that of the same codebook over a different channel PY |X with optimal
(maximum-likelihood) decoding.

We first state some standard assumptions on the codebook Cn =
{x(1), . . . ,x(M)} that incur no loss of generality. Since any code contains
a constant-composition sub-code with the same asymptotic rate (see
Section 2.2), we may assume that Cn is a constant-composition codebook,
say with type QX,n. In addition, it suffices to consider the maximal
error probability pe,max (with respect to m = 1, . . . ,M) instead of the
average error probability pe, since these two notions lead to the same
mismatch capacity (see Remark 1.2).

We introduce the following counterpart of (8.72):

Mmax,n(q) ,
{
PY Y |X,n ∈ Pn(Y2|X ) :

PY Y |X,n(y, y′|x) = 0, ∀x /∈ X ∗q (y, y′)
}
, (8.85)

which has the same constraints asMmax(q), but has the further con-
straint of being a conditional joint type. Then, for a given codeword x ∈
T n(QX,n) and a maximal conditional joint type PY Y |X,n ∈Mmax,n(q),
consider the bipartite graph

Gx(PY Y |X,n) =
{
T nx (PY |X,n), T nx (PY |X,n), Ex

}
(8.86)

with left-node set T nx (PY |X,n), right-node set T nx (PY |X,n), and edge set

Ex =
{
(y,y)|P̂yy|x = PY Y |X,n

}
, (8.87)

with P̂yy|x denoting the joint conditional type induced by (x,y,y).
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Thus, the graph connects y, the output of the channel PY |X,n, to y,
the output of the channel PY |X,n, whenever their joint conditional type
P̂yy|x is equal to PY Y |X,n. It can be shown that the graph Gx(PY Y |X,n)
is regular, i.e., all left-nodes have the same degree, and all right-nodes
have the same degree.

With the preceding definitions in place, the key step in the analysis is
as follows: Show that for two constant-composition codewords x,x ∈ Cn
and an output sequence y, if PY Y |X,n is a maximal distribution whose
marginal distribution satisfies PY |X,n = P̂ y|x, then there exists some y

connected to y in Gx(PY Y |X,n) for which we have

P̂ y|x = P̂ y|x. (8.88)

Here, as usual, x represents the transmitted codeword, and x represents
some non-transmitted codeword. Then, the following crucial lemma
shows that (8.88) implies qn(x,y) ≤ qn(x,y).

Lemma 8.12 (Connection Between Conditional Type Error and Decoding
Error). Consider a conditional type QX,n ∈ Pn(X ) and sequences x,x ∈
T n(QX,n), and let PY Y |X,n ∈Mmax,n(q) be a maximal joint conditional
type satisfying PY |X,n = P̂ y|x. If there exists some y ∈ T nx (PY |X,n) ∩
T nx (PY |X,n) connected to y ∈ T nx (PY |X,n) in Gx(PY Y |X,n), then

qn(x,y) ≤ qn(x,y). (8.89)

Proof. First consider the following standard marginalization property
for any triplet (x′,y,y):

P̂ yy(y, y) =
∑
x

P̂x′yy(x, y, y). (8.90)

Using this property once with x′ = x and again with x′ = x, it follows
that ∑

x

P̂xyy(x, y, y) =
∑
x

P̂xyy(x, y, y). (8.91)
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We now consider the following difference of log-metric values:

log qn(x,y)− log qn(x,y)
= n

∑
x,y,y

P̂xyy(x, y, y)
(

log q(x, y)− log q(x, y)
)

(8.92)

≤ n
∑
y,y

(∑
x

P̂xyy(x, y, y)
)

max
x∈X

(
log q(x, y)− log q(x, y)

)
(8.93)

= n
∑
y,y

(∑
x

P̂xyy(x, y, y)
)

max
x∈X

(
log q(x, y)− log q(x, y)

)
(8.94)

= n
∑
y,y

∑
x

P̂xyy(x, y, y)
(

log q(x, y)− log q(x, y)
)

(8.95)

= log qn(x,y)− log qn(x,y) (8.96)

where (8.92) uses log qn(x,y) = n
∑
x,y P̂xy(x, y) log q(x, y), (8.93) fol-

lows by upper bounding log q(x, y)− log q(x, y) by its maximum over the
inputs, (8.94) follows from (8.91), (8.95) follows from the maximality
of PY Y |X,n (see (8.71)) and the graph construction Gx(PY Y |X,n) (see
(8.86)–(8.87)), and (8.96) follows similarly to (8.92).

Now, the assumption y ∈ T nx (PY |X,n) ∩ T nx (PY |X,n) implies that
log qn(x,y) = log qn(x,y), and combining this with (8.96), we get the
desired result log qn(x,y) ≤ log qn(x,y).

The event P̂ y|x = P̂ y|x is referred to as a conditional type error,
corresponding to the correct codeword and some incorrect codeword
inducing the same conditional type with y. Lemma 8.12 implies that
whenever there is a conditional type error in the channel PY |X,n, there
also is a mismatched decoding error in the channel PY |X,n, which in
turn should be close to the original channel W by a typicality argument
(recall that PY |X,n = P̂ y|x).

As hinted above, it can be shown that for rates R above IP (X;Y ),
there exists a message that yields a conditional type error in the channel
PY |X,n, and hence a mismatched decoding error in the channel PY |X,n.
Since this holds for every maximal PY Y |X,n ∈ Mmax,n(q) for which
PY |X,n is close to W , we can choose such a PY Y |X,n with the minimal
value of IP (X;Y ), in accordance with the minimization present in (8.74).
Then, the remainder of the proof revolves around the technicalities
related to passing from types to general distributions.
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Overview of Other Topics

In this monograph, we have focused our attention on what we view as
the most fundamental topics in mismatched decoding. Naturally, the
material that we have presented is far from exhaustive. In this section,
we provide a brief overview of several other topics in the literature that
we did not cover, pointing the reader to the relevant references.

9.1 Alternative Achievable Rates and Capacity Notions

Generalized Cutoff Rate. For the standard single-user mismatched
decoding problem (cf., Section 2), several early works focused on an
achievable rate known as the generalized cutoff rate [29, 49, 68, 75],
defined as follows in analogy with the GMI in (2.10):

Rgcr(QX) = sup
s≥0

log
∑
x,y

QX(x)W (y|x) q(x, y)s∑
xQX(x)q(x, y)s . (9.1)

This can be thought of as the rate obtained by naively upper
bounding the random-coding error probability under the i.i.d. en-
semble by (M − 1)P[qn(X,Y ) ≥ qn(X,Y )], where (X,Y ,X) ∼
QnX(x)Wn(y|x)QnX(x). By applying Jensen’s inequality in (2.10) we
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find that Rgcr(QX) ≤ Igmi(QX), and it was shown in [53, Sec. III] that
the gap between the two can be arbitrarily large.

Alternative Notions of Mismatch Capacity. In [65], it was shown
that seemingly innocuous adjustments to the definition of the mismatch
capacity can drastically affect what rates are achievable. In particular,
variations based on bit-error probability (instead of block error probabil-
ity), randomized decoding, and encoders with added flexibility were all
shown to potentially increase the mismatch capacity. As an example, we
elaborate on the last of these: If the true channel is binary and noiseless,
but the decoder adopts a decoding metric corresponding to the chan-
nel that deterministically flips its input, then the classical mismatch
capacity is zero. However, if the encoder is allowed to pre-process the
selected codeword before passing it through the channel, it can simply
flip each bit prior to transmission, so that a rate of 1 bit/use is trivially
attained.

9.2 Continuous and Fading Channels

Inter-Symbol Interference. The vast majority of the mismatched de-
coding literature focuses on memoryless channels, as these are the
most convenient to analyze mathematically. However, an ongoing line
of works has studied the important class of inter-symbol interference
noise channels under mismatched decoding [1, 47, 70, 72] (see also [71]
for more general linear channel models). In particular, ensemble-tight
achievable rates were given in [47] for an autoregressive random-coding
ensemble and a counterpart with auxiliary costs, generalizing the rates
obtained in [1] for the i.i.d. and shell ensembles.

Block Fading Channels. The block fading channel model is a widely-
adopted model in theoretical studies of wireless communication, in
which a multiplicative noise variable stays constant within fixed-size
blocks, but then independently changes between blocks. In [12, 13],
various performance measures for block fading channels were studied
under mismatched nearest-neighbor decoding resulting from imperfect
channel state information. In particular, a notion of generalized outage
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probability was studied, characterizing the probability that the GMI is
below a certain target rate.

Output Processing. In [109], a variation of the mismatched decod-
ing problem with additive noise channels was considered, in which a
quantizer is applied to the output Y before being passed to the decoder.
Adopting the GMI as the performance measure, the authors studied
the problem of optimizing the quantizer subject to suitable constraints
in order to maximize the GMI. In addition, gains in the GMI resulting
from faster-than-Nyquist sampling of the output were characterized.

Rescaled Codewords at the Transmitter. In [32], it was shown that
a simple re-scaling operation at the transmitter can increase the error
exponent of i.i.d. random codes for a Gaussian channel with a given
discrete constellation at the input. Specifically, the transmitter simply
scales the codeword so that the power constraint is met with equality,
whereas the decoder still uses the original codebook and is therefore
mismatched. This technique provides a simple procedure for reaping
some (but not all) of the gains that constant-composition codes provide
over i.i.d. codes.

9.3 Refined Asymptotics

Fixed-Error Asymptotics and Moderate Deviations. In Section 7,
we focused on error exponents, which characterize the exponential
speed of decay of the error probability at fixed rates. In [79], building
on recent studies in the matched setting [69, 100], two other notions
of refined asymptotics were studied: (i) fixed-error asymptotics, in
which one fixes a target error probability and studies the speed of
convergence to the “first-order” achievable rate; (ii) moderate deviations
asymptotics, in which the rate approaches its asymptotic limit and
the error probability approaches zero simultaneously. In addition, a
saddlepoint approximation was introduced (see also [60, 61]) that unifies
the asymptotics for both fixed and varying rates under i.i.d. random
coding.
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Refined Asymptotics for Gaussian Sources and Channels. In [84],
the fixed-error asymptotics were studied for additive non-Gaussian
channels (see Section 3.8.2), providing a refined characterization of Lapi-
doth’s study of the achievable rates [53]. The rate-distortion counterpart
(see Section 4.8) was studied in [111], and [112] unified these two lines of
works by considering joint-source channel coding with Gaussian coding
techniques applied to general sources and channels.

9.4 Modified Channel Coding Settings

Capacity Per Unit Cost. In the presence of a system cost constraint
(cf., Section 3.2), as an alternative to considering the capacity with
a given cost constraint, one can seek to obtain the highest possible
capacity per unit cost for a fixed cost function without a hard constraint.
This problem was studied in the mismatched decoding setting in [39]. It
was shown that the mismatch capacity per unit cost is achieved in the
low-cost limit when a zero-cost input exists, but somewhat surprisingly,
the counterpart to this result no longer holds in general when the
mismatch capacity is replaced by the LM rate.

Mismatched Decoding with Feedback. In [55], the problem of chan-
nel coding with feedback and mismatched decoding was introduced. It
was shown that feedback can strictly increase the mismatch capacity,
and sufficient conditions were given under which the mismatch capacity
equals the matched capacity. A related study on the zero-undetected
error capacity with feedback was given in [20], where it was shown
that the maximal achievable rate is always equal to either zero or the
matched capacity.

Channels with a State. In [33], various random-coding based achiev-
able rates were given for channels with a state, taking the formW (y|x, s)
when the state takes the value s. In analogy with the matched setting
[30, Ch. 7], the achievable rates vary according to whether the state is
known at the encoder and/or decoder, and whether it is known causally
or non-causally. This setup is also directly related to fading channels,
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but the focus in [33] is on discrete memoryless channels, leading to
different analysis techniques.

Identification via Channels. The problem of identification via chan-
nels seeks to allow a decoder to reliably determine whether or not a
specific pre-specified message was transmitted, which is a weaker re-
quirement than determining an arbitrary message. In [95], this problem
was studied in the presence of mismatched decoding. Generalizing a
classical result [4], it was shown that the identification problem can
be performed reliably whenever the number M of messages satisfies
limn→∞ log logM < Ilm(QX), i.e., a double-exponentially large number
of messages.

9.5 Other Decoders

Stochastic Likelihood Decoding. In the matched setting, an alterna-
tive to maximum-likelihood decoding is stochastic likelihood decoding
[108], in which each codeword is selected with probability proportional
to its likelihood. In [80], ensemble-tight rates and error exponents were
studied for a mismatched variant of this decoder in which the likelihood
Wn(y|x) is replaced by a single-letter decoding metric qn(x,y). These
results were further generalized to certain multi-letter metrics in [64],
where it was additionally shown that this decoder provides a novel
approach to deriving expurgated error exponents.

Threshold Decoding. Another well-known alternative to the
maximum-likelihood decoder is the threshold decoder: Search for a
unique threshold whose likelihood exceeds some threshold, or declare
an error if no such codeword exists. This decoding rule was studied in
[26, 60, 91] in distinct directions: [26] posed the question of whether
mismatched threshold-decoding and maximum-metric decoding yield
the same mismatch capacity (which remains unsolved in general), [60]
developed a saddlepoint approximation of the random-coding error prob-
ability, and [91] established a multi-letter expression for the mismatch
capacity, as we outlined in Section 8.4.2.
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Successive Decoding. In Section 5, we considered maximum-metric
decoding for the multiple-access channel (MAC). In [82], a mismatched
multi-letter successive decoding rule was instead adopted, with the two
decoding steps taking the form

m̂1 = arg max
i

∑
j

qn(x(i)
1 ,x

(j)
2 ,y), (9.2)

m̂2 = arg max
j
qn(x(m̂1)

1 ,x
(j)
2 ,y). (9.3)

The first step is motivated by the fact that substituting q = W in
the first step yields the optimal rule for estimating m1 alone. It was
demonstrated that for a given random-coding ensemble, there exist rate
pairs that can be attained via successive decoding but not maximum-
metric decoding, and vice versa.

List Decoding. The list decoding criterion allows the decoder to out-
put a list of messages of a certain size, with the decoding considered
successful if the true message is included in the list. A mismatched vari-
ant of list decoding was studied in [94], with an emphasis on multi-letter
formulas analogous to those given in Section 8. Among other things,
it was shown that when the list size grows exponentially as enΘ, the
resulting increase in the mismatch capacity is exactly Θ. In particular,
if the list size grows sub-exponentially fast, then the mismatch capacity
is the same as that of regular decoding.

Universal Decoding. One of the earliest works in the mismatched
decoding literature [99] sought to adopt a single decoding metric that
simultaneously works well for all channels in some class. In a more
recent work [63], a complementary problem is studied, in which some
class of decoding metrics is fixed, and the goal is to construct a channel-
independent decoder that is guaranteed to work nearly as well as the
best decoding metric in the class. More specifically, for a given random
coding ensemble, it is shown that the proposed universal decoder has
an error probability within a sub-exponential factor of the best fixed
decoder in the class.
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9.6 Mismatch in Practical Codes

Huffman Coding. Perhaps the most well-known example of mismatch
in information theory is that for Huffman coding in lossless symbol-
wise source coding [22, Sec. 5.6]: If the true source distribution is PX
but Huffman coding is performed according to some QX , then the
resulting average code length Lavg satisfies H(PX) + D(PX‖QX) ≤
Lavg < H(PX) +D(PX‖QX) + 1. When PX = QX , this reduces to the
well-known bound H(PX) ≤ Lavg < H(PX) + 1.

Viterbi Decoding. The Viterbi algorithm [35] is a classical technique
for the maximum-likelihood decoding of convolution codes, and related
decoding tasks involving Markov models. In [59], a mismatched variant
of the Viterbi algorithm was analyzed for convolutional coding over
a symmetric channel, using a symmetric decoding metric that may
differ from the true likelihood function. The main result is a lower
bound on the bit-error probability; in broad scenarios, this bound is
asymptotically tight in the limit of a high signal-to-noise ratio.

Polar Codes. In a recent line of works [5–7], mismatched decoding
is analyzed in the context of polar codes over binary-input discrete
memoryless channels. The achievable rate derived resembles the dual
form of the GMI (see (2.10)), but with two notable modifications: (i)
The input distribution is always equiprobable, i.e., QX(0) = QX(1) = 1

2 ;
(ii) The optimization over s ≥ 0 is replaced by the specific value s = 1
coinciding with Fisher’s rate [34]. This rate can match the GMI in
certain special cases, but in general may be significantly lower, or even
negative.
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Conclusion

In this monograph, we have surveyed a wide range of classical results and
recent developments on the problem of point-to-point communication
with mismatched decoding, as well as the analogous multiple-access
communication problem, and that of mismatched encoding in rate-
distortion theory. In the following, we provide a brief summary of each
section, and list several open problems of interest.

In Section 2, we studied the rates achievable by random coding with
independent codewords for mismatched DMCs, with an emphasis on the
i.i.d. ensemble and the constant-composition ensemble. We introduced
a number of properties of the resulting achievable rates, referred to as
the GMI and the LM rate. In Section 3, we presented the generalization
of these rates to continuous-alphabet channels, and introduced the
cost-constrained random-coding ensemble as a means for proving the
achievability of the LM rate. In addition, we evaluated these rates on a
variety of additive noise channels, including the prominent examples
of: (i) Gaussian codes for additive non-Gaussian noise channels; and
(ii) fading channels with mismatched channel state information at the
decoder.
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In the case of discrete alphabets, ensemble tightness results are
well-established for both the GMI and the LM rate for their respective
ensembles, whereas for continuous-alphabet channels, only the ensemble
tightness of the GMI is known (see Section 3.7). This raises the following
open problem, for which we expect the answer to be affirmative.

Open Problem 1. Is the LM rate tight with respect to the ensem-
ble average for the cost-constrained ensemble for continuous-alphabet
memoryless channels with mismatched decoding?

The following question is relatively open-ended, and serves to high-
light the fact that the GMI has been the focus of many specific continu-
ous channels, with the potential gains of the LM rate remaining elusive
other than the simple improvement given in Theorem 3.9.

Open Problem 2. To what extent can the LM rate improve over the
GMI for additive noise channels and/or fading channels with mismatched
decoding?

In Section 4, we turned to the problem of rate distortion theory with
mismatched encoding, and studied an achievable rate based on random
coding that can be viewed as a counterpart to the LM rate for channel
coding. Despite this analogy, there are several concepts and techniques
that have remained unexplored in this context despite being studied
extensively in channel coding. We summarize three notable examples
as follows.

Open Problem 3. Does there exist an equivalent “dual” expression
for the achievable mismatched distortion-rate function derived in Sec-
tion 4.3 based on constant-composition random coding? If so, can it
also be attained via a suitably-designed cost-constrained random-coding
ensemble?

Open Problem 4. For the rate-distortion problem with mismatched
encoding, what rates can be achieved for continuous sources?

Open Problem 5. For the rate-distortion problem with mismatched
encoding, what rates can be achieved via multi-user coding techniques,
and to what extent do these rates improve over the rates attained using
independent codewords?
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Regarding Open Problems 3 and 4, we note that certain dual ex-
pressions and continuous-alphabet extensions were indeed stated in
Section 4.7, but only for the case of a single (known) distortion measure
and a mismatched random coding distribution, as opposed to the setup
of Section 4.3 in which the encoder adopts a mismatched distortion
measure.

In Section 5, we introduced the mismatched multiple-access channel,
and argued that it is not only of independent interest, but provides
valuable insight and results concerning point-to-point communication.
In Section 6, we took this idea further by studying multi-user coding
techniques for point-to-point communication in more detail, with an
emphasis on superposition coding and its refined variant.

Despite having established several analogies between the achievable
rates of these sections and the LM rate, there remain several ways in
which our understanding of the former is comparatively lacking. For
instance, while Lemma 2.7 provides precise conditions under which the
LM rate equals the matched capacity, no analog has been established
for the rates of multi-user coding techniques.

Open Problem 6. Under what conditions does the achievable rate
region of Section 5.3 recover the matched capacity region? Similarly,
under what conditions do the superposition coding rates of Sections 6.3
and 6.4 attain the matched capacity?

In addition, while refined superposition coding is known to attain a
rate at least as high as standard superposition coding, and the gap can
be strict for a given input distribution, little is known regarding how
these rates compare when the input distribution is optimized.

Open Problem 7. Do there exist mismatched DMCs for which the
refined superposition coding rate exceeds that of standard superposition
coding even after the optimization of the auxiliary alphabet and the
input distribution?

In addition, there is no apparent reason to believe that the refined
superposition coding rate equals the mismatch capacity general, leading
us to ask the following.
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Open Problem 8. Do there exist multi-user random coding techniques,
or alternative coding techniques, that attain rates higher than that of
refined superposition coding?

In Section 7, we surveyed the notion of error exponents for mis-
matched memoryless channels, and saw that their study can lead to
various insights not seen in the study of achievable rates alone. In fact,
it was observed that the random-coding ensembles attaining higher
rates are often coupled with smaller exponents at low rates, raising the
following open problem.

Open Problem 9. Do there exist random coding techniques that are
suited to achieving both high rates and high error exponents?

In addition, the following basic question proposed by Csiszár and
Narayan [26] still remains open.

Open Problem 10. Is it always possible to attain exponentially decaying
error probability for all rates below the mismatch capacity?

In Section 8, we turned to upper bounds on the mismatch capacity,
i.e., converse results, for which there have been comparatively few
results compared to lower bounds. We paid particular attention to the
multi-letter achievable rate C(∞)

lm , obtained by considering the k-letter
improvement of the LM rate in the limit as k → ∞. We extensively
discussed the Csiszár–Narayan conjecture, which remains unresolved in
general, and is stated in the following.

Open Problem 11. Does the multi-letter achievable rate C(∞)
lm equal

the mismatch capacity Cm for arbitrary mismatched DMCs?

As we mentioned in Section 6.3.4, the early converse result of Bal-
akirsky [14] claiming that the tightness of the LM rate was refuted via
a numerical counter-example in [76], raising the following question.

Open Problem 12. Is there a purely analytical proof that the LM
rate with an optimized input distribution can be strictly less than the
mismatch capacity for binary-input mismatched DMCs?
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The following question asks whether the strong converse holds; this
was originally posed by Csiszár and Narayan [26], and still remains
unsolved.

Open Problem 13. Does the smallest possible (maximal or average)
error probability tend to one for all rates strictly above the mismatch
capacity? If so, does it approach one exponentially fast?

The second part of this open problem serves as a counterpart to Open
Problem 10, as it concerns rates above the mismatch capacity rather
than rates below the mismatch capacity. In fact, Open Problem 10
is also of direct interest in the development of converse results: An
affirmative answer would mean that the soft converse of Section 8.3.2
immediately implies the corresponding regular converse.

Of course, given the apparent considerable difficulty in establishing
single-letter upper bounds [9, 14, 76], the following open-ended question
remains particularly important.

Open Problem 14. What additional single-letter upper bounds on the
mismatch capacity can be established, and how do they compare with
the best known achievable rates?

In Section 9, we highlighted several additional topics that we did
not survey in detail, and many of these are still in their early stages
and warrant further study. To name just two examples, we expect
many further developments on channels and/or decoding metrics with
memory to be possible, and we believe that additional developments in
the theory of practical codes with mismatched decoding would be of
considerable interest, complementing the purely information-theoretic
results surveyed this monograph.

Finally, there remain both classical notions in information theory
(e.g., variable-length codes) and modern applications of information
theory (e.g., machine learning) for which the mismatched decoding view-
point appears to have been largely or completely unexplored, thereby
posing potentially exciting avenues for future research.



Appendix



A
Appendix

A.1 Continuity Arguments

In this appendix, we present some of the technical continuity arguments
required for the primal-domain analysis of the GMI and LM rate in
Section 2. We also briefly comment on the analogous arguments for the
multi-user random coding techniques of Sections 5 and 6.

A.1.1 Continuity of the GMI and LM Rate (Lemma 2.5)

Here we prove Lemma 2.5, which states that the GMI and LM rate
are continuous in the pair (QX ,W ) within the space of pairs satisfying
QX(x) > 0 ∩ q(x, y) = 0 =⇒ W (y|x) = 0. This assumption ensures
that the distribution PXY = QX ×W yields EP [log q(X,Y )] > −∞.

We present the proof for the LM rate (taken from [26]); similar
steps hold for the GMI. Fix a pair (QX ,W ), and let (QX,n,Wn) be
a sequence converging to (QX ,W ). To simplify the notation, we sub-
sequently represent these pairs in terms of their joint distributions,
denoted by PXY and PXY,n respectively. The corresponding LM rates
are written as Ilm(PXY ) and Ilm(PXY,n), and we let P̃ ∗XY and P̃ ∗XY,n de-
note corresponding joint distributions achieving the minimum in (2.15).
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Moreover, the constraint sets corresponding to (2.15) are written as
S ′(PXY ) and S ′(PXY,n).

We establish continuity in two steps, first showing the lower
bound lim infn→∞ Ilm(PXY,n) ≥ Ilm(PXY ) and then the upper bound
lim supn→∞ Ilm(PXY,n) ≤ Ilm(PXY ). For the lower bound, note that
since the probability simplex is compact, any infinite subsequence of
P̃ ∗XY,n must have a further subsequence converging to some P̃ ∗XY,∞.
Since PXY,n → PXY and the constraint functions defining S ′(PXY )
are continuous in PXY , the fact that P̃ ∗XY,n ∈ S ′(PXY,n) implies that
P̃ ∗XY,∞ ∈ S ′(PXY ). That is, P̃ ∗XY,∞ satisfies the constraints in the mini-
mization problem of the LM rate, and hence Ilm(PXY ) ≤ I

P̃ ∗XY,∞
(X;Y ).

Since this argument holds with P̃ ∗XY,∞ corresponding to any arbitrary
subsequence of PXY,n, it follows that

lim inf
n→∞

Ilm(PXY,n) ≥ Ilm(PXY ). (A.1)

To establish the matching upper bound, we will show that there exists
a sequence P̃XY,n ∈ S ′(PXY,n) converging to P̃ ∗XY . Once this is done,
the continuity of mutual information implies

Ilm(PXY,n) ≤ I
P̃ ∗XY,n

(X;Y )→ I
P̃ ∗XY

(X;Y ) = Ilm(PXY ), (A.2)

and taking lim supn→∞ on both sides completes the proof.
The above-mentioned sequence P̃XY,n is selected as follows for some

vanishing sequence of values εn > 0:

P̃XY,n(x, y) = PXY,n(x, y) + (1− εn)
(
P̃ ∗XY (x, y)− PXY (x, y)

)
. (A.3)

By the assumption that PXY,n converges to PXY , we have that
PXY,n(x, y) ≥ (1− εn)PXY (x, y) for sufficiently large n as long as εn is
chosen to decay to zero sufficiently slowly. Hence, the right-hand side of
(A.3) is non-negative. In addition, since PXY,n, P̃ ∗XY , and PXY all sum
to one, we can sum both sides of (A.3) to obtain

∑
x,y P̃XY,n(x, y) = 1,

meaning that P̃XY,n is a valid joint distribution.
Recall that the two desired properties of PXY,n are that

P̃XY,n(x, y) → P̃ ∗XY (x, y), and that P̃XY,n ∈ S ′(PXY,n). The for-
mer of these follows immediately by substituting the assumptions
PXY,n(x, y) → PXY (x, y) and εn → 0 into (A.3), so it only remains
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to check that P̃XY,n ∈ S ′(PXY,n), i.e., the constraints defining the LM
rate are satisfied under the input distribution and channel corresponding
to PXY,n.

To see that the marginal constraints P̃X,n ∈ PX,n and P̃Y,n ∈ PY,n
(cf., (2.15)) are satisfied, observe that if we sum both sides of (A.3)
over either x or y, the second term cancels to zero due to the fact
that P̃ ∗XY ∈ S ′(PXY ) and hence P̃ ∗X = PX and P̃ ∗Y = PY . Simi-
larly, for the metric constraint, we multiply both sides of (A.3) by
log q(x, y) and sum over x, y. The fact that P̃ ∗XY ∈ S ′(PXY ) implies
that E

P̃ ∗
[log q(X,Y )] ≥ EP [log q(X,Y )], meaning that the second term

on the right-hand side of (A.3) contributes a non-negative amount, and
we are left with E

P̃XY,n
[log q(X,Y )] ≥ EPXY,n [log q(X,Y )] as required.

A.1.2 Technical Ensemble Tightness Step (Lemma 2.14)

Here we prove the technical result stated in Lemma 2.14, in which the
minimization over joint types is upper bounded in terms of a matching
minimization over all joint distributions. To our knowledge, the proof
that we present here is the first one to hold for arbitrary mismatched
DMCs. See [58, 65] for simpler proofs under the assumption that there
exists some P̃XY ∈ P(X × Y) such that P̃X = PX , P̃Y = PY , and
E
P̃

[log q(X,Y )] > EP [log q(X,Y )], i.e., strict inequality in the metric
constraint. This is true for most mismatched DMCs, but can sometimes
fail, e.g., for the erasures-only metric introduced in Section 1.2.7.

For convenience, we write the left-hand side of (2.115) as

Ilm,n(PXY ) = min
P̃XY ∈Pn(X×Y): P̃X=PX , P̃Y =PY ,

E
P̃

[log q(X,Y )]≥EP [log q(X,Y )]

I
P̃

(X;Y ). (A.4)

We need to show that, for any joint type PXY ∈ Pn(X × Y) and
arbitrarily small δ > 0, it holds that

Ilm,n(PXY ) ≤ Ilm(PXY ) + δ, (A.5)

where

Ilm(PXY ) = min
P̃XY ∈P(X×Y): P̃X=PX , P̃Y =PY ,

E
P̃

[log q(X,Y )]≥EP [log q(X,Y )]

I
P̃

(X;Y ). (A.6)
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Fix P̃XY ∈ P(X × Y) (not necessarily a joint type) satisfying the
constraints in (A.6). Since PXY is a joint type by assumption, the
marginal constraints in (A.6) ensure that P̃X and P̃Y are types. We use
P̃XY to construct a joint type P̃XY,n as follows:

• Initialize P̃ ′Y |X,n(y|x) = 1
nPX(x)bnPX(x)P̃Y |X(y|x)c; note that

because we are rounding down, this in itself may not be a
valid conditional distribution. The constraint P̃X = PX leads to∑
x P̃X(x)P̃ ′Y |X,n(y|x) ≤ PY (y) for all y, and

∑
y P̃
′
Y |X,n(y|x) ≤ 1

for all x, but some of these inequalities might be strict.

• Since the marginals P̃X and P̃Y are types, we can think of them
in terms of length-n sequences x and y, which we seek to suitably
arrange to form a joint type P̃XY,n. The above-defined conditional
distribution P̃ ′Y |X,n specifies most of the pairs (xi, yi) (for i =
1, . . . , n) corresponding to a joint type, but we are still left with
some entries of x and some entries of y that have not yet been
assigned. Specifically, for each (x, y) pair, nPX(x)P̃ ′Y |X,n(y|x) =
bnPX(x)P̃Y |X(y|x)c pairs have been assigned to (x, y), but the
rest remain unassigned.

• We let Nx (respectively, Ny) be the number of unassigned entries
of x with value x (respectively, of y with value y), and match
these up in a way that maximizes the metric:

maximize
{Nxy}x∈X ,y∈Y

∑
x,y

Nxy log q(x, y) (A.7)

subject to
∑
x

Nxy = Ny, ∀y,∑
y

Nxy = Nx, ∀x,

Nxy ∈ Z≥0, ∀x, y,

where Nxy represents the number of additional occurrences of
the pair (x, y) formed in this matching-up step, and Z≥0 is the
set of non-negative integers. This is an integer programming (IP)
problem.
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Noting that we established that bnPX(x)P̃Y |X(y|x)c pairs are assigned
in the first step above for each (x, y), we can add these counts together
to get

∑
x,ybnPX(x)P̃Y |X(y|x)c ≥

∑
x,y

(
nPX(x)P̃Y |X(y|x) − 1

)
= n −

|X |· |Y|, so the number of unassigned pairs remaining is at most |X | · |Y|.
Thus, P̃XY,n constructed above is |X |·|Y|n -close to P̃XY in terms of the
`1-norm (i.e., sum of absolute differences), and hence

I
P̃XY,n

(X;Y ) ≤ I
P̃XY

(X;Y ) + δ (A.8)

for any δ > 0 and sufficiently large n by the continuity of mutual
information. Since the above findings hold for an arbitrary choice of
P̃XY satisfying the constraints in (A.6), establishing (A.5) now only
requires showing that our constructed P̃XY,n is feasible in (A.4). The
marginal constraints are already satisfied by construction, so it only
remains to check the inequality constraint containing the decoding
metric.

If we relax the integer constraint Nxy ∈ Z+ to Nxy ∈ R+
(i.e., the non-negative reals) in (A.7), we get a linear program (LP).
With this modification, the assignments Nxy = nPX(x)P̃Y |X(y|x) −
bnPX(x)P̃Y |X(y|x)c corresponding to the joint distribution P̃XY become
feasible, since we trivially have bnPX(x)P̃Y |X(y|x)c+Nxy = P̃XY (x, y),
and the assumptions P̃X = PX and P̃Y = PY coincide with the required
constraints

∑
yNxy = Nx and

∑
xNxy = Ny.

Since P̃XY satisfies the metric constraint in (A.6) by assumption,
the joint distribution corresponding to the maximizer of the LP must
do so as well. As a result, the same will follow for P̃XY,n if we can show
that the LP and the IP have the same solution. This turns out to be
a special case of the following technical yet standard result from the
theory of discrete optimization.

Lemma A.1 (Linear Programming and Totally Unimodular Matrices). [67,
Sec. III.1] Consider a linear program (LP) of the form

maximizez cTz subject to Az = b, z � 0 (A.9)
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for some matrix A and vectors (b, c), where � denotes element-wise
inequality. We have the following:

1. If the matrix A is totally unimodular (i.e., any square sub-matrix
has determinant 1, −1, or 0), and the vector b is integer-valued,
then any maximizer z∗ in (A.9) must be integer valued.

2. A sufficient condition for A to be totally unimodular is
the following: The rows of A index the nodes of an
undirected bipartite graph, the columns of A index the
corresponding edges, and the (i, j)-th entry of A equals
1{node i is one of the two nodes in edge j}.

We now argue that the LP version of (A.7) (i.e., with R+ in place
of Z+) satisfies the conditions of Lemma A.1. We first assume that
q(x, y) > 0 for all (x, y), and then turn to the general case. When
q(x, y) > 0 for all (x, y), the constraint matrix corresponds to the
complete bipartite graph with left-nodes X and right-nodes Y. For
instance, in the case |X | = |Y| = 3, we have

A =



1 1 1 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 1 1 1
1 0 0 1 0 0 1 0 0
0 1 0 0 1 0 0 1 0
0 0 1 0 0 1 0 0 1


, (A.10)

where the rows correspond to the 3 elements of X and then the 3
elements of Y , and the columns correspond to the 9 pairs (x, y). We also
see that (A.7) corresponds to an integer vector b in (A.7), containing
the values Nx and Ny.

When there exist (x, y) pairs such that q(x, y) = 0 (and hence
log q(x, y) = −∞), more care is needed in equating the relaxed variant of
(A.7) with (A.9). In particular, any positive value of Nxy corresponding
to q(x, y) = 0 gives an objective value of −∞, which cannot be optimal.
Thus, we reformulate (A.7) as optimizing only over {Nxy: q(x, y) > 0},
and always setting Nxy = 0 when q(x, y) = 0. In this case, the only
difference in the above analysis is that the complete bipartite graph
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construction exemplified in (A.10) is replaced by an incomplete bipartite
graph construction; the edges (x, y) corresponding to q(x, y) = 0 are
removed.

Hence, Lemma A.1 implies that the IP (A.7) and its LP relaxation
have the same solution, implying that P̃XY,n is feasible in (A.4), and
therefore that (A.8) yields the desired claim (A.5).

A.1.3 Analog of Lemma 2.14 for the GMI

Recall that PXY is assumed to be a joint type. When proving ensemble
tightness for the GMI, the analog of (2.115) in Lemma 2.14 is given by

min
P̃XY ∈Pn(X×Y): P̃Y =PY ,

E
P̃

[log q(X,Y )]≥EP [log q(X,Y )]

D(P̃XY ‖QX × PY )

≤ min
P̃XY ∈P(X×Y): P̃Y =PY ,

E
P̃

[log q(X,Y )]≥EP [log q(X,Y )]

D(P̃XY ‖QX × PY ) + δ. (A.11)

Compared to the above analysis, this is relatively simple to prove. First
note that since P̃Y = PY is fixed on both sides, we can rewrite both
sides in terms of P̃X|Y , with the left-hand side constrained to choices
such that PY × P̃X|Y is a joint type.

Given any P̃X|Y feasible on the right-hand side of (A.11), we con-
struct a feasible P̃ (n)

X|Y on the left-hand side, by performing rounding to
ensure that each value nPY (y)P̃X|Y (x, y) is integer-valued. More specifi-
cally, for each y ∈ Y , we sort the values {q(x, y)}x∈X in increasing order,
and round the values P̃X|Y (x|y) up for the x values with the highest
metric, while rounding down for the x values with the lowest metric.
This requires choosing the appropriate number of values (between 0
and |X |) to round up vs. down to ensure that the probabilities sum
to one. A feasible approach is to work iteratively, rounding another
value up (respectively, down) whenever the current sum of rounded and
non-rounded values is less than or equal to one (respectively, greater
than one).

By doing so, we are guaranteed that P̃ (n)
X|Y yields a higher decoding

metric than P̃X|Y , and hence the metric constraint remains satisfied.
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Moreover, the entries of PY × P̃X|Y are arbitrarily close to PY × P̃ (n)
X|Y

for large n, and hence, the change in the objective function is upper
bounded by an arbitrarily small constant δ > 0.

A.1.4 Extensions to Multi-User Coding Techniques

For the most part, the preceding analysis readily extends to the achiev-
able rates obtained via multi-user coding techniques (cf., Sections 5
and 6). However, the analysis of Section A.1.2 requires some non-trivial
changes, which we outline here. We focus on the MAC considered in
Section 5, since once this is understood, the ensembles of Section 6 can
be handled similarly.

Let g(P̃X1X2Y ) denote the left-hand side of (5.51), where S ′12,n is
defined in (5.23). For the sake of the analysis, we only require the fact
that g(·) is a continuous function. We wish to show that

min
P̃X1X2Y ∈Pn(X1×X2×Y):
P̃X1=PX1 ,P̃X2=PX2 ,P̃Y =PY

E
P̃

[log q(X1,X2,Y )]≥EP [log q(X1,X2,Y )]

g(P̃X1X2Y )

≤ min
P̃X1X2Y ∈P(X1×X2×Y):

P̃X1=PX1 ,P̃X2=PX2 ,P̃Y =PY
E
P̃

[log q(X1,X2,Y )]≥EP [log q(X1,X2,Y )]

g(P̃X1X2Y ) + δ (A.12)

for arbitrarily small δ > 0 and sufficiently large n; observe that the
only difference in the two minimizations is the presence of P vs. Pn. To
prove (A.12), we apply the arguments of Section A.1.2 in two steps:

1. Write the minimization on the left-hand side of (A.12) as
min

P̃X1X2Y ∈Pn
= min

P̃X1X2∈Pn
min

P̃Y |X1X2∈Pn
, where the decod-

ing metric constraint appears in the second minimization. By the
analysis of Section A.1.2, the resulting minimum value is within
δ
2 of the corresponding minimization over all conditional distribu-
tions (not necessarily yielding a joint type) for sufficiently large
n, where δ > 0 is arbitrarily small.

2. Swap the order of the two minimizations from the first step,
so that we have min

P̃Y |X1X2∈P
min

P̃X1X2∈Pn
, and now it is the
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minimization over P̃X1X2 that contains the decoding metric con-
straint. Again applying the analysis of Section A.1.2, the minimum
value is within δ

2 of the corresponding minimization over all joint
distributions for sufficiently large n.

A.2 Other Omitted Proofs

A.2.1 Condition for Zero Mismatch Capacity (Second Part of
Lemma 2.6)

The following proof is taken from [26]. For convenience, the condition
(8.5) for the positivity of the GMI and LM rate is repeated here:

EQX×W [log q(X,Y )] > EQX×PY [log q(X,Y )]. (A.13)

In particular, we will use the fact (from the first part of the lemma)
that Clm > 0 (and Cgmi > 0) if and only if (A.13) holds for some input
distribution QX , with PY being the resulting output distribution.

We first note that Cm is clearly positive whenever the GMI and/or
LM rate are positive. Hence, with the first part of the lemma already
established, we only need to show that Cm = 0 whenever (A.13) fails for
all QX . We prove the contrapositive statement: If Cm > 0, then (A.13)
holds for some QX .

In fact, we will show a stronger statement, namely, that (A.13) holds
for some QX whenever the error probability can be made arbitrarily
small for a codebook with just two codewords, say x and x. We write

pe(x) = P
[ n∑
i=1

log q(xi, Yi) ≥
n∑
i=1

log q(xi, Yi)
]

(A.14)

with Yi ∼W ( ·|xi), and similarly for pe(x). By the assumption that the
error probability can be made arbitrarily small, we have for any ε > 0
and sufficiently large n that

pe(x) ≤ ε, and pe(x) ≤ ε, (A.15)

since otherwise, the average error probability would be at least ε
2 .

To simplify (A.15), we use the following technical result [26,
Lemma 3]: Given a finite set Z ⊆ R, for sufficiently small ε > 0,
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it holds for any n and any independent random variables {Zi}ni=1 only
taking values on Z that

P
[ n∑
i=1

Zi ≥ 0
]
≤ ε =⇒ E

[ n∑
i=1

Zi

]
< 0. (A.16)

We can assume that q(xi, Yi) > 0 with probability one in (A.14), since
otherwise we would have pe(x) ≥ W (y|x) > 0 for the corresponding
(x, y) pair that gives q(x, y) = 0, contradicting the assumption of
arbitrarily small error probability. If it is also the case that q(xi, Yi) > 0
with probability one in (A.14), then we deduce from (A.16) (with
Zi = log q(xi, Yi)− log q(xi, Yi)) that

E
[ n∑
i=1

log q(xi, Yi)−
n∑
i=1

log q(xi, Yi)
]
< 0, (A.17)

where Yi ∼ W ( ·|xi). Moreover, if the preceding assumption on
q(xi, Yi) > 0 fails, then (A.17) holds trivially, since log q(x, y) = −∞
whenever q(x, y) = 0. By an analogous argument with the roles of x

and x reversed, we have

E
[ n∑
i=1

log q(xi, Y i)−
n∑
i=1

log q(xi, Y i)
]
< 0, (A.18)

where Y i ∼W ( ·|xi). Adding (A.17)–(A.18) together, we conclude that
the sum of the quantities

E
[
log q(xi, Yi) + log q(xi, Y i)− log q(xi, Yi)− log q(xi, Y i)

]
(A.19)

over i = 1, . . . , n must be negative, and hence one of the individual
terms (i.e., (A.19) for a given choice of i) must also be negative. That
is, there exists a pair (x, x) such that

E
[
log q(x, Y ) + log q(x, Y )

]
> E

[
log q(x, Y ) + log q(x, Y )

]
(A.20)

with Y ∼W ( ·|x) and Y ∼W ( ·|x). We claim that this condition implies
that (A.13) holds with QX(x) = 1

2 for x ∈ {x, x}, and QX(x) = 0
elsewhere. To see this, observe that EQX×W [log q(X,Y )] equals 1

2 times
the left-hand side of (A.20), whereas EQX×PY [log q(X,Y )] equals 1

4
times the sum of both sides of (A.20).
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A.2.2 Equivalence of the GMI and LM Rate Under Output-
Symmetry and Equiprobable Inputs (Lemma 2.4)

Recall that we are considering (W, q) exhibiting matching output sym-
metry according to Definition 2.3, along with the equiprobable input
distribution QX(x) = 1

|X | . Since the channel is output-symmetric, the
resulting output probability PY (y) is the same for all y in a given subset
Yj from Definition 2.3 (but may vary with j).

In order to show that Igmi(QX) = Ilm(QX), we will show that the
objective function in (2.16) is maximized by a(x) = 0 for any value of
s ≥ 0. The optimality of a(x) = 0 also implies the optimality of any
a(x) equaling a constant value not depending on x, but the value of
zero is the most convenient to work with.

First note that by expanding the logarithm in (2.16), substituting the
equiprobable input distribution, and omitting the term E[log q(X,Y )s]
not depending on a(·), we are left with

f(s, a) ,
1
|X |

∑
x

a(x)−
∑
y

PY (y) log
( 1
|X |

∑
x

q(x, y)sea(x)
)
. (A.21)

The partial derivative with respect to a(x) is given by
∂f

∂a(x) = 1
|X |
−
∑
y

PY (y) q(x, y)sea(x)∑
x q(x, y)sea(x) . (A.22)

We will show that the choice a(x) = 0 for all x makes all of these partial
derivatives equal to zero. This will establish the optimality of a(x) = 0,
since the objective function is concave in a(·) for fixed s, and thus any
stationary point must be a global maximum. It is clear from (2.10) and
(2.16) that if a(x) = 0 is optimal, then the GMI and LM rate are equal.

Defining ηs(y) ,
∑
x q(x, y)s, we can write (A.22) as

∂f

∂a(x)

∣∣∣∣
a(·)=0

= 1
|X |
−
∑
y

PY (y)
ηs(y) q(x, y)s. (A.23)

It will be useful to establish that the second term in (A.23) sums to
one when summed over x ∈ X :∑

x

∑
y

PY (y)
ηs(y) q(x, y)s =

∑
y

PY (y)
ηs(y)

∑
x

q(x, y)s =
∑
y

PY (y)
ηs(y) ηs(y) = 1,

(A.24)
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since
∑
y PY (y) = 1.

Since W and q are output-symmetric with the same partitions in
Definition 2.3, both PY (y) and ηs(y) depend on y only through the
subset Yj it lies in. Hence, we can also rewrite (A.23) as

∂f

∂a(x)

∣∣∣∣
a(·)=0

= 1
|X |
−

k∑
j=1

PY (yj)
ηs(yj)

∑
y∈Yj

q(x, y)s, (A.25)

where yj is an arbitrary element of Yj . Again exploiting the symmetry
structure of q, we see that the second term in (A.25) is the same for
all x; in particular, recall that the |X | × |Yj | sub-matrix corresponding
to Yj contains rows that are permutations of each other. By (A.24), we
know that the sum of the second term in (A.23) over all x ∈ X equals
one. Combining these two findings, we conclude that each term is equal
to 1
|X | , and we attain ∂f

∂a(x)
∣∣
a(·)=0 = 0, as desired. As mentioned above,

this establishes that Igmi(QX) = Ilm(QX).

A.2.3 Non-Concavity of the GMI (Lemma 2.12)

Recall the multi-letter extension C(k)
gmi of the GMI introduced in Sec-

tion 2.7. It was shown in [21] that, in the special case of the zero-
undetected error capacity (cf., Section 1.2.7), C(k)

gmi approaches the
mismatch capacity Cm in the limit as k →∞. Here we argue that this
result implies that Igmi(QX) is, in general, non-concave in QX . To our
knowledge, this argument has not appeared in the existing literature.

For concreteness, let (W, q) be the mismatched DMC of Section 2.4.3,
in which X = Y = {0, 1, 2}, and the channel and decoding metric are
given by

W =

0.75 0.25 0
0 0.75 0.25

0.25 0 0.75

 , q =

1 1 0
0 1 1
1 0 1

 , (A.26)

where x indexes the rows and y indexes the columns. Observe that the
channel and metric are strongly symmetric in the sense of exhibiting the
output-symmetry condition of Definition 2.3 with just a single partition.
We also know from Section 2.4.3 that the GMI with QX =

(1
3 ,

1
3 ,

1
3
)
is

strictly smaller than Cm.
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Fix k sufficiently large and QXk such that Igmi(QXk) ≥ Cm − δ for
some small δ > 0; this is possible due to the fact that C(k)

gmi → Cm
as k → ∞. Writing QXk = QX1,...,Xk explicitly, we claim that the
symmetry of (W, q) implies that

Igmi(QX1,...,Xk) = Igmi(Qπ1(X1),...,πk(Xk)), (A.27)

where Qπ1(X1),...,πk(Xk) is the joint distribution obtained by applying a
cyclic shift (not an arbitrary permutation) πj to each ternary variable
Xj . For instance, if we set k = 1 and consider the input distribution
QX = (0.2, 0.3, 0.5), then the GMI is unchanged when we switch to
QX = (0.5, 0.2, 0.3) or QX = (0.3, 0.5, 0.2). This can be seen via the
dual expression (2.10) and the fact that applying the same cyclic shift
to X and Y in (A.26) leaves each matrix unchanged.

Now, letting Πk denote the set of all possible cyclic shifts (π1, . . . , πk),
of which there are 3k combinations, we have

1
3k

∑
(π1,...,πk)∈Πk

Qπ1(X1),...,πk(Xk) = QU
Xk , (A.28)

where QU
Xk is the uniform distribution over all 3k possible Xk sequences.

This is because for any given length-k input sequence (e.g., (0, . . . , 0)),
when we sum Qπ1(X1),...,πk(Xk)(0, . . . , 0) over all π1, . . . , πk, each value
of QX1...Xk(x1, . . . , xk) is included exactly once, so the total sum is one.

If the GMI were concave, then we could use (A.28) and Jensen’s
inequality to deduce that the input distribution QU

Xk also attains a rate
of Cm − δ. However, this is impossible, because i.i.d. random coding
over the product channel with input distribution QU

Xk is exactly the
same as i.i.d. random coding over the original channel (W, q) with
QX =

(1
3 ,

1
3 ,

1
3
)
. We know from Section 2.4.3 that Igmi(QX) is strictly

smaller than the LM rate in this case, and we know from Lemma 2.9 that
the GMI is tight with respect to the ensemble average for i.i.d. random
coding. Hence, attaining a rate of Cm − δ via the multi-letter GMI with
distribution QU

Xk (for arbitrarily small δ) is not possible, meaning that
the GMI cannot be concave in general.
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