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We study a variation of Bayesian M-ary hypothesis testing in which the test outputs a list of L candidates
out of the M possible upon processing the observation. We study the minimum error probability of list
hypothesis testing, where an error is defined as the event where the true hypothesis is not in the list output
by the test. We derive two exact expressions of the minimum probability or error. The first is expressed
as the error probability of a certain non-Bayesian binary hypothesis test and is reminiscent of the meta-
converse bound by Polyanskiy, Poor and Verdú (2010). The second, is expressed as the tail probability
of the likelihood ratio between the two distributions involved in the aforementioned non-Bayesian binary
hypothesis test. Hypothesis testing, error probability, information theory.
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1. Introduction

Statistical hypothesis testing is the problem of deciding on one of M possible statistical hypotheses
after processing some observation data modeled by a random variable. Hypothesis testing is one of
the main problems in statistics and inference and finds applications in areas such as social, biological,
medical, computer sciences, signal processing and information theory. Depending on the subject area
and underlying assumptions, it can be referred to as model selection, classification, discrimination or
detection. Hypothesis testing problems are typically classified as binary or non-binary, depending on
the number of hypotheses, and Bayesian or non-Bayesian, depending on whether or not priors on the
hypotheses are known.

The minimum average probability of error of Bayesian binary hypothesis testing is attained by the
likelihood ratio test. Similarly, the minimum average error probability of Bayesian M-ary hypothesis
testing is attained by the maximum a posteriori (MAP) test [8]. For non-Bayesian binary hypothesis
testing, Neyman and Pearson formulated the optimal tradeoff between the pairwise error probabilities
and showed that the likelihood ratio test attains the optimum tradeoff [9].

We study a variation of Bayesian M-ary hypothesis testing, where the test outputs a list with L
candidate hypotheses. This setting has its roots in list decoding of error-correcting codes for reliable
communication [3]. The decoding process of an error-correcting code with M codewords can be
naturally cast as an M-ary hypothesis testing problem. Indeed, the intimate connections between
information theory and hypothesis testing have been noted over the years. Specifically, hypothesis
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testing arguments have been key in the derivation of lower bounds to the error probability [2, 5, 10, 14],
including bounds that connect the error probability with information measures [4, 7, 11, 12, 15], possibly
with a list-decoding option [1, 5, 11, 12]. For general hypothesis testing problems, list hypothesis testing
can be helpful when the number of hypotheses is very large and, for complexity reasons, one might wish
to implement staggered or iterative testing. At each stage, a bank of tests of smaller dimension is run,
but a candidate list is output instead of a single candidate, in order to facilitate information exchange at
the next stage or iteration. List hypothesis testing is also implicitly employed in approximate recovery
problems related to statistical estimation where a reduction to multiple hypothesis testing is performed
(see e.g. [13, Sec. 16.2.2.]). In communications, list detection is employed in large linear multiple-input
multiple-output systems iteratively exchanging information with iterative decoders of error correcting
codes (see e.g. [16]).

From a theoretical perspective, it is important to understand what is the minimum error probability
in order to establish a performance benchmark for practical tests. In this paper, we study the minimum
probability of error of list hypothesis testing. We provide two new families of bounds to the minimum
probability of error. The first one, bounds the minimum probability of error by that of a suitably
optimized non-Bayesian hypothesis test and is reminiscent of the meta-converse bound in [10]. Instead,
the second family bounds the minimum probability of error by the tail probability of the likelihood
ratio, termed the information spectrum in the information theory literature [6]. When these bounds are
optimized over an auxiliary output distribution, inspired by the work in [17], we show that the bounds
are actually tight and provide two different expressions of the minimum probability of error. We show
that the solution of the optimization of the second bound is unique and provide an expression for the
optimal auxiliary distribution. In turn, the identities not only help in better understanding the minimum
probability of error, but also help assessing the tightness of the bounds.

This paper is structured as follows. Section 2 introduces the relevant notation for binary hypothesis
testing. Section 3 describes the list hypothesis testing problem and derives the minimum probability of
error. Section 4 proves the first identity for the minimum probability of error and connects it with non-
Bayesian binary hypothesis testing. Section 5 proves the second identity for the minimum probability
of error and connects it to the information spectrum. In proving this result, it is shown that the optimal
auxiliary distribution is unique. Proofs of auxiliary results can be found the Appendix.

2. Binary hypothesis testing

Let Y be a random variable taking values on set Y. We consider two hypotheses H, 0 and 1, which
correspond to Y being distributed according to two distributions, P or Q, respectively. A binary
hypothesis test is a probabilistic mapping Y → {0, 1} that upon observing a certain y ∈ Y, decides
which of the hypothesis represents the observation. We let Ĥ be the random variable associated with the
output of test and T , the test mapping, the random variable associated with the conditional distribution
PĤ|Y .

The performance of binary hypothesis testing is characterized by the type-0 and type-1 error
probabilities, respectively defined as follows,

ε0(T , P) =
∑

y

P(y)T(1|y) (2.1)

ε1(T , Q) =
∑

y

Q(y)T(0|y). (2.2)
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MINIMUM PROBABILITY OF ERROR OF LIST HYPOTHESIS TESTING 3

In the Bayesian setting, given a prior probability PH(0), PH(1), the smallest average probability of
error is given by

ε̄ = min
T

{
PH(0) · ε0(T , P) + PH(1) · ε1(T , P)

}
(2.3)

and the corresponding optimal T is known to be the likelihood ratio test [8]; the likelihood ratio P(y)
Q(y) is

checked against the ratio of the priors.
In the non-Bayesian setting, no knowledge about the prior probabilities PH(hi), i = 0, 1 is assumed.

The trade-off between the error probabilities ε0(T , P) and ε1(T , Q) is characterized by the function
αβ(P, Q) defined as follows:

αβ(P, Q) = min
T:ε1(T ,Q)≤β

ε0(T , P). (2.4)

Similarly, one can define the alternative tradeoff βα(P, Q) as

βα(P, Q) = min
T:ε0(T ,P)≤α

ε1(T , Q). (2.5)

It is well known that a minimizing test for (2.4) is the likelihood-ratio threshold test [9]. It is known
that every optimal test is a threshold test where the likelihood ratio between the two distributions is
compared with a threshold λNP ∈ R such that optimal test can be expressed by the following equation:

TNP(1|y) =

⎧⎪⎪⎨
⎪⎪⎩

1 P(y)
Q(y) > λNP

0 P(y)
Q(y) < λNP

δy
P(y)
Q(y) = λNP

, (2.6)

where in order to solve (2.4), δy and λNP are chosen such that ε1(T , Q) = β. The minimizing test is not
unique in general since all values of δy and λNP with the property ε1(T , Q) = β yield an optimal test.

3. List hypothesis testing

Consider now a Bayesian M-ary hypothesis testing problem, with two random variables X, Y jointly
distributed according to PXY , such that X, Y take values on X, Y, respectively with |X| = M. The
observation alphabet Y is a general alphabet that encompasses the Cartesian product of n-observations
and many other standard settings. Upon observing y ∈ Y we wish to decide what X was. Standard
M-ary hypothesis tests output a single candidate hypothesis X̂ ∈ {1, . . . , M}. Instead, we consider list
hypothesis testing. A list hypothesis test with list size L is a possibly random mapping PX̂|Y , where

X̂ = (X̂1, . . . , X̂L) ∈ X L denotes the random vector containing a list of candidates {X̂1, . . . , X̂L}. For
simplicity of the presentation, we assume that all candidates in the list are distinct; this does not have
an effect on the structure of the test that minimizes the probability of error. We define the set of distinct
unordered sequences of length L over alphabet X by SL(X). We say that the true hypothesis has been
successfully estimated if the true X is one of the entries of the list vector X̂ = (X̂1, . . . , X̂L), i.e., if
X ∈ {X̂1, . . . , X̂L}. The problem is of interest when L � M.
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4 E. ASADI KANGARSHAHI AND A. GUILLÉN I FÀBREGAS

Since the joint distribution PXY defines a prior distribution PX over the alternatives, the problem is
naturally cast within the Bayesian framework. The average probability of error of a given list hypothesis
test PX̂|Y , defined as ε̄(PX̂|Y), is written as

ε̄(PX̂|Y)
�=P

[
X /∈ {X̂1, . . . , X̂L}] (3.1)

= P
[{X̂1 �= X} ∩ · · · ∩ {X̂L �= X}] (3.2)

= 1 − P
[{X̂1 = X} ∪ · · · ∪ {X̂L = X}] (3.3)

= 1 − E
[
1
{{X̂1 = X} ∪ · · · ∪ {X̂L = X}}] (3.4)

= 1 −
∑

x∈X,y∈Y
(x̂1,...,x̂L)∈SL(X)

PXY(x, y)PX̂|Y(x̂1, . . . , x̂L|y)1{{x̂1 = x} ∪ · · · ∪ {x̂L = x}} (3.5)

= 1 −
∑
y∈Y

(x̂1,...,x̂L)∈SL(X)

PX̂|Y(x̂1, . . . , x̂L|y)P[
X ∈ {x̂1, . . . , x̂L}, Y = y

]
, (3.6)

where the probabilities and expectation in (3.1)–(3.4) are computed with respect to the joint distribution
between the true hypothesis X, the observation Y and the list X̂, and where

P
[
X ∈ {x̂1, . . . , x̂L}, Y = y

] =
∑
x∈X

PXY(x, y)1
{{x̂1 = x} ∪ · · · ∪ {x̂L = x}} (3.7)

= PXY(x̂1, y) + · · · + PXY(x̂L, y). (3.8)

Equation (3.8) holds since all elements on the list are assumed to be distinct, and thus, the events
{X̂� = X} for � = 1, . . . , L, are disjoint.

Further define

PXY(x1, . . . , xL, y)
�= 1(M−1

L−1

)(
PXY(x1, y) + · · · + PXY(xL, y)

)
, (3.9)

where
(a

b

) = a!
b!(a−b)! . Observe that (3.9) is, by assumption, defined only for distinct x1, . . . , xL ∈ X. In

order to show that the above definition induces a probability distribution on X L × Y, we write

∑
(x1,...,xL)∈SL(X),y

PXY(x1, . . . , xL, y) =
∑

(x1,...,xL)∈SL(X),y

1(M−1
L−1

)(
PXY(x1, y) + · · · + PXY(xL, y)

)
(3.10)

= 1(M−1
L−1

) ∑
x,y

(
M − 1

L − 1

)
PXY(x, y) (3.11)

= 1, (3.12)
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MINIMUM PROBABILITY OF ERROR OF LIST HYPOTHESIS TESTING 5

where (3.10) follows from the definition of PXY(x1, . . . , xL, y) in (3.9), (3.11) follows from the fact that
for any given x ∈ X in the sum (3.11), there are

(M−1
L−1

)
possible list configurations.

We now turn to the minimum probability of error over all tests, defined as

ε̄ = min
PX̂|Y

ε̄(PX̂|Y). (3.13)

The following result finds a test that achieves the minimal probability of error.

Lemma 3.1. An optimal test achieving the minimal probability of error ε̄ chooses distinct (x̂1, . . . , x̂L) ∈
X L such that PXY(x̂1, . . . , x̂L, y) is maximized, yielding

ε̄ = 1 −
(

M − 1

L − 1

) ∑
y∈Y

max
(x̂1,...,x̂L)∈SL(X)

PXY(x̂1, . . . , x̂L, y). (3.14)

Proof. Any test that maximizes PXY(x̂1, . . . , x̂L, y) will maximize the probability of success and thus
minimize the probability of error. Thus, we set

PX̂|Y(x̂1, . . . , x̂L|y) =
{

1
|T(y)| (x̂1, . . . , x̂L) ∈ T(y)

0 otherwise
(3.15)

where

T (y) =
{
(x1, . . . , xL) ∈ SL(X ) PXY(x1, . . . , xL, y) = max

(x̂1,...,x̂L)∈SL(X)

PXY(x̂1, . . . , x̂L, y)
}

(3.16)

is the set of list vectors that maximize PXY ; there might be more than one maximizing list in which case
the specific maximizer does not change the probability of error. With this particular choice, we obtain

ε̄(PX̂|Y) = 1 −
∑
y∈Y

(x̂1,...,x̂L)∈SL(X)

PX̂|Y(x̂1, . . . , x̂L|y)(PXY(x̂1, y) + · · · + PXY(x̂L, y)
)

(3.17)

= 1 −
∑
y∈Y

∑
x̂1,...,x̂L∈T(y)

1

|T(y)| max
(x̂1,...,x̂L)∈SL(X)

(
PXY(x̂1, y) + · · · + PXY(x̂L, y)

)
(3.18)

= 1 −
∑
y∈Y

max
(x̂1,...,x̂L)∈SL(X)

(
PXY(x̂1, y) + · · · + PXY(x̂L, y)

) ∑
(x̂1,...,x̂L)∈T(y)

1

|T(y)| (3.19)

= 1 −
∑
y∈Y

max
(x̂1,...,x̂L)∈SL(X)

(
PXY(x̂1, y) + · · · + PXY(x̂L, y)

)
, (3.20)

where (3.17) is the same as (3.6) using (3.8), (3.18) follows from the definition of the test (3.15).
The final result is obtained from definition (3.9). Finally, observe that in order for the optimal test to
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6 E. ASADI KANGARSHAHI AND A. GUILLÉN I FÀBREGAS

maximize P
[
X ∈ {x̂1, . . . , x̂L}, Y = y

]
it is needed that x̂� for � = 1, . . . , L are distinct, since otherwise

there would be fewer than L summands in (3.8). �

4. Metaconverse

In [10] Polyanskiy, Poor and Verdú introduced a lower bound to the minimum probability of error of
conventional M-ary hypothesis testing. The bound, termed metaconverse bound, is expressed as the error
probability of a non-Bayesian binary hypothesis test as

ε̄ ≥ α 1
M

(PXY , QX × QY), (4.1)

where QX(x) = 1
M for every x ∈ X and QY is an arbitrary auxiliary output distribution. It was shown

in [17] that optimizing over QY results in the bound being tight thus providing the exact minimum
probability of error. In this section, we show a similar family of bounds for list hypothesis testing and
provide an identity that connects the minimum error probability of M-ary list hypothesis testing and
the error probability of a non-Bayesian binary hypothesis test by means of an optimization over the
auxiliary distribution.

First, define an auxiliary probability distribution over the list vector

QX(x1, . . . , xL)
�=

{ 1
(M

L)
for distinct x1, . . . , xL ∈ X

0 otherwise
(4.2)

where X is a random vector defined on X L.
The following theorem states the main result of this paper for list hypothesis testing.

Theorem 4.1. The minimum probability of error ε̄ of Bayesian M-ary list hypothesis testing with list
size L can be bounded as

1(M−1
L−1

) (1 − ε̄) ≤ 1 − α 1

(M
L )

(PXY , QX × QY), (4.3)

where PXY and QX are defined in (3.9) and (4.2), respectively, and QY is an arbitrary distribution over
the observation alphabet Y. In addition,

1(M−1
L−1

) (1 − ε̄) = 1 − max
QY

α 1

(M
L )

(PXY , QX × QY), (4.4)

where the following distribution is a maximizer for expression (4.4)

Q∗
Y(y) � 1

μ
max

(x1,...,xL)∈SL(X)

PXY(x1, . . . , xL, y) (4.5)
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MINIMUM PROBABILITY OF ERROR OF LIST HYPOTHESIS TESTING 7

with

μ =
∑
y′∈Y

max
(x1,...,xL)∈SL(X)

PXY(x1, . . . , xL, y′) (4.6)

being a normalization constant.

Proof. Since PX̂|Y is a probabilistic function for estimating X with a list X̂ ∈ X L, we have for all
y ∈ Y

∑
(x̂1,...,x̂L)∈SL(X)

PX̂|Y(x̂1, . . . , x̂L|y) = 1. (4.7)

We proceed by defining a binary hypothesis test T between two distributions on X L × Y such that

hypothesis 0 : (XY) ∼ PXY (4.8)

hypothesis 1 : (XY) ∼ QX × QY . (4.9)

The binary test T is chooses hypothesis 0 as

T(0|x1, . . . , xL, y) = PX̂|Y(x1, . . . , xL|y) (4.10)

and chooses hypothesis 1 in all other cases. Thus, the error probabilities are given by

ε0(T , P) = 1 − P
[
Ĥ = 0|H = 0

]
(4.11)

= 1 −
∑

(x1,...,xL)∈SL(X),y∈Y
PXY(x1, . . . , xL, y)T(0|x1, . . . , xL, y) (4.12)

= 1 −
∑

(x1,...,xL)∈SL(X),y∈Y
PXY(x1, . . . , xL, y)PX̂|Y(x1, . . . , xL|y) (4.13)

= 1 − 1(M−1
L−1

) (1 − ε̄), (4.14)

where (4.14) uses (3.6) and definition (3.9). As for the other error probability, we have that

ε1(T , Q) = Q
[
Ĥ = 0|H = 1

]
(4.15)

=
∑

(x1,...,xL)∈SL(X),y∈Y
QX(x1, . . . , xL)QY(y)T(0|x1, . . . , xL, y) (4.16)
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=
∑

(x1,...,xL)∈SL(X),y∈Y
QX(x1, . . . , xL)QY(y)PX̂|Y(x1, . . . , xL|y) (4.17)

=
∑

(x1,...,xL)∈SL(X),y∈Y

1(M
L

)QY(y)PX̂|Y(x1, . . . , xL|y) (4.18)

=
∑
y∈Y

1(M
L

)QY(y)
∑

(x1,...,xL)∈SL(X)

PX̂|Y(x1, . . . , xL|y) (4.19)

=
∑
y∈Y

1(M
L

)QY(y) (4.20)

= 1(M
L

) , (4.21)

where (4.13) and (4.17) follow from the definition of the binary test T(0|x1, . . . , xL, y) and (4.18) from
the definition of QX in (4.2).

Therefore, from the conditions above we can see that for any distribution QY we have

1(M−1
L−1

) (1 − ε̄) ≤ 1 − α 1

(M
L )

(PXY , QX × QY), (4.22)

since the error probability ε0(T , P) of the above binary test cannot be lower than the Neyman–Pearson
optimal tradeoff (2.4). This proves (4.3). In addition, since QY is arbitrary, this also holds for the
maximizing distribution,

1(M−1
L−1

) (1 − ε̄) ≤ 1 − max
QY

α 1

(M
L )

(PXY , QX × QY). (4.23)

In order to prove the tightness of the bound, we now need to show that

1(M−1
L−1

) (1 − ε̄) ≥ 1 − max
QY

α 1

(M
L )

(PXY , QX × QY). (4.24)

In order to show (4.24) we set QY = Q∗
Y defined in (4.5) and rewrite the αβ function as (see e.g. [18,

Ch. 11])

α 1

(M
L )

(PXY , QX × Q∗
Y) = sup

λ≥0

{
P

[
PXY(X, Y)

QX(X) × Q∗
Y(Y)

≤ λ

]
+ λQ

[
PXY(X, Y)

QX(X) × Q∗
Y(Y)

> λ

]
− 1(M

L

)λ

}
,

(4.25)
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MINIMUM PROBABILITY OF ERROR OF LIST HYPOTHESIS TESTING 9

where the first probability is computed with respect to PXY and the second one is computed with respect
to QX × QY . If we set

λ̂ =
(

M

L

) ∑
y∈Y

max
(x1,...,xL)∈SL(S )

PXY(x1, . . . , xL, y) (4.26)

we find that

P

[
PXY(X, Y)

QX(X) × Q∗
Y(Y)

≤ λ̂

]
+ λ̂Q

[
PXY(X, Y)

QX(X) × Q∗
Y(Y)

> λ̂

]
− 1(M

L

) λ̂ = 1 − 1(M
L

) λ̂ (4.27)

where (4.27) follows since

QX(X)Q∗
Y(Y)λ̂ (4.28)

= 1(M
L

) max(x1,...,xL)∈SL(X) PXY(x1, . . . , xL, Y)∑
y∈Y max(x1,...,xL)∈SL(X) PXY(x1, . . . , xL, y)

(
M

L

) ∑
y∈Y

max
(x1,...,xL)∈SL(X )

PXY(x1, . . . , xL, y)

(4.29)

= max
(x1,...,xL)∈SL(X)

PXY(x1, . . . , xL, Y) (4.30)

implying that

P

[
PXY(X, Y)

QX(X) × Q∗
Y(Y)

≤ λ̂

]
= P

[
PXY(X, Y) ≤ max

(x1,...,xL)∈SL(X)

PXY(x1, . . . , xL, Y)

]
= 1 (4.31)

Q

[
PXY(X, Y)

QX(X) × Q∗
Y(Y)

> λ̂

]
= Q

[
PXY(X, Y) > max

(x1,...,xL)∈SL(X)

PXY(x1, . . . , xL, Y)

]
= 0. (4.32)

From Lemma 3.1, we have that

ε̄ = 1 −
(

M − 1

L − 1

) ∑
y∈Y

max
(x̂1,...,x̂L)∈SL(X)

PXY(x̂1, . . . , x̂L, y) (4.33)

and thus, using (4.26) and (4.33)

1 − 1(M
L

) λ̂ = 1 −
∑
y∈Y

max
(x1,...,xL)∈SL(X)

PXY(x1, . . . , xL, y) (4.34)

= 1 − 1(M−1
L−1

) (1 − ε̄), (4.35)
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10 E. ASADI KANGARSHAHI AND A. GUILLÉN I FÀBREGAS

which, using (4.25), implies that

α 1

(M
L )

(PXY , QX × Q∗
Y) = sup

λ≥0

{
P

[
PXY(X, Y)

QX(X) × Q∗
Y(Y)

≤ λ

]
+ λQ

[
PXY(X, Y)

QX(X) × Q∗
Y(Y)

> λ

]
− 1(M

L

)λ

}

(4.36)

≥ P

[
PXY(X, Y)

QX(X) × Q∗
Y(Y)

≤ 1(M
L

) λ̂

]
+ λ̂Q

[
PXY(X, Y)

QX(X) × Q∗
Y(Y)

> λ̂

]
− λ̂ (4.37)

= 1 − 1(M−1
L−1

) (1 − ε̄), (4.38)

where (4.38) uses (4.35). This proves the desired result. �
The identity established by Theorem 4.1 can be rewritten in terms of the alternative pairwise error

probability tradeoff.

Corollary 4.1. Identity (4.4) can be rewritten as

1(M
L

) = max
QY

β1− 1

(
M−1
L−1 )

(1−ε̄)
(PXY , QX × QY). (4.39)

The proof of Theorem 4.1 suggests a broad family of lower bounds to the probability of error
parametrized by the auxiliary distribution QY . In particular, for a fixed auxiliary distribution QY , we
have that

1(M−1
L−1

) (1 − ε̄) ≤ 1 − α 1

(M
L )

(PXY , QX × QY), (4.40)

or equivalently,

1(M
L

) ≥ β1− 1

(
M−1
L−1 )

(1−ε̄)
(PXY , QX × QY). (4.41)

In order to efficiently compute these bounds, one must choose a convenient QY . The specific choice
will, naturally, depend on the specifics of the problem at hand. In the case of list decoding of error-
correcting codes, these can be useful to derive converse bounds. Consider the transmission of one of M
equiprobable messages over a channel described by random transformation PY|X . The encoder maps the
message v ∈ {1, . . . , M} to a codeword x(v) of codebook C. Since there is a codeword for each message,
equiprobable messages induce the following channel input distribution

PC
X (x) =

{
1
M x ∈ C

0 otherwise.
(4.42)

D
ow

nloaded from
 https://academ

ic.oup.com
/im

aiai/article/12/3/iaad001/7058856 by U
niversity of C

am
bridge user on 21 June 2023
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This corresponds to a mass point with probability 1
M where codewords are placed and zero otherwise.

The decoder runs a list decoder with list size L. The error probability for a fixed codebook C is denoted
by ε̄(C). Therefore, for a fixed code C and a fixed auxiliary distribution QY we rewrite (4.40) as

1(M−1
L−1

)(
1 − ε̄(C)

) ≤ 1 − α 1

(M
L )

(PC
XY , QC

X × QY), (4.43)

where

PC
XY(x1, . . . , xL, y)

�= 1(M−1
L−1

)(
PC

X (x1)PY|X(y|x1) + · · · + PC
X (xL)PY|X(y|xL)

)
(4.44)

and

QC
X (x1, . . . , xL)

�=
{ 1

(M
L)

for distinctx1, . . . , xL ∈ C

0 otherwise.
(4.45)

The best bound is found by optimizing (4.43) over the distribution of the code, i.e.,

1(M−1
L−1

) (1 − ε̄) = max
PC

X

1(M−1
L−1

)(
1 − ε̄(C)

)
(4.46)

≤ 1 − min
PC

X

α 1

(M
L )

(PC
XY , QC

X × QY). (4.47)

By optimizing over arbitrary distributions PX , not necessarily those of the form (4.42), we obtain the
metaconverse for list decoding

1(M−1
L−1

) (1 − ε̄) ≤ 1 − min
PX

α 1

(M
L )

(PXY , QX × QY). (4.48)

where now,

PXY(x1, . . . , xL, y)
�= 1(M−1

L−1

)(
PX(x1)PY|X(y|x1) + · · · + PX(xL)PY|X(y|xL)

)
(4.49)

and QX is defined in (4.2). Equation (4.48) is the metaconverse bound for list decoding. Observe that
for L = 1, the above bound recovers the original metaconverse bound for channel coding [10] and can
thus be used to prove the converse statement of the channel coding theorem.
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5. Information spectrum

In this section, we show an alternative identity for the probability of error of list hypothesis testing.
Specifically, this identity is expressed as a function of the tail probability that the likelihood ratio exceeds
a certain threshold, sometimes termed information spectrum [6].

Theorem 5.1. For a fixed auxiliary distribution QY and constant λ ≥ 0, we have that

1(M−1
L−1

) (1 − ε̄) ≤ 1 −
{
P

[
PXY(X, Y)

QX(X) × QY(Y)
≤ λ

]
− 1(M

L

)λ

}
. (5.1)

In addition,

1(M−1
L−1

) (1 − ε̄) = 1 − max
QY

sup
λ≥0

{
P

[
PXY(X, Y)

QX(X) × QY(Y)
≤ λ

]
− 1(M

L

)λ

}
(5.2)

= 1 − sup
λ≥0

{
P

[
PXY(X, Y)

QX(X) × Q∗
Y(Y)

≤ λ

]
− 1(M

L

)λ

}
(5.3)

where Q∗
Y defined in (4.5) is the unique maximizer of (5.2).

Proof. As shown in the proof of Theorem 4.1, we have that,

α 1

(M
L )

(PXY , QX × QY) = sup
λ≥0

{
P

[
PXY(X, Y)

QX(X) × QY(Y)
≤ λ

]
+ λQ

[
PXY(X, Y)

QX(X) × QY(Y)
> λ

]
− 1(M

L

)λ

}

(5.4)

≥ P

[
PXY(X, Y)

QX(X) × QY(Y)
≤ λ

]
+ λQ

[
PXY(X, Y)

QX(X) × QY(Y)
> λ

]
− 1(M

L

)λ (5.5)

≥ P

[
PXY(X, Y)

QX(X) × QY(Y)
≤ λ

]
− 1(M

L

)λ (5.6)

where (5.5) holds for any fixed λ ≥ 0 and (5.6) follows since the second term is always non-negative.
Applying this to (4.3), the bound (5.1) follows.

For the particular choice λ̂ in (4.26) we have,

1(M−1
L−1

) (1 − ε̄) = 1 − sup
λ≥0

{
P

[
PXY(X, Y)

QX(X) × Q∗
Y(Y)

≤ λ

]
+ λQ

[
PXY(X, Y)

QX(X) × Q∗
Y(Y)

> λ

]
− 1(M

L

)λ

}
(5.7)

= 1 − P

[
PXY(X, Y)

QX(X) × Q∗
Y(Y)

≤ λ̂

]
− 1(M

L

) λ̂ (5.8)
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MINIMUM PROBABILITY OF ERROR OF LIST HYPOTHESIS TESTING 13

= 1 − 1 + 1(M−1
L−1

) (1 − ε̄) (5.9)

= 1(M−1
L−1

) (1 − ε̄) (5.10)

where (5.8) and (5.9) follow from (4.32) and (4.31), respectively. Equations 5.75.10 imply that λ̂ in
(4.26) is a maximizer of (5.7), and thus,

1(M−1
L−1

) (1 − ε̄) = 1 − sup
λ≥0

{
P

[
PXY(X, Y)

QX(X) × Q∗
Y(Y)

≤ λ

]
− 1(M

L

)λ

}
. (5.11)

We now proceed with the proof that Q∗
Y as defined in (4.5) is the unique maximizer of (5.2). We

divide the proof in two parts, depending on whether or not QX × Q∗
Y is absolutely continuous with

respect to PXY .

QX × Q∗
Y is absolutely continuous with respect to PXY

Using (5.4), we rewrite (4.4) as

1(M−1
L−1

) (1 − ε̄) = 1 − max
QY

sup
λ≥0

{
P

[
PXY(X, Y)

QX(X) × QY(Y)
≤ λ

]
+ λQ

[
PXY(X, Y)

QX(X) × QY(Y)
> λ

]
− 1(M

L

)λ

}
.

(5.12)

The above expression and (5.2) are both exact characterizations of the error probability. However, (5.12)
has an additional non-negative term compared to (5.2). Thus, any maximizing distribution and constant
Q∗

Y and λ∗ of (5.2) are also maximizers of (5.12). As a result, by comparing both equations, we have
that

Q

[
PXY(X, Y)

QX(X) × Q∗
Y(Y)

> λ∗
]

= 0. (5.13)

Using the definition of QX in (4.2), and the absolute continuity of QX × Q∗
Y with respect to PXY this

implies that

PXY(x1, . . . , xL, y) ≤ λ∗(M
L

) Q∗
Y(y) (5.14)

for all (x1, . . . , xL) ∈ SL(X ) and y ∈ Y. Since this expression holds for arbitrary (x1, . . . , xL) ∈ SL(X),
in particular it holds for the maximizing (x1, . . . , xL) ∈ SL(X ), yielding

max
(x1,...,xL)∈SL(X )

PXY(x1, . . . , xL, y) ≤ λ∗(M
L

) Q∗
Y(y). (5.15)
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Summing over y ∈ Y yields

∑
y∈Y

max
(x1,...,xL)∈SL(X)

PXY(x1, . . . , xL, y) ≤ λ∗(M
L

) ∑
y∈Y

Q∗
Y(y) (5.16)

= λ∗(M
L

) , (5.17)

where (5.17) follows from the fact that Q∗
Y is a probability distribution.

We have shown that for the maximizing Q∗
Y , λ∗ must satisfy (5.17). Therefore, since the first term of

(5.2) is increasing with λ, for any λ satisfying (5.17), the smallest λ satisfying (5.17) is the maximizer
of (5.2), and thus, equality in (5.17) must hold, i.e.,

∑
y∈Y

max
(x1,...,xL)∈SL(X)

PXY(x1, . . . , xL, y) = λ∗(M
L

) (5.18)

Substituting λ∗ in (5.18) into (5.15) yields

max(x1,...,xL)∈SL(X) PXY(x1, . . . , xL, y)∑
y∈Y max(x1,...,xL)∈SL(X) PXY(x1, . . . , xL, y)

≤ Q∗
Y(y). (5.19)

Observe that the left hand side of (5.19) is itself a probability distribution on Y and thus, (5.19) holds
with equality for all y ∈ Y, recovering (4.5).

QX × Q∗
Y is not absolutely continuous with respect to PXY

Consider a distribution VY on Y and a non-Bayesian binary hypothesis test between PXY and QX ×
VY . Then, if there exists some ŷ ∈ Y such that VY(ŷ) = 0, any optimal test in the Neyman–Pearson
setting T is such that

T(1|x1, . . . , xL, ŷ) · PXY(x1, . . . , xL, ŷ) = 0 (5.20)

for every (x1, . . . , xL) ∈ SL(X). The interpretation of this statement is that whenever VY(ŷ) = 0, any
optimal test would not choose hypothesis 1, unless PXY(x1, . . . , xL, ŷ) = 0 for all (x1, . . . , xL) ∈ SL(X ).

We have the following result, whose proof can be found in Appendix A.

Lemma 5.1 Let QY be a distribution on Y. If there exists a ȳ such that

1. QY(ȳ) = 0

2. ∃x1, x2 ∈ X L, with xi = (xi
1, . . . , xi

L) such that PXY(x1, ȳ)PXY(x2, ȳ) > 0,

then, there exists a distribution Q̂Y on Y such that

α 1

(M
L )

(PXY , QX × QY) < α 1

(M
L )

(PXY , QX × Q̂Y). (5.21)
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The above Lemma shows that, if there are two (or more) hypotheses for which PXY(x1, ȳ)PXY
(x2, ȳ) > 0, an auxiliary distribution QY that associates zero mass to observation ȳ cannot be optimal. In
particular, the lemma shows the existence of a distribution that places non-zero mass to all y ∈ Y that is
better than one that places zero mass at ȳ, thus bringing us back to the case where QX ×Q∗

Y is absolutely
continuous with respect to PXY .

There is a remaining trivial case, where there are observations y ∈ Y that can only be obtained
from only one individual hypothesis. In this case, there is no ambiguity as to what hypothesis caused
the observation. Thus, then the problem reduces to removing those observations, i.e., the optimal
distribution places zero mass on those and non-zero on the others. �
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A. Proof of Lemma 5.1

Let (T , λ∗) be an optimal non-Bayesian likelihood-ratio test and the corresponding threshold for testing
between PXY and QX × QY with fixed type-1 error probability ε1(T , QX × QY) = 1

(M
L)

.

Consider the distribution Q̂Y defined as

Q̂Y(y) =
⎧⎨
⎩

(M
L)
μ

max(x1,...,xL)∈SL(X) PXY(x1, . . . , xL, y) y = ȳ
λ∗
μ

QY(y) y �= ȳ
(A1)

where μ = (M
L

)
max(x1,...,xL)∈SL(X) PXY(x1, . . . , xL, y) + λ∗.

We first show that Q̂Y is a probability distribution on Y, i.e., that∑
y

Q̂Y(y) = 1. (A2)

We write ∑
y

Q̂Y(y) =
∑
y �=ȳ

Q̂Y(y) + Q̂Y(ȳ) (A3)

= λ∗

μ

∑
y �=ȳ

QY(y) +
(M

L

)
μ

max
(x1,...,xL)∈SL(X)

PXY(x1, . . . , xL, y) (A4)

= 1

μ

((
M

L

)
· max
(x1,...,xL)∈SL(X)

PXY(x1, . . . , xL, y) + λ∗
)

(A5)

= 1, (A6)

where (A4) follows from the definition of Q̂Y , (A5) follows from the fact that QY is a probability
distribution with QY(ȳ) = 0, and (A6) follows from the definition of μ.

We now proceed with the proof that for the distribution Q̂Y in (A1) we have that

α 1

(M
L )

(PXY , QX × QY) < α 1

(M
L )

(PXY , QX × Q̂Y). (A7)

In particular, we construct a binary test T̂ to test between PXY and QX × Q̂Y and show that

ε1(T̂ , QX × Q̂Y) = 1(M
L

) (A8)

ε0(T̂ , PXY) > ε0(T , PXY). (A9)
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In addition, if we show that the test T̂ is an optimal test in the Neyman–Pearson sense, the proof will be
complete.

Consider the set defined in (3.16)

T(y) =
{
(x1, . . . , xL) ∈ SL(X) PXY(x1, . . . , xL, y) = max

(x̂1,...,x̂L)∈SL(X)

PXY(x̂1, . . . , x̂L, y)
}

(A10)

and let

x̄ = (x̄1, . . . , x̄L) ∈ T(y). (A11)

We construct the test T̂ as follows:

T̂(1|x1, . . . , xL, y) =

⎧⎪⎨
⎪⎩

T(1|x1, . . . , xL, y) y �= ȳ

1 y = ȳ, (x1, . . . , xL) �= (x̄1, . . . , x̄L)

0 y = ȳ, (x1, . . . , xL) = (x̄1, . . . , x̄L).

(A12)

We next validate equality (A8),

1−ε1(T̂ , QX × Q̂Y)

=
∑
y∈Y

∑
(x1,...,xL)∈SL(X)

QX(x1, . . . , xL)Q̂Y(y)T̂(1|x1, . . . , xL, y) (A13)

=
∑
y �=ȳ

∑
(x1,...,xL)∈SL(X)

QX(x1, . . . , xL)Q̂Y(y)T̂(1|x1, . . . , xL, y)

+
∑

(x1,...,xL)∈SL(X)

QX(x1, . . . , xL)Q̂Y(ȳ)T̂(1|x1, . . . , xL, ȳ) (A14)

=
∑
y �=ȳ

∑
(x1,...,xL)∈SL(X)

QX(x1, . . . , xL)
λ∗

μ
QY(y)T̂(1|x1, . . . , xL, y)

+
∑

(x1,...,xL)∈SL(X)
(x1,...,xL) �=(x̄1,...,x̄L)

QX(x1, . . . , xL)

(M
L

)
μ

max
(x′

1,...,x′
L)∈XL

PXY(x′
1, . . . , x′

L, ȳ)T̂(1|x1, . . . , xL, ȳ) (A15)

= λ∗

μ

∑
y �=ȳ

∑
(x1,...,xL)∈SL(X)

QX(x1, . . . , xL)QY(y)T(1|x1, . . . , xL, y)

+
(M

L

)
μ

max
(x1,...,xL)∈SL(X)

PXY(x1, . . . , xL, ȳ)
∑

(x1,...,xL)∈SL(X)
(x1,...,xL) �=(x̄1,...,x̄L)

QX(x1, . . . , xL) (A16)

= λ∗

μ

(
1 − ε1(T , QX × Q̂Y)

) +
(M

L

)
μ

max
(x1,...,xL)∈SL(X)

PXY(x1, . . . , xL, y)

(
1 − 1(M

L

))
(A17)
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= λ∗

μ

(
1 − 1(M

L

))
+

(M
L

)
μ

max
(x1,...,xL)∈SL(X)

PXY(x1, . . . , xL, y)

(
1 − 1(M

L

))
(A18)

= 1 − 1(M
L

) , (A19)

where (A15) follows from the definition of the distribution Q̂Y in (A1), (A16) from the definition of
the test T̂ in (A12), (A17) follows from the definition of the type-1 probability of error for test T and
from the definition of the distribution QX in (4.2), (A18) follows from the fact that by the definition of
test T , its type-1 error probability is 1

(M
L)

, and (A19) follows from the definition of the normalization

constant μ.
Now, we turn to inequality (A9). We have that

ε0(T , PXY) =
∑
y∈Y

∑
(x1,...,xL)∈SL(X)

PXY(x1, . . . , xL, y)T(1|x1, . . . , xL, y) (A20)

=
∑
y �=ȳ

∑
(x1,...,xL)∈SL(X)

PXY(x1, . . . , xL, y)T(1|x1, . . . , xL, y)

+
∑

(x1,...,xL)∈SL(X)

PXY(x1, . . . , xL, ȳ)T(1|x1, . . . , xL, ȳ) (A21)

<
∑
y �=ȳ

∑
(x1,...,xL)∈SL(X)

PXY(x1, . . . , xL, y)T(1|x1, . . . , xL, y)

+
∑

(x1,...,xL)∈SL(X)
(x1,...,xL) �=(x̄1,...,x̄L)

PXY(x1, . . . , xL, ȳ) (A22)

=
∑
y �=ȳ

∑
(x1,...,xL)∈SL(X)

PXY(x1, . . . , xL, y)T̂(1|x1, . . . , xL, y)

+
∑

(x1,...,xL)∈SL(X)
(x1,...,xL) �=(x̄1,...,x̄L)

PXY(x1, . . . , xL, ȳ)T̂(1|x1, . . . , xL, ȳ) (A23)

= ε0(T̂ , PXY) (A24)

where (A21) follows from splitting the sum over y in two, (A22) follows from the fact that for ȳ the
test T is such that T(1|x1, . . . , xL, ȳ)PXY(x1, . . . , xL, ȳ) = 0, and from the fact that there are at least two
hypotheses for which PXY(x1, . . . , xL, ȳ) �= 0 from the statement of the lemma; we thus upper bound it
by a non-zero term. Finally, (A22) follows from the definition of T̂ in (A12) and (A24) follows from the
definition of type-0 probability of error.

We now will be done if we show that the test T̂ is an optimal test in the Neyman–Pearson sense.
Since we have shown that ε1(T̂ , QX × Q̂Y) = 1

(M
L)

, all we need to show is that there exists a threshold
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for the likelihood ratio λNP such that (2.6) holds for T̂ . We will now show that μ is indeed this threshold
for test T̂ . We divide the proof in several cases:

• When y �= ȳ, we have that

PXY(x1, . . . , xL, y)

μQX(x1, . . . , xL)Q̂Y(y)
= PXY(x1, . . . , xL, y)

μQX(x1, . . . , xL) λ∗
μ

QY(y)
(A25)

= PXY(x1, . . . , xL, y)

λ∗QX(x1, . . . , xL)QY(y)
, (A26)

where (A25) follows from the definition of the distribution Q̂Y in (A1). Thus, since λ∗ was an
optimal threshold for test T , μ is an optimal threshold for test T̂ in this case.

• When y = ȳ and (x1, . . . , xL) �= (x̄1, . . . , x̄L), according to the definition of T̂ in (A12), we have that
T̂(1|x1, . . . , xL, ȳ) = 1. In addition,

μQX(x1, . . . , xL)Q̂(ȳ) = μQX(x1, . . . , xL)

(M
L

)
μ

max
(x1,...,xL)∈SL(X)

PXY(x1, . . . , xL, ȳ) (A27)

= max
(x1,...,xL)∈SL(X)

PXY(x1, . . . , xL, ȳ) (A28)

≥ PXY(x1, . . . , xL, ȳ), (A29)

where (A27) follows from the definition of Q̂Y in (A1) and (A28) from the definitions of QX in (4.2)
and of (x̄1, . . . , x̄L) in (A11). This implies that when y = ȳ and (x1, . . . , xL) �= (x̄1, . . . , x̄L),

PXY(x1, . . . , xL, ȳ)

QX(x1, . . . , xL)Q̂(ȳ)
≤ μ. (A30)

• When y = ȳ and (x1, . . . , xL) = (x̄1, . . . , x̄L), according to the definition of T̂ in (A12), we have that
T̂(1|x̄1, . . . , x̄L, ȳ) = 0. In addition,

μQX(x̄1, . . . , x̄L)Q̂(ȳ) = μQX(x̄1, . . . , x̄L)

(M
L

)
μ

max
(x1,...,xL)∈SL(X)

PXY(x1, . . . , xL, ȳ) (A31)

= PXY(x̄1, . . . , x̄L, ȳ), (A32)

where (A31) follows from the definition of Q̂Y in (A1) and (A32) from the definitions of QX in (4.2)
and of (x̄1, . . . , x̄L) in (A11). This implies that for y = ȳ, (x1, . . . , xL) = (x̄1, . . . , x̄L), we have that

PXY(x̄1, . . . , x̄L, ȳ)

QX(x̄1, . . . , x̄L)Q̂(ȳ)
= μ. (A33)

As a result, the test T̂ is an optimal Neyman–Pearson test according to (2.6) and satisfies

α 1

(M
L )

(PXY , QX × QY) < α 1

(M
L )

(PXY , QX × Q̂Y). (A34)
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