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Abstract—We study Gaussian i.i.d. codebooks and nearest
neighbor decoding over continuous-alphabet channels. We define
a class of compound channels that are within a small radius
relative entropy ball centered at the nearest neighbor decoding
metric. We derive approximations to the worst-case achievable
rates and find the penalty terms proportional to the square root
of the ball radius.

I. INTRODUCTION

Most of the existing results in information theory rely on
the optimistic assumption that the probability law governing
channel is perfectly known to both the transmitter and receiver
[1]. However, in practice, there are several environments where
the channel is either unknown or difficult to estimate. It is
therefore crucial to elaborate on a more general theory that
accounts for these specific uncertainties [2], [3].

Mismatched decoding precisely addresses this problem: the
decoder operates with a given fixed decoding metric and only
the codebook can be optimized. Its close connection to practi-
cal real-world systems limited by implementation constraints
and its intriguing connections to zero-error communication
make it an important problem [2, Ch. 1.2].

This work focuses on Gaussian i.i.d. codebooks combined
with the nearest neighbor decoder [4], [5]. The nearest neigh-
bor decoder is optimal under additive Gaussian noise and
widely adopted in non-Gaussian noise settings. Gaussian i.i.d.
codebooks with nearest neighbor decoding constitute a robust
transmitter-receiver pair for communicating over additive noise
channels. This paper derives achievable information rates for
a class of continuous-alphabet channels close to the Gaussian
in terms of relative entropy.

II. SYSTEM SET-UP

Consider the reliable transmission of M messages over
a point-to-point memoryless channel defined over the real
input and output alphabets Xn = Rn and Yn = Rn,
respectively. n is the number of channel uses used to transmit
a message. For transmission, the encoder selects message
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m ∈ {1, . . . ,M} equiprobably and transmits the correspond-
ing codeword x(m) = (x

(m)
1 , . . . , x

(m)
n ) from the codebook

Cn = {x(i)}1≤i≤M , in which the symbols of every code-
word are distributed according to a zero-mean, variance P
normal distribution QX(x) = N (x;P ), where N (x;P ) =

1√
2πP

exp(−x2/2P ). Therefore, the codeword distribution is

Qn
X(x) =

n∏
i=1

1√
2πP

exp

(
− x2

i

2P

)
. (1)

P should be understood as the power averaged over the
codebook, in which codewords attain the per codeword power
constraint only for n → ∞.

The (continuous) channel probability distribution is defined
from the single-letter probability density W (y|x) for all pairs
(x, y) ∈ R2. Conditional on x(m) ∈ Rn being transmitted,
y = (y1, . . . , yn) ∈ Rn is received with probability

Wn(y|x(m)) =

n∏
i=1

W (yi|x(m)
i ). (2)

The only knowledge available about Wn is that it is mem-
oryless and that its single-letter distribution W is within a
small radius relative entropy ball centered at the Gaussian
distribution Ŵ (y|x) = N (y−x;σ2) corresponding to the
nearest neighbor decoder, as

W ∈ B = {W : D(Ŵ∥W |QX) ≤ r}. (3)

The decoder performs nearest neighbor decoding, i.e., it
decides in favor of the codeword that is closest in Euclidean
distance to the observation y ∈ Rn as

m̂ = argmax
1≤m̄≤M

n∏
i=1

Ŵ (yi|x(m̄)
i ). (4)

The receiver can operate without knowing σ2 as it does not
alter the ranking of codewords, but its value must be known by
the code designer, since the relative entropy ball (3) depends
on it. The average error probability is considered. An error
occurs whenever m̂ ̸= m; ties are counted as errors.

We want to show reliable information rates for this setting,
which can be interpreted as a mismatched compound channel



[2, Ch. 2.4.4]. In particular, since the actual channel is un-
known, universal (worst-case) rates are derived based on the
mismatched decoding framework.

III. GENERAL CHANNELS AND DECODING METRICS

We will keep our analysis general for any i.i.d. code-
book and memoryless decoding metric defined respectively by
QX(x) and Ŵ (y|x), over the same alphabets. Gaussian i.i.d.
codebooks with nearest neighbor decoding are treated in the
next section.

It is well known (see e.g. [2] and references therein)
that an achievable rate for continuous-alphabet channels with
mismatched decoding is given by the generalized mutual
information (GMI)

IGMI(QX , Ŵ ) = sup
s≥0

EQX×W [is(X,Y )] (5)

under the mismatched information density

is(x, y) = log
Ŵ (y|x)s

EQX
[Ŵ (y|X)s]

. (6)

Consequently, in order to guarantee reliable communication
over every channel W ∈ B, we have the following rate

IGMI(QX , Ŵ ) = min
W∈B

IGMI(QX , Ŵ ) (7)

= min
W∈B

sup
s≥0

EQX×W [is(X,Y )] (8)

henceforth denoted worst-case GMI. The minimization is over
all conditional probability distributions in the small relative
entropy ball B defined in (3).

Two considerations are stated before presenting our main
result. Firstly, we will only consider continuous channels
W (y|x), and we assume the continuity of GMI rate and
constraints as functionals of W as per the norm

∥W∥ =max
x,y

|W (y|x)|. (9)

Secondly, since we are interested in characterizing the regime
of quasi-perfect estimation or small mismatch between the true
channel probability law W and the decoding metric Ŵ , we
expand the constraint, leading to the following Lemma.

Lemma 1. For every pair of channel distributions (W, Ŵ ),
we have

D(Ŵ∥W |QX) = d(Ŵ∥W |QX) + o(d(Ŵ∥W |QX)) (10)

where

d(Ŵ∥W |QX) =

∫∫
R2

QX(x)
(W (y|x)− Ŵ (y|x))2

2Ŵ (y|x)
dxdy.

(11)

Proof. The proof follows from using the Taylor expansion of
the logarithm log(1+x) = x− 1

2x
2+o(x2) inside the relative

entropy. We have followed the footsteps of [6, eq. (1)–(4)]
and rearranged the approximation error terms. For simplicity
of notation, we have used natural logarithms.

The main result is given in the following Theorem.

Theorem 1. Consider an input distribution QX(x), a family
of continuous-alphabet channels W (y|x) and a mismatched
decoder (4) employing estimated conditional distribution
Ŵ (y|x) satisfying (3). Then, for sufficiently small r, the worst-
case GMI (8) can be expressed as

IGMI(QX , Ŵ )

= sup
s≥0

{
E
QX×Ŵ

[is(X,Y )]−
√
2rVs + o(r)

}
(12)

achieved by the worst-case channel (for a given value of
parameter s)

W⋆(y|x) = Ŵ (y|x)
(
1−

√
2r

is(x, y)−E
Ŵ
[is(x, Y )]

√
Vs

)
(13)

with Vs ≜ EQX
[Var[is(X,Y )|X]]. The actual worst-case

channel is the one maximizing (12).

Proof. The proof is detailed in Appendix A.

IV. NEAREST NEIGHBOR DECODING

We next analyze the case of Gaussian i.i.d. codebooks and
nearest neighbor decoding for general and additive channels,
and analytically characterize the corresponding penalty terms.

A. General Continuous-Alphabet Channels

We analyze general channels by particularizing the results in
Section III to Gaussian input and nearest neighbor decoding.
We characterize the penalty term appearing in Theorem 1.

Theorem 2. Consider the input distribution QX(x)=N (x;P ),
a family of continuous-alphabet channels W (y|x) and a mis-
matched decoder (4) employing estimated conditional distribu-
tion Ŵ (y|x)=N (y−x;σ2) satisfying (3). Then, for sufficiently
small r, the worst-case GMI rate satisfies

IGMI(QX , Ŵ ) = sup
s≥0

{
1

2
log (1+sΓ) +

Γ

2

1− s

s−1+Γ

−

√
r · Γ(s

2Γ+2)

(s−1+Γ)2
+ o(r)

}
(14)

with Γ ≜ P/σ2.

Proof. The proof follows from particularizing the results of
Theorem 1. Appendix B details the computations.

Corollary 2.1. As r → 0, the worst-case GMI rate can be
accurately approximated by setting s = 1, to yield

IGMI(QX , Ŵ ) ≈ 1

2
log (1 + Γ)−

√
r · Γ (Γ + 2)

(1 + Γ)2
. (15)

Proof. The proof follows from the fact that as r → 0 the
first two terms dominate the summation. Therefore, the result
tends to be the one corresponding to the dominant terms; in
this case, s = 1.



B. Additive Non-Gaussian Noise Channels

We next analyze the case where the channel is assumed
to be noise-additive, i.e., W (y|x) = W (y − x), but the
noise distribution W remains unknown. We redefine the small
relative entropy ball to contain only additive noise channels
W (y|x) = W (y − x) as

W ∈ B = {W : D(Ŵ∥W ) ≤ r} (16)

where thanks to the additive structure of both channel and
metric, the relative entropy becomes independent of the input:

D(Ŵ∥W ) =

∫
R
Ŵ (z) log

Ŵ (z)

W (z)
dz. (17)

For additive noise channels with a known second-order
moment E[W 2], Lapidoth [4] showed that the rate

IGMI(QX) =
1

2
log

(
1 +

P

E[W 2]

)
(18)

is achievable by Gaussian codebooks and nearest neighbor
decoding. The result is relevant in practice, since E[W 2] turns
out to be the only knowledge needed about any noise-additive
W to design a reliable transmission scheme attaining (18).
Our approach assumes instead an available estimate σ2 for
the unknown second-order moment E[W 2] and an uncertainty
level given by the ball radius r. The worst-case GMI rate is

IGMI(QX , Ŵ ) = min
W∈B

1

2
log

(
1 +

P

E[W 2]

)
(19)

where the dependence on the noise distribution appears only
as a function of its second-order moment.

The following Theorem summarizes the result.

Theorem 3. Consider a family of additive noise channels
W (y|x) = W (y−x) and a mismatched decoder (4) employing
estimated conditional distribution Ŵ (y|x) = N (y−x;σ2)
satisfying (16). Then, for sufficiently small r, Gaussian i.i.d.
codebooks achieve the following worst-case GMI rate

IGMI(QX , Ŵ ) =
1

2
log

(
1 +

Γ

1 + 2
√
r

)
+ o(r) (20)

with Γ = P/σ2 the estimated signal-to-noise ratio.

Proof. The proof, detailed in Appendix C, seeks the maximum
variance noise distribution in B defined in (16).

Corollary 3.1. As r → 0, the worst-case GMI rate can be
expanded as

IGMI(QX , Ŵ ) ≈ 1

2
log (1 + Γ)−

√
r · Γ

1 + Γ
. (21)

C. Example

Figure 1 exemplifies the study for Gaussian i.i.d. codewords
and the nearest neighbor decoder. In contrast to the discrete
alphabet case [7], computations of the actual worst-case rates
are not possible due to computational complexity constraints.
Instead, we show results from theorems obviating approxi-
mation error terms and compare them against corollaries that
make the further approximation of s = 1.
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Fig. 1. Worst-case GMI rate versus ball radius r for Gaussian i.i.d. codewords
QX(x) = N (x;P ) and nearest neighbor decoding Ŵ (y|x) = N (y−x;σ2).
Simulation parameters are Γ = 1 with P = σ2 = 1.

The worst-case GMI decays infinitely steeply at r = 0,
showing that even a very small mismatch between W and
Ŵ can significantly impact achievable rates. Knowing the
channel operation leads to an improved rate. In particular, an
approximate measure can be obtained from the ratio between
penalty terms of the approximations,

√
1+Γ−1 ≥ 1 achieved

at high Γ. The benefit of knowing the channel operation is
significant at low Γ.

APPENDIX A
PROOF OF THEOREM 1

The following problem needs to be addressed:

min
W∈B

∫∫
R2

QX(x)W (y|x)is(x, y)dxdy (22)

where the constraint W ∈ B considers continuous conditional
distributions W (y|x) ≥ 0 that satisfy∫

R
W (y|x)dy = 1 , x ∈ R (23)

d(Ŵ∥W |QX) + o(d(Ŵ∥W |QX)) ≤ r. (24)

When r is sufficiently small, the o(·) term can be
omitted from the constraint, penalizing the cost function
as o(d(Ŵ∥W |QX)) = o(r) using the new constraint
d(Ŵ∥W |QX) ≤ r. Therefore, the following variational cal-
culus problem needs to be addressed

min
d(Ŵ∥W |QX)≤r∫

RW (y|x)dy=1, x∈R

∫∫
R2

QX(x)W (y|x)is(x, y)dxdy + o(r).

(25)

The following Lagrangian needs to be solved

L[W ] =

∫∫
R2

F (x, y,W (y|x))dxdy (26)



with

F (x, y,W ) = QX(x)Wis(x, y)− λ(x)W

− ρ ·QX(x)
(W − Ŵ (y|x))2

2Ŵ (y|x)
(27)

and where we have obviated W -independent constant terms.
Now, we expand L[W ] by adopting continuous variations

v(x, y), leading to the following general variation truncated to
the second order

∆L[W ] =

∫∫
R2

(FW v(x, y)+ 1
2FWW v2(x, y))dxdy (28)

FW = QX(x)is(x, y)−λ(x)−ρ ·QX(x)
W−Ŵ (y|x)
Ŵ (y|x)

(29)

FWW = −ρQX(x)

Ŵ (y|x)
. (30)

We have used subscripts on F to denote the partial derivatives:
FW = ∂F

∂W and FWW = ∂2F
∂2W . The stationary point equation is

found by setting the first term of (28) to zero and by invoking
the Fundamental Lemma of the Calculus of Variations [8].
Specifically, we find the stationary point W⋆(y|x) by solving
FW (x, y,W⋆(y|x)) = 0 in (x, y) ∈ R2. This gives

W⋆(y|x) = Ŵ (y|x)
(
1 +

QX(x)is(x, y)− λ(x)

ρQX(x)

)
. (31)

By using the constraints, we obtain:

λ(x) = QX(x)E
Ŵ
[is(x, Y )] (32)

ρ = −
√
Vs/(2r) (33)

Vs = EQX
[Var[is(X,Y )|X]]. (34)

The worst-case GMI is shown in (12). It is easy to check that
W⋆ corresponds to a minimum as

∫
R2FWW v2(x, y)dxdy > 0.

APPENDIX B
AUXILIARY COMPUTATIONS

For Gaussian i.i.d. codebooks QX(x) = N (x;P ) and the
nearest neighbor decoder Ŵ (y|x) = N (y−x;σ2), we have

Ŵ (y|x)s =
√
2πσ2s−1

s
√
2π

· N (y−x;σ2s−1) (35)

EQX
[Ŵ (y|X)s] =

√
2πσ2s−1

s
√
2π

· N (y;σ2s−1+P ). (36)

The mismatched information density is (cf. [9, eq. (28)-(29)])

is(x, y) = C − s

2

(y−x)2

σ2
+

1

2

y2

σ2s−1+P
(37)

with

C =
1

2
log

(
1+

sP

σ2

)
, (38)

and the respective expectations are

E
Ŵ
[is(x, Y )] = C +

1

2

x2−sP

σ2s−1+P
(39)

E
QX×Ŵ

[is(X,Y )] = C +
P

2

1− s

σ2s−1+P
. (40)

The term

Vs = E
QX×Ŵ

[i2s(X,Y )]− EQX
[E2

Ŵ
[is(X,Y )|X]] (41)

=
P

2

2σ2+s2P

(σ2s−1+P )2
(42)

is computed from

E
QX×Ŵ

[i2s(X,Y )] = C2 +
CP (1−s)

(σ2s−1+P )2
+

3s2

4

+
3(σ2+P )2

4(σ2s−1+P )2
− 1

2

s(3σ2+P )

(σ2s−1+P )2
(43)

EQX
[E2

Ŵ
[is(X,Y )|X]]

= C2 +
CP (1−s)

σ2s−1+P
+

P 2(3−2s+s2)

4(σ2s−1+P )2
(44)

APPENDIX C
MAXIMUM VARIANCE NOISE DISTRIBUTION

We aim to find the noise distribution with maximum second-
order moment in B by solving

E[W 2
⋆ ] = max

W∈B

∫
R
z2W (z)dz (45)

= max
d(Ŵ∥W )≤r∫
RW (z)dz=1

∫
R
z2W (z)dz + o(r). (46)

We replicate the analysis in Appendix A to solve

L[W ] =

∫
R
F (z,W (z))dz (47)

F (z,W ) = z2W − λW − ρ · (W − Ŵ (z))2

2Ŵ (z)
. (48)

The worst-case channel is found by solving FW (z,W⋆(z)) = 0
in z ∈ R. This is solved for λ = σ2 and ρ = σ2/

√
r, yielding

W⋆(z) = Ŵ (z)

(
1 +

√
r · z

2 − σ2

σ2

)
(49)

E[W 2
⋆ ] = σ2(1 + 2

√
r) + o(r). (50)
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