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Abstract—This paper investigates achievable error exponents
of i.i.d. and constant-composition codes for a decoder whose
decoding metric is close to the channel probability law in terms
of relative entropy. We derive approximations of the worst-
case achievable error exponents as functions of the radius of a
small relative entropy ball centered at the decoding metric, and
characterize the error terms of the underlying approximations.

I. INTRODUCTION AND PROBLEM SETUP

The problem of mismatched decoding arises in situations
when the decoder uses a fixed sub-optimal decoding rule.
This problem becomes particularly relevant when channel un-
certainty or system complexity constraints impede the imple-
mentation of the optimal maximum-likelihood (ML) decoder.
Mismatched decoding is also connected to other important
problems in information theory, such as zero-error commu-
nication and finite-precision arithmetic [1].

The problem is described as follows. Consider the reliable
transmission of M messages over a discrete memoryless
channel taking values from discrete input and output alphabets
X and Y , respectively. The channel transition distribution is
defined from the single-letter distribution W (y|x) for all pairs
(x, y) ∈ X × Y . The transmitter selects message m from
{1, . . . ,M} with equal probability and transmits codeword
x(m) = (x

(m)
1 , . . . , x

(m)
n ) from codebook Cn = {x(i)}1≤i≤M

over n channel uses. Vector y = (y1, . . . , yn) is received
with probability

∏n
i=1 W (yi|x(m)

i ), and used to estimate the
transmitted message by performing maximum metric decoding
with fixed metric q(x, y) as

m̂ = argmax
1≤m̄≤M

n∏
i=1

q
(
x
(m̄)
i , yi

)
. (1)

When q(x, y) = W (y|x), the decoder is said to be matched
and coincides with ML decoding. An error occur whenever
m̂ ̸= m, and the probability of error for the chosen codebook
Cn is defined as pe(Cn) = Pr[m̂ ̸= m]. An error exponent
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E(R) is said to be achievable if there exists a sequence of
codes of rate R = 1

n logM such that

lim
n→∞

− 1

n
log pe(Cn) ≥ E(R). (2)

We consider random coding with two types of code-
books: i.i.d. codebooks, where codewords are independently
drawn from a product distribution of i.i.d. symbols QX(x),
and constant-composition codebooks, where codewords are
equiprobable on the set of sequences with a given empirical
distribution. We denote by p̄e the average error probability
over all randomly-generated codes of a specific ensemble.

The ensemble-tight error exponents of i.i.d. and constant-
composition codes are respectively defined as [1, Ch. 7.2]

Eiid
r (QX , R) = max

ρ∈[0,1]
Eiid

0 (QX , ρ)− ρR (3)

Ecc
r (QX , R) = max

ρ∈[0,1]
Ecc

0 (QX , ρ)− ρR, (4)

with respective Gallager functions

Eiid
0 (QX , ρ) = sup

s≥0
− logEQX×W [εs,0,ρ(X,Y )] (5)

Ecc
0 (QX , ρ) = sup

s≥0,a(·)
−EQX

[
logEW [εs,a,ρ(X,Y )|X]

]
(6)

where

εs,a,ρ(x, y) ≜

(
EQX

[q(X, y)sea(X)]

q(x, y)sea(x)

)ρ

. (7)

When the optimal decoder q(x, y) = W (y|x) is used
instead, expressions for the matched Gallager functions are
recovered by setting s = 1

1+ρ : in particular, Gallager E0

function for i.i.d. codes [2], and the E0 function for constant-
composition codes derived by Csiszár [3, Ch. 10] and ex-
pressed in dual form by Poltyrev [4]. Observe that by Jensen’s
inequality we have that Eiid

r (QX , R) ≤ Ecc
r (QX , R) for a fixed

input distribution QX and any pair (W, q) [5, Ch. 2].
In this work, we consider that a channel estimate Ŵ (y|x) is

available from the output of a channel estimator. The channel
estimate is assumed to be close to the channel probability
law and is used as decoding metric q(x, y). We characterize
the level of mismatch between estimated and true channels by
the relative entropy, and find the worst-case error exponents of
i.i.d. and constant-composition codes when the former relative
entropy is small. We assume natural logarithms throughout.



II. WORST-CASE ERROR EXPONENTS

In this section, we derive the worst-case error exponents
under i.i.d. and constant-composition random coding for small
mismatch. Similarly to [6], for small mismatch between the
channel estimate Ŵ and the true channel W we require that

W ∈ B(QX , Ŵ , r) =
{
W : D(Ŵ∥W |QX) ≤ r

}
, (8)

where B(QX , Ŵ , r) is a relative entropy ball centered at Ŵ
of small radius r. This definition adopts a decoder-centric
perspective in which B is centered at the known quantity, the
channel estimate and decoding metric Ŵ . Moreover, since we
are interested in the small radius regime, we follow [7, eq.
(1)–(4)] and expand the relative entropy as

D(Ŵ∥W |QX) =

1

2

∑
x,y

QX(x)
θ2(y|x)
Ŵ (y|x)

+ o

(∑
x,y

QX(x)
θ2(y|x)
Ŵ (y|x)

)
(9)

where θ(y|x) ≜ W (y|x)−Ŵ (y|x).
We define the worst-case mismatched random coding error

exponents as

Eiid
r (QX , Ŵ , R, r) = min

W∈B
max
ρ∈[0,1]

Eiid
0 (QX , Ŵ ,W, ρ)− ρR

(10)

Ecc
r (QX , Ŵ , R, r) = min

W∈B
max
ρ∈[0,1]

Ecc
0 (QX , Ŵ ,W, ρ)− ρR,

(11)

where Eiid
0 , Ecc

0 are defined in (5)–(6) with εs,a,ρ as in (7) with
q = Ŵ .

Lemma 1. Finding the worst-case mismatched random coding
error exponent is equivalent to first finding its corresponding
worst-case Gallager function, i.e.,

Er(QX , Ŵ , R, r) = max
ρ∈[0,1]

E0(QX , Ŵ , ρ, r)− ρR (12)

where

E0(QX , Ŵ , ρ, r) = min
W∈B

E0(QX , Ŵ ,W, ρ). (13)

Proof. The minimax theorem [8] is applied to swap the
order of the optimizations. Fixing (QX , R), and noticing that
ρR is independent of W , the problem is then equivalent to
minimizing E0 over W prior to maximizing over ρ.

We thus focus on deriving the worst-case mismatched Gal-
lager functions for i.i.d. and constant-composition codes. We
present them separately as they require different techniques.

A. I.i.d. Random Coding

We derive the worst-case mismatched Gallager function for
i.i.d. random coding by solving

Eiid
0 (QX , Ŵ , r) = min

W∈B
sup
s≥0

− logEQX×W [εs,0,ρ(X,Y )].

(14)

Theorem 1. Consider a channel estimate Ŵ and fixed input
distribution QX . Then, for sufficiently small r ≥ 0, the worst-
case mismatched i.i.d. Gallager function can be expressed as

Eiid
0 (QX , Ŵ , ρ, r) = sup

s≥0

{
− log

(
e−EML

s,ρ(QX ,Ŵ )

+

√
2r · V (QX , Ŵ , εs,0,ρ)

)
+ o(r)

} (15)

where

EML
s,ρ (QX , Ŵ ) = − log

∑
y

(∑
x

QX(x)Ŵ (y|x)1−sρ

)
·
(∑

x

QX(x)Ŵ (y|x)s
)ρ

,

(16)

V (QX , Ŵ , εs,0,ρ) = EQX

[
Var

Ŵ
[εs,0,ρ(X,Y )|X]

]
. (17)

Proof. See Appendix A for a sketch.

Corollary 1.1. For sufficiently small r, the worst-case mis-
matched i.i.d. Gallager function is expanded as

Eiid
0 (QX , Ŵ , ρ, r) = sup

s≥0

{
EML

s,ρ (QX , Ŵ )

− eE
ML
s,ρ(QX ,Ŵ )

√
2r · V (QX , Ŵ , εs,0,ρ) +O(r)

}
.

(18)

The expansion incurs an error of order O(r), which makes
the error term o(r) from the approximation of relative entropy
negligible.

Corollary 1.2. Let the approximate worst-case mismatched
i.i.d. Gallager function be given by

Ẽ
iid
0 (QX , Ŵ , ρ, r) = sup

s≥0

{
− log

(
e−EML

s,ρ(QX ,Ŵ )

+

√
2r · V (QX , Ŵ , εs,0,ρ)

)}
.

(19)

The optimal (minimizing) conditional channel distribution is

W̃ ∗
iid(y|x) = Ŵ (y|x)

(
1 +

√
2r · φiid(x, y, εs,0,ρ)

)
(20)

where we have defined

φiid(x, y, εs,0,ρ) ≜
εs,0,ρ(x, y)− E

Ŵ
[εs,0,ρ(x, Y )]√

V (QX , Ŵ , εs,0,ρ)
. (21)

The non-negativity of W̃ ∗
iid is guaranteed by satisfying the

following condition on the ball radius for all (x, y) ∈ X ×Y ,
everywhere Ŵ (y|x) > 0:

r <
1

2φ2
iid(x, y, εs,0,ρ)

. (22)



B. Constant-Composition Random Coding
We now derive the worst-case mismatched Gallager function

for constant-composition random coding by solving

Ecc
0 (QX , Ŵ , r)

= min
W∈B

sup
s≥0,a(·)

−EQX

[
logEW [εs,a,ρ(X,Y )|X]

]
. (23)

This optimization problem is more intricate than the i.i.d. case,
since the expectation over the input distribution is outside the
logarithm. In fact, the solution has no explicit form. Instead,
we perform a Taylor expansion of the objective function
around Ŵ and then address the resulting problem. This gives

Ecc
0 (QX , Ŵ , r)

= min
W∈B

sup
s≥0,a(·)

{
− EQX

[
logE

Ŵ
[εs,a,ρ(X,Y )|X]

]
−
∑
x,y

θ(y|x)E(x, y) + o

(∑
x,y

θ(y|x)E(x, y)
)} (24)

with
E(x, y) = QX(x)εs,a,ρ(x, y)

E
Ŵ
[εs,a,ρ(x, Y )]

. (25)

Theorem 2. Consider a channel estimate Ŵ and fixed input
distribution QX . Then, for sufficiently small r ≥ 0, the worst-
case mismatched constant-composition Gallager function is

Ecc
0 (QX , Ŵ , ρ, r) = sup

s≥0,a(·)

{
EML

s,a,ρ(QX , Ŵ )

−
√

2r · Vcc(QX , Ŵ , εs,a,ρ) + o(
√
r)

} (26)

where

EML
s,a,ρ(QX ,Ŵ ) = −

∑
x

QX(x) log

(∑
y

Ŵ (y|x)1−sρ

· e−ρ·a(x)
(∑

x̄

QX(x̄)Ŵ (y|x̄)sea(x̄)
)ρ)

,

(27)

Vcc(QX , Ŵ , εs,a,ρ) = EQX

[
Var

Ŵ
[εs,a,ρ(X,Y )|X]

E2
Ŵ
[εs,a,ρ(X,Y )|X]

]
. (28)

Proof. It follows a similar structure to that of Theorem 1 in
Appendix A. Main differences are detailed in Appendix B.

Corollary 2.1. Let the approximate worst-case mismatched
constant-composition Gallager function be given by

Ẽ
cc
0 (QX , Ŵ , ρ, r) = sup

s≥0,a(·)

{
EML

s,a,ρ(QX , Ŵ )

−
√
2r · Vcc(QX , Ŵ , εs,a,ρ)

}
.

(29)

The optimal (minimizing) conditional channel distribution for
this approximation is

W̃ ∗
cc(y|x) = Ŵ (y|x)

(
1 +

√
2r · φcc(x, y, εs,a,ρ)

E
Ŵ
[εs,a,ρ(x, Y )]

)
(30)

with

φcc(x, y, εs,a,ρ) =
εs,a,ρ(x, y)− E

Ŵ
[εs,a,ρ(x, Y )]

Vcc(QX , Ŵ , εs,a,ρ)
. (31)
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Fig. 1. Gallager functions computed for fixed ρ = 0.7, input distribution QX

in (32) and estimated channel Ŵ in (33).

C. Example: Ternary-Input Ternary-Output Ŵ

We compute Ẽ
iid
0 , Ẽ

cc
0 from (19), (29) for input distribution

QX and channel estimate Ŵ given by

QX =
[
0.3 0.3 0.4

]
(32)

Ŵ =

 0.85 0.05 0.10
0.03 0.945 0.025
0.025 0.10 0.875

 . (33)

We plot in Figure 1 the approximations and their true coun-
terparts Eiid

0 , Ecc
0 , numerically computed from (14), (23) using

an off-the-shelf solver. The matched Gallager E0 functions for
i.i.d. (EG

0 ) and constant-composition (EC
0 ) codes are shown for

reference as dashed lines; they are achievable as r → 0.
The figure illustrates that Eiid

0 ≤ Ecc
0 and Ẽ

iid
0 ≤ Ẽ

cc
0 for all

r, despite the order of the approximations being substantially
different. For r > 0, the worst-case E0 functions decrease
rapidly from their matched counterparts. Indeed, the worst-
case functions drop with infinite slope at r = 0, showing
even accurate estimation can have a significant impact on the
achievable probability of error.

The curves have similar graphical shapes, with the ap-
proximations increasingly higher than true curves. Thus, with
increasing r, we increasingly overestimate the worst-case
Gallager function, hence also overestimate the resulting error
exponent.

APPENDIX A
PROOF OF THEOREM 1

The problem is formulated as

Eiid
0 = min

W∈B
sup
s≥0

− logEQX×W [εs,0,ρ(X,Y )] (34)

= sup
s≥0

min
W∈B

− logEQX×W [εs,0,ρ(X,Y )] (35)

= sup
s≥0

− log max
W∈B

∑
x,y

QX(x)W (y|x)εs,0,ρ(x, y). (36)



The expectation is convex with respect to W and concave with
respect to s [1, Ch. 2.3], and the constraints are convex in W ,
hence we apply the minimax theorem [8] to flip the order of
optimizations from (34) to (35). The minimization is moved
inside the logarithm and the expectation written in full (36).

Using θ(y|x) = W (y|x)− Ŵ (y|x), the inner maximization
can be rewritten as

max
W∈B

∑
x,y

QX(x)
(
Ŵ (y|x) + θ(y|x)

)
εs,0,ρ(x, y) (37)

= e−EML
s,ρ(QX ,Ŵ ) + max

W∈B

∑
x,y

QX(x)θ(y|x)εs,0,ρ(x, y) (38)

with EML
s,ρ (QX , Ŵ ) as defined in (16).

The maximization problem is vectorized and then solved
using the standard Lagrangian method. More specifically, we
vectorize the constraint and cost function of the maximization
in (38) using the auxiliary vector

θ =
[
θ(y1|x1), . . . , θ(y|Y||x1), θ(y1|x2), . . . , θ(y|Y||x|X |)

]T
(39)

and turn the maximization into

Eiid
s,ρ = max

d(θ)+o(d(θ))≤r

1Tjθ=0, 1≤j≤|X|

e−EML
s,ρ(QX ,Ŵ ) + θTE (40)

= max
d(θ)≤r

1Tjθ=0, 1≤j≤|X|

e−EML
s,ρ(QX ,Ŵ ) + θTE + o(r) (41)

under the following definitions

d(θ) =
1

2
θTK(Ŵ )θ (42)

K(Ŵ ) = diag

(
QX(x1)

Ŵ (y1|x1)
, . . . ,

QX(x|X |)

Ŵ (y|Y||x|X |)

)
(43)

1j = [0 . . . 0 1(1,j) . . . 1(|Y|,j) 0 . . . 0]T (44)

E = [QX(x1)εs,0,ρ(x1, y1), . . . ,

QX(x|X |)εs,0,ρ(x|X |, y|Y|)]
T . (45)

In the optimization problem, the 1T
j θ = 0 constraints ensure

that for every xj ∈ X ,
∑

y W (y|xj) = 1. The constraint
d(θ) + o(d(θ)) ≤ r in (40) is a rewriting of (9) from d(θ)
in (42). For r sufficiently small, the approximation error term
can be omitted from the constraint, as d(θ) ≤ r, translating
the same error to the cost function, which will incur an error
of order o(d(θ)) = o(r). The approximation becomes accurate
as r → 0, as shown numerically. We do not explicitly impose
any positivity constraint on W since a sufficiently small r ≥
0 exists such that the positivity of the resulting conditional
distribution is guaranteed.

Problem (41) is linear in θ with linear and quadratic
constraints, so the KKT conditions are necessary and sufficient
[9]. The standard Lagrangian method is used to solve it.

APPENDIX B
PROOF OF THEOREM 2

The structure of the proof of Theorem 2 follows that of
its i.i.d. counterpart in Appendix A closely. Recall that we
performed a Taylor expansion of the cost function (23) and
thus wish to solve (24). Upon applying the minimax theorem
to (24), we cannot further move the minimization inside the
logarithm. Therefore, in place of (40), we now solve

Ecc
0 = min

d(θ)+o(d(θ))≤r

1Tjθ=0, 1≤j≤|X|

EML
s,a,ρ(QX , Ŵ )− θTE + o(θTE) (46)

where EML
s,a,ρ(QX , Ŵ ) is defined in (27) and vector E in (45).

We deal with the order terms in the constraint and objective
function as follows. As r → 0, the constraint is dominated by
the first term, and can be rewritten as d(θ) ≤ r. This results in
an additional error o(d(θ)) = o(r) in the objective function.
Next, the error term in the objective function is o(θTE) =
o(∥θ∥∞) = o(

√
r). The result follows from writing o(d(θ)) =

o(∥θ∥2∞) and o(d(θ)) = o(r), and consequently o(∥θ∥∞) =
o(
√
r). Therefore, we have

Ecc
0 = min

d(θ)≤r

1Tjθ=0, 1≤j≤|X|

EML
s,a,ρ(QX , Ŵ )− θTE + o(

√
r) (47)

We have omitted the o(r) term corresponding to approximating
relative entropy as it is negligible in front of o(

√
r), the error

committed to linearizing the error exponent.
From here, we mimic the derivation in Appendix A to obtain

the final result.
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