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Abstract—We derive finite-memory upper and lower bounds
to the entropy rate of binary 2-state hidden Markov models.
These directly provide upper and lower bounds to the capacity of
the Gilbert-Elliott channel. As the memory increases, the bounds
approach the capacity of the channel. Our numerical experiments
suggest that even a simple memory-1 upper bound significantly
improves over the current best upper bound by Mushkin and
Bar-David.

I. INTRODUCTION

A hidden Markov model (HMM) is a stochastic process
that can be seen as a noisy observation of a Markov chain.
It is characterized by a set of underlying Markovian states
emitting observable symbols with certain probabilities. Unlike
a Markov process whose next state only depends on a fixed
number of previous states, the transition probabilities for an
HMM depend on the entire history of the process, assuming
that the underlying Markov chain is unknown. This makes the
entropy rate calculation a fundamentally hard problem, and
even for a binary symmetric HMM no closed-form expression
seems to be known [1].
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Fig. 1. Gilbert-Elliott channel model.

The Gilbert-Elliott channel [2], [3] is an elementary binary-
input binary-output finite-state channel (FSC) described by the
two-state Markov chain in Fig. 1. It can be interpreted as an
additive noise channel where the noise sample at time i, Zi,
depends on all previous noise samples Zi−1 , (Z1, . . . , Zi−1).
This noisy process Zi can be seen as a HMM with the

transition matrix P ,

[
1− b b
g 1− g

]
and the emission

probability matrix Π ,

[
1− δg δg
1− δb δb

]
. Reference [4] defined
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the channel memory as µ , 1 − g − b. For µ > 0, the
channel has a persistent memory, whereas for µ < 0 it has an
oscillatory memory. When µ = 0 the channel is memoryless,
i.e. the current state is independent of all previous states.
We denote the channel input, output, and noise sequences
xn, yn, zn ∈ {0, 1}n, where n is the length of the sequences.

Similarly to [4], we define qi ∈ [0, 1] as the conditional
probability

qi(z
i−1) , Pr(zi = 1|zi−1) (1)

under the assumption 0 < δg < δb < 0.5. It was shown [2]
that the following recursion holds

qi ,

{
δg + b(δb − δg) + µ(qi−1 − δg) 1−δb

1−qi−1
, zi−1 = 0

δg + b(δb − δg) + µ(qi−1 − δg) δb
qi−1

, zi−1 = 1
(2)

The initial value of this recursion is

q0 = Pr(z0 = 1) = πGδg + πBδb (3)

where [πG, πB ] =
[
g
g+b ,

b
g+b

]
is the stationary distribution of

the Markov chain that defines the channel (see Fig. 1).
In this paper, we develop a series of fixed-memory upper

and lower bounds to the entropy rate of binary 2-state HMMs.
These directly provide upper and lower bounds to the channel
capacity of the Gilbert-Elliott channel CGE. We first describe
the idea using a simple memory-1 example and then generalize
the result to arbitrary fixed memory. After presenting the
algorithms to compute the series of bounds, we discuss through
examples our observations for the persistent and oscillatory
cases.

II. MEMORY-1 BOUNDS

Since both the underlying Markov chain and the emission
probabilities are stationary, the hidden Markov noise process
is also stationary [5]. Therefore, by using the recursion given
in (2), we can compute

q∞(0) , lim
i→∞

qi(0
i−1) (4)

= δg + b(δb − δg) + µ[q∞(0)− δg]
1− δb

1− q∞(0)
(5)

which solving for q∞(0) gives

q∞(0) =
g + b+ (1− g)δb + (1− b)δg −

√
∆0

2
(6)



where ∆0 = [g+ b+ (1− g)δb + (1− b)δg]2− 4(gδg + bδb +
µδgδb). Similarly, we can write

q∞(1) , lim
i→∞

qi(1
i−1) (7)

=
(1− b)δg + (1− g)δb +

√
∆1

2
(8)

where ∆1 = (1− b)2δ2g + (1− g)2δ2b + 2(bg−µ)δgδb. For the
oscillatory case it will be helpful to define the following

q̃∞(01) , lim
i→∞

qi(0101 · · · 01) (9)

q̃∞(10) , lim
i→∞

qi(1010 · · · 10), (10)

which can be computed in a similar manner. Observe that since
δb ≤ q∞ ≤ δg, all solutions admit only one solution each.

It can be observed in (2) that qi(zi−1) depends only on
qi−1(zi−2) and the influence of earlier time instants is weaker.
This loss of influence happens at an exponential rate [6], so the
HMM modeling the Gilbert-Elliott channel can be efficiently
simulated without having to keep track of the entire past. Since
qi(z

i−1) < δb, we have that

1− δb
1− qi(zi−1)

<
δb

qi(zi−1)
(11)

This observation together with the recursion in (2) implies that
for a persistent channel (µ > 0), we have that

qi(z
i−20) ≤ qi(zi−21). (12)

The inequality in (12) is reversed for oscillatory channels (µ <
0).

Since both functions qi(z
i−1)−δg

1−qi(zi−1) and qi(z
i−1)−δg

qi(zi−1) increase
monotonically with qi(zi−1), we know from (2) that qi(zi−1)
increases monotonically with qi−1(zi−2) for a persistent chan-
nel whereas it decreases monotonically with qi−1(zi−2) for an
oscillatory channel. Together with the observation in (12), we
have that for a persistent channel, qi(zi−1) is bounded by the
all-zero and all-one sequences, specifically

qi(0
i−1) ≤ qi(zi−1) ≤ qi(1i−1) (13)

and qi(z
i−1) for the oscillatory channel is bounded by the

alternating sequences, i.e.,

qi(01 · · · 01) ≤ qi(zi−1) ≤ qi(10 · · · 10) (14)

In the persistent case, we know from (2) that

qi(z
i−20) = δg + b(δb − δg) + µ(1− δb)

qi−1(zi−2)− δg
1− qi−1(zi−2)

(15)

≥ δg + b(δb − δg) + µ(1− δb)
qi−1(0i−2)− δg
1− qi−1(0i−2)

(16)

= qi(0
i−1) (17)

where the inequality follows from (13) and the fact that
qi(z

i−1)−δg
1−qi(zi−1) increases monotonically with qi(z

i−1) within the
domain. Similarly, for zi−1 = 1 we can write

qi(z
i−21) = δg + b(δb − δg) + µδb

qi−1(zi−2)− δg
qi−1(zi−2)

(18)

≥ δg + b(δb − δg) + µδb

(
1− δg

qi−1(0i−2)

)
(19)

= qi(0
i−21) (20)

The upper bound can be derived similarly. By putting every-
thing together, we have that for a ∈ {0, 1}

qi(0
i−2a) ≤ qi(zi−2a) ≤ qi(1i−2a). (21)

Since the binary entropy function h(p) , −p log p − (1 −
p) log(1 − p) is monotonically increasing for p ∈ [0, 0.5], we
can thus write for a persistent channel that

h
(
qi(0

i−2a)
)
≤ h

(
qi(z

i−2a)
)
≤ h

(
qi(1

i−2a)
)
. (22)

Using exactly the same arguments for oscillatory channels, we
have that

h
(
qi+1(01 · · · 01a)

)
≤ h

(
qi+1(zi−1a)

)
≤ h

(
qi+1(10 · · · 10a)

)
(23)

Armed with these observations, we can bound the probabil-
ity of having active noise at time instant i by

PZi(1) =
∑
zi−1

PZi−2Zi−1
(zi−2zi−1)qi(z

i−2zi−1) (24)

≥
∑
zi−1

PZi−1
(zi−1)qi(0

i−2zi−1) (25)

= PZi−1(0)qi(0
i−20) + PZi−1(1)qi(0

i−21) (26)

Since the HMM is stationary from previous discussion, we
know that symbols Zi+ki+1 have the same probability distribution
as Zk1 for all i ≥ 1 and all k ≥ 1. Specifically, we can write that
PZi−1(1) = PZi(1) for large i. Then by denoting q∞(01) ,
limi→∞ qi(0

i−21), we express the stationary behavior of (26)
as

p1 ≥ p0q∞(0) + p1q∞(01) (27)

where

p0 = lim
i→∞

PZi(0), p1 = lim
i→∞

PZi(1) (28)

Together with p0 + p1 = 1, we get

p1 ≥
q∞(0)

1 + q∞(0)− q∞(01)
(29)

Similarly, by substituting the upper bound in (21) into (24),
we get

p1 ≤
q∞(10)

1 + q∞(10)− q∞(1)
(30)

where q∞(10) , limi→∞ qi(1
i−20).



We now proceed to use the memory-1 model to bound the
entropy rate of the HMM, defined as H∞(Z). For persistent
channels, we have

H∞(Z)

= lim
n→∞

1

n

n∑
i=1

H(Zi|Zi−1) (31)

= lim
n→∞

1

n

n∑
i=1

∑
zi−1

PZi−1(zi−1)h
(
qi(z

i−1)
)

(32)

= lim
n→∞

1

n

n∑
i=1

∑
zi−2

∑
zi−1

PZi−2Zi−1
(zi−2zi−1)h

(
qi(z

i−2zi−1)
)

(33)

≥ lim
n→∞

1

n

n∑
i=1

∑
zi−1

PZi−1(zi−1)h
(
qi(0

i−2zi−1)
)

(34)

= lim
n→∞

1

n

n∑
i=1

PZi−1(0)h
(
(qi(0

i−20)
)

+ PZi−1(1)h
(
qi(0

i−21)
)

(35)

= p0h
(
q∞(0)

)
+ p1h

(
q∞(01)

)
(36)

= h
(
q∞(0)

)
+ p1[h

(
q∞(01)

)
− h
(
q∞(0)

)
] (37)

≥ h
(
q∞(0)

)
+

q∞(0)

1 + q∞(0)− q∞(01)
[h
(
q∞(01)

)
− h
(
q∞(0)

)
]

(38)

=
1− q∞(01)

1 + q∞(0)− q∞(01)
h
(
q∞(0)

)
+

q∞(0)

1 + q∞(0)− q∞(01)
h
(
q∞(01)

)
(39)

where (32) follows from spelling out H(Zi|Zi−1), (34) fol-
lows from (22) and the inequality (38) is a result of (29). The
corresponding upper bound can be computed using the same
arguments, giving

H∞(Z) ≤ 1− q∞(1)

1 + q∞(10)− q∞(1)
h
(
q∞(10)

)
+

q∞(10)

1 + q∞(10)− q∞(1)
h
(
q∞(1)

)
. (40)

Therefore, the memory-1 capacity bounds for a persistent
Gilbert-Elliott channel can be written as

log 2− pᵀ

[
h
(
q∞(10)

)
h
(
q∞(1)

) ] ≤ CGE ≤ log 2− pᵀ

[
h
(
q∞(0)

)
h
(
q∞(01)

)]
(41)

where p and p are upper and lower bound of the distribution
p , [p0, p1]ᵀ, respectively given in (29) and (30). Likewise,
we can show that the channel capacity for an oscillatory
channel is bounded in the same way by replacing q∞(0),
q∞(1), q∞(01) and q∞(10) by q̃∞(01), q̃∞(10), q̃∞(011) and
q̃∞(100), respectively.

We illustrate the proposed bounds through an example
of a persistent Gilbert-Elliott channel with parameters b =
0.15, g = 0.3 and δb = 0.4. The solid and dashed blue lines
correspond to the upper and lower memory-1 capacity bounds
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Fig. 2. Bounds for a Gilbert-Elliott channel with parameters b = 0.15, g =
0.3, δb = 0.4.
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Fig. 3. Bounds for a Gilbert-Elliott channel with parameters b = 0.7, g =
0.85, δb = 0.4.

respectively; the dotted line represents the simulated capacity
plotted using the coin-tossing method [7] with n = 106; the
dash-dotted curve stands for the generalized mutual informa-
tion (GMI) of the channel [8] applied to the Gilbert-Elliott
model with a memoryless decoding metric [9], and the red
curve depicts the upper bound derived by Mushkin and Bar-
David [4]. As was shown in [9], the GMI coincides with
Mushkin and Bar-David’s lower bound to the capacity. The
figure shows that the GMI provides a much tighter lower bound
whereas the memory-1 upper bound significantly outperforms
Mushkin and Bar-David’s upper bound [4]. As will be shown
in Section III, lower bounds with higher memory orders
outperform the GMI.

Figure 3 plots the memory-1 upper and lower bounds for
an oscillatory channel with parameters b = 0.7, g = 0.85 and



δb = 0.4. Again, although the GMI provides a better lower
bound, the memory-1 upper bound significantly outperforms
Mushkin and Bar-David’s [4].

III. GENERAL FIXED-MEMORY BOUNDS

For persistent channels, one can easily show from (21) by
induction that for any memory m = 1, 2, 3, . . .

qi+m(0i−1am1 ) ≤ qi+m(zi−1am1 ) ≤ qi+m(1i−1am1 ). (42)

By defining q̄i(zi−1) , 1− qi(zi−1), we have

q̄i+m(1i−1am1 ) ≤ q̄i+m(zi−1am1 ) ≤ q̄i+m(0i−1am1 ). (43)

We can then bound the joint distribution of the noise at time
instant i+ 1, i+ 2, · · · , i+m using a similar approach to that
described in Section II. For example, for m = 2, we have

PZi+2
i+1

(01)

=
∑
zi

PZi(zi−2zi−1zi)q̄i+1(zi−2zi−1zi)qi+2(zi−1zi0) (44)

≥
∑
zi

PZi(zi−2zi−1zi)q̄i+1(1i−2zi−1zi)qi+2(0i−1zi0) (45)

Again, due to the stationarity of the HMM, we can write that

p01 ≥ p00q̄∞(100)q∞(0) + p01q̄∞(101)q∞(010)+

p10q̄∞(110)q∞(0) + p11q̄∞(1)q∞(010)
(46)

where for a, b ∈ {0, 1}

pab , lim
i→∞

PZi+2
i+1

(a, b). (47)

Similar inequalities can be written for each pair a, b ∈ {0, 1}.
Since p00 + p01 + p10 + p11 = 1, we will have 3 out of 4 in-
dependent inequalities. We can thus compute the lower bound
p by solving (A− I)p = b where A is defined at the bottom
of the page and p = [p

00
, p

01
, p

10
, p

11
]ᵀ, b = [0, 0, 0, 1]ᵀ.

Similarly, the upper bound p̄ can be computed by substitut-
ing the upper bounds in (42) and (43) into (44). In general,
the upper and lower bounds of the limiting joint distribution
for the memory-m case can be computed by solving systems
of linear equations.

By keeping track of the past m noise symbols, we generalize
our previous memory-1 entropy rate bounds from (32) to

H∞(Z)

= lim
n→∞

1

n

n∑
i=1

∑
zi−m−1

∑
zi−1
i−m

PZi−1(zi−1)h
(
qi(z

i−m−1zi−1i−m)
)

(49)

≥ lim
n→∞

1

n

n∑
i=1

∑
zi−1
i−m

PZi−1
i−m

(zi−1i−m)h
(
qi(0

i−m−1zi−1i−m)
)

(50)

= pᵀ

h
(
q∞(00m)

)
...

h
(
q∞(01m)

)
 (51)

where the inequality follows from (43) and the mono-
tonicity of the h(p) for p ∈ [0, 0.5]. We have defined
q∞(0zm) , limi→∞ qi(0

i−m−1zm) and we denote vector
p , [p0m , · · · , p1m ]ᵀ with pzm , PZm(zm).

Similarly, we obtain the upper bound by replacing q∞(0zm)
with q∞(1zm) , limi→∞ qi(1

i−m−1zm), which leads to the
following theorem.

Theorem 1. For any fixed m, the channel capacity of a
persistent Gilbert-Elliott channel CGE = log 2−H∞(Z), can
be bounded using the following bounds on the entropy rate of
the induced HMM H∞(Z)

pᵀ



h
(
q∞(00m)

)
...

h
(
q∞(0zm)

)
...

h
(
q∞(01m)

)

 ≤ H∞(Z) ≤ p̄ᵀ



h
(
q∞(10m)

)
...

h
(
q∞(1zm)

)
...

h
(
q∞(11m)

)

 . (52)

For any odd m, the entropy rate H∞(Z) of an oscillatory
Gilbert-Elliott channel can be bounded as

pᵀ



h
(
q̃∞(010m)

)
...

h
(
q̃∞(01zm)

)
...

h
(
q̃∞(011m)

)

 ≤ H∞(Z) ≤ p̄ᵀ



h
(
q̃∞(100m)

)
...

h
(
q̃∞(10zm)

)
...

h
(
q̃∞(101m)

)


(53)

where we define q̃∞(01zm) , limi→∞ qi(01 · · · 01zm) and
q̃∞(10zm) , limi→∞ qi(10 · · · 10zm). For even m, the upper
and lower bounds are exchanged.

As we have seen previously, one can recover the channel
capacity by setting the memory m → ∞. Figure 4 plots

A =


q̄∞(100)2 q̄∞(101)q̄∞(110) q̄∞(110)q̄∞(100) q̄∞(1)q̄∞(110)

q̄∞(100)q∞(0) q̄∞(101)q∞(010) q̄∞(110)q∞(0) q̄∞(1)q∞(010)
q∞(0)q̄∞(101) q∞(001)q̄∞(1) q∞(010)q̄∞(101) q∞(011)q̄∞(1)

1 1 1 1

 (48)
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Fig. 4. Bounds for a persistent Gilbert-Elliott channel with parameters b =
0.15, g = 0.3, δb = 0.4.

the series of bounds for a persistent channel with the same
parameters as in Fig. 2. The bounds get tighter as the memory
increases. Our numerical simulations suggest that the fixed-
memory upper bounds manifestly outperform the one derived
by Mushkin and Bar-David, and the memory-5 lower bound
can do better than the GMI for small δg. As is apparent from
the figure, the memory-5 bounds already almost coincides with
the simulated capacity curve.

Similarly, Figure 5 shows the bounds for an oscillatory
Gilbert-Elliott channel with the parameters b = 0.7, g =
0.85, δb = 0.4. It is again clear from the plot that the
fixed-memory bounds approach the capacity as the memory
increases.
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Fig. 5. Bounds for an oscillatory Gilbert-Elliott channel with parameters
b = 0.7, g = 0.85, δb = 0.4.

IV. CONCLUSION

We have introduced a family of upper and lower bounds
to the entropy rate of binary two-state HMMs. The proposed
bounds only account for a finite memory of the process, and
yield powerful bounds to the capacity of the Gilbert-Elliott
channel.
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