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Abstract—We derive a lower bound to the error exponent of
the Gilbert-Elliott channel by means of mismatched decoding.
The corresponding achievable rate, the generalized mutual infor-
mation, is shown to coincide with the lower bound of Mushkin
and Bar-David.

I. INTRODUCTION

The Gilbert-Elliott channel [1], [2] is an elementary binary-
input binary-output finite-state channel (FSC) described by
the two-state Markov chain in Fig. 1. When the channel
is in the ‘good’ state, transmission occurs over a ‘good’
binary-symmetric channel (BSC) with crossover probability δg.
Similarly, when the channel is in the ‘bad’ state, transmission
occurs over a ‘bad’ BSC with crossover probability δb. In other
words, the channel transition law W (y|x, s) is determined by
the BSC corresponding to the state. Reference [3] defined
the channel memory as µ , 1 − g − b. For µ > 0, the
channel has a persistent memory, whereas for µ < 0 it has
an oscillatory memory. When µ = 0 the channel is said to
be memoryless, i.e. the current state is independent of all
previous states. The Gilbert-Elliott channel is known to be
indecomposable, i.e., the effect of the initial state dies away
with time [4, Sec. 4.6]. We denote the stochastic Markov

transition matrix by Γ ,

[
pGG pGB
pBG pBB

]
=

[
1− b b
g 1− g

]
and

denote by [πG, πB ] =
[
g
g+b ,

b
g+b

]
the stationary distribution of

the Markov chain that defines the channel (see Fig. 1).
We define the channel input and output sequences xn, yn ∈

{0, 1}n, where n is the length of the sequences. We consider
reliable transmission of M messages over the Gilbert-Elliott
channel described above. Each message is assigned a codeword
from a codebook C = {xn1 , . . . , xnM}. The rate of the code is
defined as R = 1

n logM . The channel capacity of the Gilbert-
Elliott channel has been studied in a number of works but
no single-letter closed-form expression has yet been found.
Reference [3] derived upper and lower bounds to the capacity,
which was numerically evaluated in [5]. Since the underlying
channels are BSCs, the capacity is attained by an equiprobable
input distribution Q(0) = Q(1) = 1

2 .
In this paper, we develop a mismatched decoding (see

e.g. [6] and references therein) approach to coding over the
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Fig. 1. Gilbert-Elliott channel model.

Gilbert-Elliott channel. Specifically, we derive a lower bound
to the error exponent by means of mismatched decoding,
employing a memoryless decoding metric corresponding to a
single BSC. We show that the corresponding achievable rate,
the generalized mutual information (GMI) [7], coincides with
the bound derived by Mushkin and Bar-David [3].

II. MISMATCHED DECODING

Mismatched decoding arises in situations where the decoder
does not employ a maximum-likelihood decoder, but instead
uses a maximum-metric decoder with a sub-optimal decoding
metric qn(xn, yn) [6]. This occurs in a number of cases
of relevance such as channel uncertainty, reduced-complexity
decoding, bit-interleaved coded modulation, and zero-error
communication [6]. In addition, mismatched decoding is em-
ployed to derive achievable information rates in situations
where the channel capacity does not admit simple expressions.
In these instances, a decoding metric that somehow simplifies
the derivation is chosen. In this paper, although the channel
has memory, we will assume a decoding metric that ignores
this memory, i.e.,

qn(xn, yn) =

n∏
i=1

q(xi, yi). (1)

Specifically, we will assume that q(x, y) is the channel transi-
tion probability of a single BSC with a crossover probability
that depends on the Gilbert-Elliott channel parameters.

Following the footsteps of Gallager [4, Sec. 5.9], it can be
shown that there exists a code of rate R and length n such that
the error probability for a given message m, given the initial
state s0, can be bounded by

Pe,m(s0) ≤ e−n(Er(R)−ε) (2)



for any ε > 0, and sufficiently large n, where

Er(R) = max
0≤ρ≤1

sup
τ≥0

F∞(ρ, τ)− ρR (3)

with F∞(ρ, τ) = limn→∞ Fn(ρ, τ),

Fn(ρ, τ) = max
QXn

min
s0

E0,n(ρ, τ,QXn , s0) (4)

E0,n(ρ, τ,QXn , s0)

= − 1

n
logE

[(∑
x̄n

Q(x̄n)
qn(x̄n, Y n)τ

qn(Xn, Y n)τ

)ρ]
(5)

where E[·] denotes the expectation over the joint distribution
given the initial state P (xn, yn|s0). The E0 function will be
denoted by E0,n(ρ, τ) by leaving the dependencies on input
distribution and initial state implicit. This exponent naturally
leads to the following generalized mutual information rate

Igmi = sup
τ≥0

lim
n→∞

1

n
E
[

log
qn(Xn, Y n)τ∑

x̄n Q(x̄n)q(x̄n, Y n)τ

]
. (6)

III. GILBERT-ELLIOTT ERROR EXPONENT

Let sn be a binary state sequence of length n and let nG be
the number of good states in sn. Define the set of all sequences
with nG good states as T nnG

; this is the binary type class of
type nG

n . Also, let Eg
0 (ρ, τ) and Eb

0 (ρ, τ) be the mismatched
E0 functions corresponding to the good and bad BSCs with
decoding crossover probabilities δq , and define ∆E0(ρ, τ) ,
Eb

0 (ρ, τ)−Eg
0 (ρ, τ). By spelling out the expectation in (5) and

marginalizing over state sequences sn, we have that∑
sn

P (sn)
∑
xn,yn

P (xn, yn|sn)

(∑
x̄n Q(x̄n)qn(x̄n, yn)τ

qn(xn, yn)τ

)ρ
(7)

=
∑
sn

P (sn)

n∏
i=1

∑
xi,yi

P (xi, yi|si)
(∑

x̄Q(x̄)q(x̄, yi)
τ

q(xi, yi)τ

)ρ
(8)

=

n∑
nG=0

∑
s̄n∈T n

nG

P (s̄n)e−nGE
g
0 (ρ,τ)e−(n−nG)Eb

0 (ρ,τ) (9)

= e−nE
b
0 (ρ,τ)

n∑
nG=0

∑
s̄n∈T n

nG

P (s̄n)enG∆E0(ρ,τ) (10)

where (8) holds since we assume a product input distribution, a
memoryless decoding metric, and the fact that P (xn, yn|sn) =∏n
i=1 P (xi, yi|si), and (9) follows from re-writing as a func-

tion of nG. We rewrite (10) as the expectation over the random
variable NG with Pr{NG = nG} =

∑
s̄n∈T n

nG

P (s̄n) as

F∞(ρ, τ) = Eb
0 (ρ, τ)− lim

n→∞

1

n
logE

[
eNG∆E0(ρ,τ)

]
. (11)

In order to calculate the error exponent of the Gilbert-
Elliott channel we need to find limn→∞E0,n(ρ, τ). To this
end, define the Markov composition of a given sequence sn

as A(sn) ,

[
nGG nGB
nBG nBB

]
, where njk stands for the number

of transitions from state j to state k, j, k ∈ {G,B}. By

normalizing this matrix we get Φ(sn) ,

[
fGG fGB
fBG fBB

]
where

fjk = njk/nj with nj representing the number of state j in
sequence sn. Similarly we define the empirical distribution
as F (sn) , [fG, fB ] where fj = nj/n, and by construction
F (sn) is the stationary distribution for Φ(sn).

The probability of a given sequence sn with Markov com-
position A(sn) can be expressed as [8]

P (sn) = pnGG

GG pnGB

GB pnBG

BG pnBB

BB (12)

= exp

[ ∑
j,k∈{G,B}

njk log pjk

]
(13)

= exp

[
n

∑
j∈{G,B}

fj
∑

k∈{G,B}

fjk log pjk

]
(14)

= exp

[
n

∑
j∈{G,B}

fj
∑

k∈{G,B}

fjk log
pjk
fjk

+ fjk log fjk

]
(15)

= exp

[
− n

∑
j∈{G,B}

fj

(
D(Φ(j)‖Γ(j)) +H(Φ(j))

)]
(16)

= exp
[
− n

(
D(Φ‖Γ|F ) +H(Φ|F )

)]
(17)

where (14) follows directly from the previous definition; (17)
holds since D(Φ‖Γ|F ) is the conditional relative entropy
between the rows of Φ and those of Γ, that is

D(Φ‖Γ|F ) = fG

(
fGG log

fGG
pGG

+ fGB log
fGB
pGB

)
+ fB

(
fBG log

fBG
pBG

+ fBB log
fBB
pBB

)
.

(18)

Since nj =
∑
k njk =

∑
k nkj , symmetry property nGB =

nBG holds. Thus, the Markov type of a length-n sequence is
determined if nG and nGG are known. Thus,

∑
s̄n∈T n

nG

P (s̄n) =

nG∑
nGG=0

∑
s̄n∈An

nG,nGG

pnGG

GG pnGB

GB pnBG

BG pnBB

BB

(19)

=

nG∑
nGG=0

∣∣AnnG,nGG

∣∣e−n[D(Φ‖Γ|F )+H(Φ|F )]

(20)

where AnnG,nGG
is the set of sequences with Markov type

described by nG and nGG. Davisson et al. [8] showed that
for a two-state Markov transition,

∣∣AnnG,nGG

∣∣ .= enH(Φ|F ) (21)



where the notation an
.
= bn means that limn→∞

1
n log an

bn
= 0.

Substituting this into (20), we get∑
s̄n∈T n

nG

P (s̄n)
.
=

nG∑
nGG=0

e−nD(Φ‖Γ|F ) (22)

.
= max
nGG∈[0,nG]

e−nD(Φ‖Γ|F ) (23)

= e−nD
∗(Φ‖Γ|F ) (24)

where we denote D∗(Φ‖Γ|F ) , minfGG∈[0,fG]D(Φ‖Γ|F ).

Lemma 1. The minimum relative entropy in (24) is given by

D∗(Φ‖Γ|F )

=

{
fG log bg−β+2µfG

2(1−b)µfG + fB log bg−β+2µfB
2(1−g)µfB (µ 6= 0)

fG log fG
g + fB log fB

b (µ = 0)

(25)

and it is achieved when

f∗GG =

{
bg+2µfG−β

2µfG
µ 6= 0,

fG µ = 0.
(26)

where β =
√
b2g2 + 4bgµfGfB .

Observe that D∗(Φ‖Γ|F ) is a function of fG and the
channel parameters. The divergence becomes zero if and only
if Φ = Γ. In other words, the empirical distribution is exactly
equal to the stationary distribution, namely

min
fG∈[0,1]

D∗(Φ‖Γ|F ) = D∗(Φ‖Γ|F )
∣∣
fG=πG

= 0. (27)

To see this, we differentiate w.r.t. fG, which gives

∂D∗(Φ‖Γ|F )

∂fG
= log

(1− g)fBf
∗
GG

(1− b)(fB − fG + fGf∗GG)
= 0 (28)

for µ 6= 0. We find that fG = πG and we write f∗GG = 1− b,
which by substituting back to (25), we get D∗(φ‖Γ|F ) = 0,
which is achieved uniquely at fG = πG.

Applying the LogSumExp(LSE) inequality maxi ai ≤
log
∑n
i=1 exp(ai) ≤ log n+maxi ai and substituting (24) into

(11), 67we obtain

F∞(ρ, τ)

= Eb
0 (ρ, τ)− lim

n→∞

1

n
max

nG∈[0,n]

[
nG∆E0(ρ, τ)− nD∗(Φ‖Γ|F )

]
(29)

= Eb
0 (ρ, τ)− max

λ∈[0,1]

[
λ∆E0(ρ, τ)−D∗(Φ‖Γ|F )

∣∣
fG=λ

]
(30)

where the last equation holds by interchanging the maxi-
mum and limit as a result of the function inside the square
bracket of (29) being uniformly continuous, and we denote
λ , limn→∞

nG

n .
It can be shown that the function λ∆E0(ρ, τ) −

D∗(Φ‖Γ|F )
∣∣
fG=λ

is concave in λ. Thus, the maximum value
can be found by equating the partial derivative to zero. which
leads to the optimizing λ∗

λ∗ =

√
α− 1 + g + (1− b)e∆E0(ρ,τ)

2
√
α

(31)

with α = (1− g)2 + 2(bg−µ)e∆E0(ρ,τ) + (1− b)2e2∆E0(ρ,τ).
By construction λ∗ is independent of the blocklength, and
substituting λ∗ into (30) gives rise to the following theorem.

Theorem 1. The mismatched Gilbert-Elliott F∞ function is
equal to

F∞(ρ, τ) = λ∗Eg
0 (ρ, τ)+(1−λ∗)Eb

0 (ρ, τ)+D∗(Φ‖Γ|F )|fG=λ∗

(32)
with λ∗ given in (31).

For memoryless channels with µ = 0, i.e., the current state
is independent of all previous states, we have

λ∗ =
ge∆E0(ρ,τ)

b+ ge∆E0(ρ,τ)
. (33)

Together with (25), Theorem 1 can be written in the form

F∞(ρ, τ) = Eb
0 (ρ, τ)− log

(
b+ ge∆E0(ρ,τ)

)
. (34)

Observe that applying Jensen’s inequality to (11) yields

E0,n(ρ, τ) ≤ Eb
0 (ρ, τ)− E[NG]

n
∆E0(ρ, τ). (35)

Since the definition of stationarity implies

lim
n→∞

E[NG]

n
= πG (36)

this gives the simple upper bound

F∞(ρ, τ) ≤ πGEg
0 (ρ, τ) + πBE

b
0 (ρ, τ). (37)

IV. GENERALIZED MUTUAL INFORMATION

In this section, we study the GMI of the Gilbert-Elliott
channel. We write the GMI as

Igmi = sup
τ≥0

Igmi(τ). (38)

We rewrite (6) using the assumption of memoryless decoding
metric as stated in (1)

Igmi(τ) = lim
n→∞

1

n
E
[ n∑
i=1

log
q(Xi, Yi)

τ∑
x̄Q(x̄)q(x̄, Yi)τ

]
(39)

= lim
n→∞

1

n

∑
sn

P (sn)
∑
xn,yn

P (xn, yn|sn, s0)

×
n∑
i=1

log
q(xi, yi)

τ∑
x̄Q(x̄)q(x̄, yi)τ

(40)

= lim
n→∞

1

n

∑
sn

P (sn)

n∏
i=1

∑
xi,yi

P (xi, yi|si)

×
n∑
j=1

log
q(xj , yj)

τ∑
x̄Q(x̄)q(x̄, yj)τ

(41)

where (40) follows by marginalizing over the state sequence sn

and (41) uses the fact that the state sequence is independent of
the input sequence. Using the distributive law of multiplication
and the fact that the term inside the logarithm only selects
the corresponding joint probability while the rest will sum



up to one, we can express the GMI in terms of conditional
expectation as

Igmi(τ) = lim
n→∞

1

n

∑
sn

P (sn)

n∑
i=1

E
[

log
q(Xi, Yi)

τ∑
x̄Q(x̄)q(x̄, Yi)τ

∣∣∣∣Si]
(42)

= lim
n→∞

1

n

∑
sn

P (sn)

n∑
i=1

Isigmi(τ) (43)

which is a general expression for FSCs with state transition
being independent of the input sequence under any memoryless
decoding metric. For the Gilbert-Elliott channel using the same
argument as before, we can write

Igmi(τ)

= lim
n→∞

1

n

n∑
nG=0

∑
s̄n∈T n

nG

P (s̄n)
[
nGI

g
gmi(τ) + nBI

b
gmi(τ)

]
(44)

= Ib
gmi(τ) +

[
Ig
gmi(τ)− Ib

gmi(τ)
]

lim
n→∞

E(NG)

n
(45)

which using (36) yields

Igmi = sup
τ≥0

πGI
g
gmi(τ) + πBI

b
gmi(τ), (46)

the weighted sum of the GMIs per channel, weighted by the
stationary distribution.

Given that the memoryless decoding metric q(x, y) can
be chosen arbitrarily, we select it as a BSC with crossover
probability δq with 0 < δq < 0.5. In this case, we have that

Ig
gmi(τ) = log

2

δτq + (1− δq)τ
+(1−δg) log(1−δq)τ+δg log δτq

(47)
and Ib

gmi(τ) has a similar form with δg replaced by δb. It was
shown in [6, Sec. 2] that for a given q(x, y), the GMI is a
concave maximization problem (38).

For the optimal τ , the Igmi can be shown to be concave in
δq . Then we can determine the optimal value of τ and δq that
maximize the GMI by setting the partial derivatives to zero,
yielding τ = 1 and δq = πGδg + πBδb.

Theorem 2. The GMI of the Gilbert-Elliott channel using a
mismatched BSC with crossover probability δq = πGδg +πBδb
for decoding is

Igmi = log 2− h2(πGδg + πBδb) (48)

where h2(p) , −p log p−(1−p) log(1−p) denotes the binary
entropy function. Equality in (48) is attained if and only if
µ = 0, i.e., in the memoryless case.

We illustrate Theorems 1 and 2 by means of an example
for a persistent Gilbert-Elliott channel with parameters b =
0.1, g = 0.4, δg = 0.05 and δb = 0.2. The F∞ function
given in (32) and the Jensen’s inequality upper bound in (37)
are depicted in Fig. 2 together with those for the good and
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Igm
i
=

0.4
14

ρ

F
∞

(ρ
,s

)
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0 (ρ)

Eb
0 (ρ, τ) (mismatch)

Eg
0 (ρ)

Eg
0 (ρ, τ) (mismatch)

F∞(ρ, τ), upper bound

F∞(ρ, τ) exact

Fig. 2. Function F∞ for a persistent Gilbert-Elliott channel with parameters
b = 0.1, g = 0.4, δg = 0.05 and δb = 0.2.

The capacity lower bound (48) coincides with the lower
bound Mushkin and Bar-David [3, eq. (2.31)].
bad states using a mismatched BSC with crossover probability
δq = πGδg + πBδb. The parameter τ has been optimized in
all curves. We use (48) to compute

Igmi = log 2− h2

( 0.4

0.4 + 0.1
× 0.05 +

0.1

0.4 + 0.1
× 0.2

)
(49)

= 0.414 nat/channel use (50)

which coincides with the gradient of F∞(ρ, τ) at ρ = 0. As
we observe, the upper bound is very close to F∞ for small
values of ρ.
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