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Abstract—This paper investigates achievable information rates
in mismatched decoding when the channel is close to the decoding
rule in terms of relative entropy. We derive an approximation of
the worst-case generalized mutual information as a function of
the radius of a small relative entropy ball centered at the decoding
metric, allowing to characterize the loss incurred due to good,
yet imperfect channel estimation.

I. INTRODUCTION AND PROBLEM SETUP

Mismatched decoding is the problem that studies reliable
communication employing a fixed and possibly sub-optimal
metric for decoding. Mismatched decoding encompasses a
number of important problems such as channel uncertainty, bit-
interleaved coded modulation, finite-precision arithmetic and
zero-error communication [1]. The problem is described as
follows. Consider reliable transmission of M messages over
a discrete memoryless channel with input X and output Y ,
taking values from discrete alphabets X and Y , respectively.
The input distribution is denoted by QX(x) = Pr[X = x] for
all x ∈ X and the channel transition distribution is defined
as W (y|x) = Pr[Y = y|X = x] for all (x, y) ∈ X × Y .
For transmission, the encoder transmits the n-symbol code-
word x(m) = (x

(m)
1 , . . . , x

(m)
n ) corresponding to message

m = 1, . . . ,M from the codebook Cn = {x(i)}1≤i≤M . The
decoder receives y and estimates the transmitted message as

m̂ = argmax
1≤m̄≤M

n∏
j=1

q
(
x

(m̄)
j , yj

)
. (1)

When q(x, y) = W (y|x), the decoder is said to be matched
and coincides with maximum-likelihood decoding; in any other
case, the decoder is referred to as mismatched. An error is
declared when m̂ 6= m, and the probability of error for Cn is
defined as pe(Cn) = Pr[m̂ 6= m].

A number of achievable rates for mismatched decoding have
been derived in the literature [1]. When standard i.i.d. random
coding is employed, the corresponding rate is the generalized
mutual information (GMI) [2] given by

IGMI(QX) = sup
s≥0

EQX×W

[
log

q(X,Y )s

EQX
[q(X̄, Y )s|Y ]

]
. (2)
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The GMI is known to be tight with respect to the ensemble of
i.i.d. codes [1]. In general, we have that IGMI(QX) ≤ CM,
where CM is the mismatch capacity. Although the GMI is
an achievable rate for arbitrary decoding metrics q(x, y), we
consider the case where the decoder metric is a channel
estimate Ŵ (y|x) corresponding to the output of a channel
estimator. We analyze the GMI for a mismatched decoder
that uses the channel estimate Ŵ (y|x) as if it were perfect.
We impose a constraint on the level of mismatch between
estimated and true channels by defining an appropriate distance
measure, and find the worst-case achievable rate for small
mismatch. Similarly to [3], for small mismatch between the
channel estimate Ŵ and the true channel W we require that

W ∈ B(QX , Ŵ , r) =
{
W : D(Ŵ‖W |QX) ≤ r

}
, (3)

where B(QX , Ŵ , r) is a relative entropy ball centered at Ŵ of
radius r, assumed to be small. This definition adopts a decoder-
centric perspective in which the ball is centered around the
known quantity, i.e., the channel estimate employed to decode.

One of the advantages of this formulation for sufficiently
small r is that we can resort to [4, eq. (1)–(4)] to express
the relative entropy as function of θ(y|x) ,W (y|x)−Ŵ (y|x)
minus a non-negative term of minor relevance, as

D(Ŵ‖W |QX) =

1

2

∑
x,y

QX(x)
θ2(y|x)

Ŵ (y|x)
− o
(∑

x,y

QX(x)
θ2(y|x)

Ŵ (y|x)

)
. (4)

Without loss of generality, we adopt throughout the paper
natural logarithms and information units in nats.

II. WORST-CASE GMI

In this section, we derive the worst-case GMI for small
mismatch. We begin by defining the mismatched information
density as

is(x, y) = log
Ŵ (y|x)s

EQX
[Ŵ (y|X)s]

, (5)

where s ≥ 0, for which the GMI can therefore be written as

IGMI(QX) = sup
s≥0

EQX×W [is(X,Y )]. (6)



The worst-case GMI is defined as

IGMI(QX , Ŵ , r) = min
W∈B(QX ,Ŵ ,r)

sup
s≥0

EQX×W [is(X,Y )] (7)

where the minimization is over all valid conditional probability
distributions W in the relative entropy ball B(QX , Ŵ , r). Since
the true channel is unknown, the worst-case GMI problem (7)
finds the channel that gives the worst possible GMI. This gives
an indication of the loss incurred by good (but not perfect)
channel estimation.

Theorem 1. Consider a channel estimate Ŵ and fixed input
distribution QX . Then, for sufficiently small r ≥ 0, the worst-
case GMI is

IGMI(QX , Ŵ , r)

= sup
s≥0

IML
s (QX , Ŵ )−

√
2r · Vs(QX , Ŵ )− o(r) (8)

where the term o(r) is non-negative,

IML
s (QX , Ŵ ) = E

QX×Ŵ
[
is(X,Y )

]
, (9)

and

Vs(QX , Ŵ ) = EQX

[
Var

Ŵ
[is(X,Y )|X]

]
. (10)

Proof. The proof of Theorem 1 is provided in Appendix A;
only the main steps are outlined here. We minimize the dual
expression for GMI (7) dropping the o(·) term in (4) as [4],
thus obtaining an accurate upper bound on IGMI as r → 0. The
convex minimization problem is vectorized and then solved
using the standard Lagrangian method.

In addition, observe that for a fixed Ŵ the worst-case GMI
is upper bounded by the mutual information between input and
output achieved through estimated channel Ŵ with input QX :

IGMI(QX , Ŵ , r) ≤ sup
s≥0

IML
s (QX , Ŵ ) (11)

= IMI(QX , Ŵ ). (12)

Rates above this cannot be achieved. The bound is tight at r =
0, in which case W = Ŵ and IMI(QX ,W ) = IMI(QX , Ŵ ).

Corollary 1. Let the approximate worst-case GMI be

ĨGMI(QX , Ŵ , r) = sup
s≥0

IML
s (QX , Ŵ )−

√
2r · Vs(QX , Ŵ ).

(13)

Then, the minimizing channel transition distribution is

W̃ ∗GMI(y|x) = Ŵ (y|x)
(

1−
√

2r · ϕ(x, y, is)
)

(14)

with

ϕ(x, y, is) ,
is(x, y)− E

Ŵ
[is(x, Y )]√

Vs(QX , Ŵ )

. (15)

Observe that W̃ ∗GMI is only a valid conditional probability
distribution provided it is non-negative, for which the follow-
ing condition on the radius of the divergence ball must hold
for all (x, y) ∈ X × Y , everywhere Ŵ (y|x) > 0:

r <
1

2ϕ2(x, y, is)
. (16)

The condition is not restrictive for sufficiently small r and
values of s near the optimal one. Specific examples are shown
in the simulations.

Corollary 2. The approximate worst-case GMI can be lower-
bounded by setting s = 1 as

ĨGMI ≥ IMI(QX , Ŵ )−
√

2r · V1(QX , Ŵ ) ; (17)

a tight approximation to the worst-case GMI for sufficiently
small values of r. As r → 0, the penalty term shrinks
until the estimated channel mutual information IMI(QX , Ŵ )
is achieved, above which rates cannot be achieved.

A. Example: Symmetric Ŵ and Equiprobable QX

We derive the worst-case GMI for discrete and symmetric
estimated channels Ŵ and an equiprobable input distribution
QX(x) = |X |−1 (where |X | is the cardinality of the input
set). Due to the symmetry of Ŵ , previous expressions can be
further simplified and expressed using one of its rows that we
denote Ŵsym. The approximate worst-case GMI is given by

ĨGMI(QX , Ŵ , r) = sup
s≥0

{
log

|X |∑
y Ŵsym(y)s

− sH(Ŵsym)

+

√
2r · Vs(QX , Ŵ )

}
(18)

with

Vs(QX , Ŵ ) = s2Var
Ŵsym

[log Ŵsym]

= s2
(
E
Ŵsym

[log2 Ŵsym]−H2(Ŵsym)
) (19)

and where

H(Ŵsym) = −
∑
y

Ŵsym(y) log Ŵsym(y) (20)

is the entropy of the probability mass function Ŵsym. Equation
(18) can be lower bounded by setting s = 1 to yield

ĨGMI(QX , Ŵ , r) ≥ C(Ŵ )−
√

2r · Var
Ŵsym

[log Ŵsym] (21)

where C(Ŵ ) , log |X |−H(Ŵsym) is the matched capacity of
(symmetric) DMC Ŵ .

B. Example: Ternary-Input Ternary-Output Ŵ

We compute the approximate worst-case GMI ĨGMI from
(13) for input distribution channel estimate Ŵ given by

QX =
[
0.3 0.3 0.4

]
(22)

Ŵ =

 0.85 0.05 0.1
0.15 0.825 0.025
0.025 0.1 0.875

 . (23)
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Fig. 1. Achievable rates and approximations computed for fixed QX in (22)
and estimated channel Ŵ in (23).

We plot the approximation in Figure 1 along with the worst-
case GMI IGMI, numerically computed from (7) using an off-
the-shelf solver. To clarify notation, asterisks in superscripts
indicate optimal variables.
IMI(QX , Ŵ ) is shown by dashed line in Figure 1 for

reference; it is achievable as r → 0. We also plot the mutual
information IMI(QX , W̃

∗
GMI) of the channel from Corollary 1,

as well as that of the optimal channel W ∗GMI for the worst-case
GMI. For r > 0, the curves decrease rapidly from the reference
IMI(QX , Ŵ ). In particular, both the true and approximated
worst-case GMI decrease with an infinitely negative gradient
at r = 0. The mutual information for the worst-case channels
also exhibits similar behavior. This is because the most harmful
channel in the relative entropy ball is such that it causes the
GMI rate to decrease with an infinite slope. This shows that
even a small mismatch can have a significant impact on the
achievable transmission rates.

Our final comment is related to the validity of the approx-
imation. In the example reported in Figure 1, r = 0.52 is the
maximum radius limit at which W̃ ∗GMI and the corresponding
GMI remain positive. For all other channel estimates Ŵ we
considered, the limit is not restrictive for the range of validity
of the approximation, i.e., r < 0.01.

APPENDIX A
PROOF OF THEOREM 1

We formulate the problem based on the dual expression as

IGMI(QX ,Ŵ , r)

= min
W∈B(QX ,Ŵ ,r)

sup
s≥0

EQX×W [is(X,Y )] (24)

= sup
s≥0

min
W∈B(QX ,Ŵ ,r)

EQX×W [is(X,Y )] (25)

The minimax theorem [5] is applied to switch the order of
the optimizations from (24) to (25) since EQX×W [is(X,Y )]

is convex with respect to W and concave with respect to s [1,
Ch. 2.3], and constraints are convex in W .

The inner optimization problem can be vectorized and
rewritten in terms of the auxiliary vector

θ =
[
θ(y1|x1), . . . , θ(y|Y||x1), θ(y1|x2), . . . , θ(y|Y||x|X |)

]T
(26)

where θ(y|x) = W (y|x) − Ŵ (y|x). It follows that for
sufficiently small r

Is(QX , Ŵ , r)

= min
1
2θ

TK(Ŵ )θ−o(θTK(Ŵ )θ)≤r
1T
j θ=0, 1≤j≤|X|

{
IML
s (QX , Ŵ ) + θT∇Is

}
(27)

= min
1
2θ

TK(Ŵ )θ≤r
1T
j θ=0, 1≤j≤|X|

{
IML
s (QX , Ŵ ) + θT∇Is

}
− o(r) (28)

with

IML
s (QX , Ŵ ) = E

QX×Ŵ [is(X,Y )], (29)

K(Ŵ ) = diag

(
QX(x1)

Ŵ (y1|x1)
, . . . ,

QX(x|X |)

Ŵ (y|Y||x|X |)

)
, (30)

∇Is = [QX(x1)is(x1, y1), . . . , QX(x|X |)is(x|X |, y|Y|)]
T ,

(31)

1j = [0 . . . 0 1(1,j) . . . 1(|Y|,j) 0 . . . 0]T . (32)

In the optimization problem, the 1T
j θ = 0 constraints ensure

that for every xj ∈ X ,
∑

yW (y|xj) = 1. To handle the
error terms in the inequality constraint, it is easy to see that
the constraint is dominated by the first term as r → 0.
Then, the problem can be equivalently written by translating
the lowest-order term of the constraint to the cost function
as o(θTK(Ŵ )θ), which turns into o(r) after applying the
constraint. We do not explicitly impose a positivity constraint
on W since a sufficiently small r ≥ 0 exists such that the
positivity of the resulting conditional distribution is guaran-
teed. The resulting optimization problem is convex, so the
KKT conditions are necessary and sufficient [6]. The standard
Lagrangian method is used to solve it.
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