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A Sphere-Packing Error Exponent for
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Abstract— We derive a sphere-packing error exponent for
coded transmission over discrete memoryless channels with a
fixed decoding metric. By studying the error probability of the
code over an auxiliary channel, we find a lower bound to the
probability of error of mismatched decoding. The bound is shown
to decay exponentially for coding rates smaller than a new upper
bound to the mismatch capacity which is established in this paper.
For rates higher than the new upper bound, the error probability
is shown to be bounded away from zero. The new upper bound is
shown to improve over previous upper bounds to the mismatch
capacity.

Index Terms— Mismatched decoding, mismatch, Shannon
capacity, channel capacity, decoding, error exponent, sphere
packing.

I. INTRODUCTION

COMMUNICATION problems where the receiver needs to
employ a suboptimal decoder are typically cast within the

mismatched decoding framework [1]. These situations arise
when optimal maximum-likelihood decoding cannot be used:
i) the channel transition is unknown and imperfectly estimated
or, ii) when, for complexity reasons, the channel likelihood is
too difficult to compute and an alternative decoding metric is
needed. In addition, some important problems in information
theory like the zero-error or zero-undetected error capacities
can be cast as instances of mismatched decoding [2]. In
the mismatched decoding problem, the optimal maximum-
likelihood decoder is replaced by a maximum metric decoder,
in which the metric is not necessarily the channel likelihood.
For a fixed channel W and decoding metric q, finding a single-
letter expression for the mismatch capacity Cq(W ) remains an
open problem and only bounds are known.

A number of single-letter lower bounds have been derived
in the literature [2], [3], [4], [5] (see also [1] for a recent
survey). A number of lower bounds based on multiuser coding
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techniques have been derived [6], [7], [8], some yielding
improvements over standard single-user coding. Most of these
lower bounds have been derived via random coding which
in turn yield single-letter lower bounds on the error expo-
nent. As suggested by [2], multiletter versions of achievable
rates can yield strict improvements over their single-letter
counterparts.

Instead, up until recently, not much progress had been made
on upper bounds. Balakirsky [9] claimed that for binary-input
discrete memoryless channels (DMC), the mismatch capacity
coincided with the lower bound in [3] and [4]. Reference [10]
provided a binary-input ternary-output counterexample to this
converse invalidating its claim. In particular, it was shown
that the order-2 multiletter version of the multiuser coding
rate in [7] and [8] is strictly higher than the bound derived
by in [3] and [4]. In [11] (see also [12]), we proposed a
single-letter upper bound to the mismatch capacity based on
transforming the channel in such a way that errors on the
auxiliary channel imply a mismatched decoding error in the
original channel. Reference [13] cast the bound in [11] as
multicast transmission over a broadcast channel, significantly
simplifying the proof. The bounds in [13] improved over that
in [11] in several directions. In addition, [13] also provided
conditions that a pair of channel and decoding metric must
fulfil for the bound to be tight and thus give the mismatch
capacity. Recently, further improvements were presented in
[14] and [15]. Reference [14] builds on the idea of multicast
transmission allowing the possibility that when an error is
made in the auxiliary channel, a mismatched decoding error in
the original channel is made with a certain probability, instead
of deterministically as in [11] and [13]. The bound in [15] is
a preliminary part of this work and also relaxes this condition
in a different way and will be discussed in detail in this paper.
All bounds [11], [13], [14], [15] belong to the same family
of constrained minimizations of the mutual information of an
auxiliary channel, and can be expressed as

Cq(W ) ≤ max
PX

min
PY Ŷ |X∈M
PY |X=W

I(PX , PŶ |X), (1)

where the set M quantifies the statistical relationships among
the channel input X , output Y and auxiliary channel output
Ŷ , ensuring, either deterministically or probabilistically, that
errors in the auxiliary channel induce mismatched decoding
errors in the true channel. The set M may depend on the
input distribution PX . Therefore, it is of interest to enlarge the
set M of joint conditional distributions PY Ŷ |X , or broadcast
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channels, such that the aforementioned error condition is
fulfilled.

Not many single-letter upper bounds on the error exponent
of mismatched decoding are available, other than the trivial
upper-bounds to the standard channel coding problem. In a
recent paper [16], the authors proved that the expurgated error
exponent derived in [17] at rate zero is tight for a wide
class of channels and decoding metrics. In this paper, we
derive a sphere-packing upper bound to the error exponent
of mismatched decoding. We also show that the rate where
the sphere-packing upperbound becomes equal to zero is a
new upper bound on the mismatch capacity.

This paper is organized as follows. Section II introduces the
notation and preliminary concepts. Section III introduces the
main results of the paper, the new upper bound to the mismatch
capacity, the sphere-packing bound to the error exponent and
a comparison of the new bound and previously proposed
bounds. Section IV discusses an optimization interpretation
of the design of the set M. Proofs of the main results can be
found in Section V. Proofs of auxiliary results can be found
in the appendices.

II. PRELIMINARIES

We consider reliable communication over a DMC W
defined over input and output alphabets X = {1, 2, . . . , J}
and Y = {1, 2, . . . , K}. We denote the channel transition
probability by W (k|j). A codebook Cn is defined as a
set of M sequences Cn =

{
x1, . . . , xM

}
, where xm =(

x1,m, . . . , xn,m

)
∈ Xn, for m ∈ {1, . . . , M}. A message

m ∈ {1, . . . , M} is chosen equiprobably and xm is sent over
the channel. The channel produces a noisy observation y =
(y1, . . . , yn) ∈ Yn according to Wn(y|x) =

∏n
i=1 W (yi|xi).

Upon observing y ∈ Yn the decoder produces an estimate
of the transmitted message m̂ ∈ {1, . . . , M}. The average and
maximal error probabilities are respectively defined as

Pe(Cn) = P[m̂ �= m] (2)

Pe,max(Cn) = max
m∈{1,...,M}

P[m̂ �= m|m is sent]. (3)

The decoder that minimizes the error probability is the
maximum-likelihood (ML) decoder, that produces the message
estimate m̂ according to

m̂ = argmax
m∈{1,...,M}

Wn
(
y|xm

)
. (4)

Rate R > 0 is said to be achievable if for any � > 0 there
exists a sequence of length-n codebooks {Cn}∞n=1 such that
|Cn| ≥ 2n(R−�), and lim infn→∞ Pe(Cn) = 0. The capacity
of W , denoted by C(W ), is defined as the largest achievable
rate.

In situations with channel uncertainty, it is not possible
to use ML decoding and instead, the decoder produces the
message estimate m̂ as

m̂ = argmax
m∈{1,...,M}

qn
(
xm, y

)
, (5)

where qn
(
x, y

)
=

∑n
i=1 q

(
xi, yi

)
and q : X × Y → R is

the decoding metric. We refer to this decoder as q-decoder.

When q(x, y) = log W (y|x), the decoder is ML, otherwise,
the decoder is said to be mismatched [1], [2], [3], [4], [5].
The average and maximal error probabilities of codebook Cn

under q-decoding are respectively denoted by P q
e (Cn, W ) and

P q
e,max(Cn, W ). The mismatch capacity Cq(W ) is defined as

supremum of all achievable rates with q-decoding.
The method of types [18, Ch. 2] will be used extensively

in this paper. We recall some of the basic definitions and
introduce some notation. The type of a sequence x =
(x1, x2, . . . , xn) ∈ Xn is a column vector representing its
empirical distribution, i.e., p̂x(j) = 1

n

∑n
i=1 1{xi = j}. The

set of all types of Xn is denoted by Pn(X ). For pX ∈
Pn(X ), the type class T (pX) is set of all sequences in
Xn with type pX , T (pX) = {x ∈ Xn | p̂x = pX}. The
joint type of sequences x = (x1, x2, . . . , xn) ∈ Xn and
y = (y1, y2, . . . , yn) ∈ Yn is defined as a matrix representing
their empirical distribution

p̂xy(j, k) =
1
n

n∑
i=1

1{xi = j, yi = k}. (6)

The set of joint types on Xn,Yn is given by Pn(XY). The
conditional type of y given x is the matrix

p̂y|x(k|j) =

{
p̂xy(j,k)

p̂x(j) p̂x(j) > 0
1
|Y| otherwise.

(7)

The set of conditional types on Yn given Xn is denoted by
Pn(Y|X ). For pY |X ∈ Pn(Y|X ) and sequence x ∈ T (pX),
the conditional type class Tx(pY |X) is defined as Tx(pY |X) =
{y ∈ Yn | p̂y|x = pY |X}.

Similarly, we can define the joint type of x, y, ŷ, as the
empirical distribution of the triplet. For j ∈ X and k1, k2 ∈ Y ,

p̂xyŷ(j, k1, k2) =
1
n

n∑
i=1

1{xi = j, yi = k1, ŷi = k2}. (8)

We define the joint conditional type of y, ŷ given x ∈ T (pX)
as

p̂yŷ|x(k1, k2|j) =

{
p̂xyŷ(j,k1,k2)

p̂x(j) p̂x(j) > 0
1
|Y|1{k1 = k2} otherwise.

(9)

The set of all joint conditional types is denoted by Pn(YŶ|X ).
Additionally, for pY Ŷ |X ∈ Pn(YŶ|X ) we define:

Tyx(pY Ŷ |X) = {ŷ ∈ Yn | p̂yŷ|x = pY Ŷ |X}. (10)

Throughout the paper use the notation pY pX|Y to denote the
distribution PXY defined by

PXY (j, k) = pY (k)pX|Y (j|k) (11)

Note that the former multiplication for two generic types is
not necessarily a type, therefore we denote the result with the
probability distribution notation.
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The mutual information and conditional relative entropy are
respectively defined as

I(PX , PY |X) � E

[
log

PY |X(Y |X)∑
x� PX(x�)PY |X(Y |x�)

]
,

(12)

D(PY �|X�PY |X |PX) �
∑
x∈X

PX(x) · D(PY �|X=x�PY |X=x).

(13)

Definition 1: A random variable X is called sub-Gaussian
with parameter (sub-Gaussian norm) θ if for any ξ > 0 we
have

P[|X − E[X ]| ≥ ξ] ≤ Γe
−θ2ξ2

2 , (14)

where Γ is a constant. Throughout the paper we use Γ = 2
for simplicity of notation. Additionally, Γ = 2 is sufficient for
the relevant random variables to our proofs. Therefore, we use
the following definition instead of the previous one

P[|X − E[X ]| ≥ ξ] ≤ 2e
−θ2ξ2

2 . (15)

Definition 2: Let P, Q be probability distributions defined
on alphabet X . Then, the infinity norm between P, Q is defined
as

|P − Q|∞ = max
x∈X

|P (x) − Q(x)|. (16)

Throughout the paper and proofs, whenever we use |P −
Q|∞ we will implicitly assume that P is absolutely continuous
with respect to Q and vice versa.

Definition 3: Let Cn = {x1, x2, . . . , xM} be a codebook
and pY |X be a conditional type. The maximum type-conflict
error probability is defined as

Pmax
tce (Cn, pY |X)

Δ= max
m∈{1,...,M}

P

[ ⋃
m̄ �=m

{p̂y|xm
= p̂y|xm̄

= pY |X}
]
, (17)

where the probability is with respect to the uniform distribu-
tion over the type class Txm

(pY |X).
Similarly to [11], the main idea of this paper is to relate

the type-conflict error performance of a given codebook over
an auxiliary channel V with the q-decoding performance
of the same code over channel W . The main reason for
studying type-conflict errors is that an equation of the form
p̂y|x2

= p̂y|x1
provides more information about the properties

of the error than ML errors, where we simply have a scalar
likelihood inequality. In addition, it can be shown that for
rates R > C(V ), then the probability of type-conflict errors
bounded away from zero.

We proceed by introducing a few definitions. Recall the
definition of maximal set from [11]. Consider the set

Sq(k1, k2)
Δ=
{
j ∈ X|j = arg max

j�∈X
q(j�, k2) − q(j�, k1)

}
.

(18)

A joint conditional distribution PY Ŷ |X is said to be maximal
if for all (j, k1, k2) ∈ X × Y × Y ,

PY Ŷ |X(k1, k2|j) = 0 if j /∈ Sq(k1, k2). (19)

The set of all maximal joint conditional distributions was
defined to be Mmax(q). In this work, for a given distribution
PX1 , we define the set of maximal joint conditional distribu-
tions as follows.

Definition 4: Mmax(q, PX1 ) is the set of all joint condi-
tional distributions PY Ŷ |X1

such that

min
PX2|X1Ŷ :

X2−X1Ŷ −Y
PŶ X2

=PŶ X1

E[q(X2, Y )] ≥ E[q(X1, Y )], (20)

where the notation X2 − X1Ŷ − Y denotes that X2, (X1Ŷ )
and Y form a Markov chain.

We close this section by showing that that Mmax(q) ⊂
Mmax(q, PX1 ) for any input distribution PX1 . Assume that
PY Ŷ |X1

∈ Mmax(q). Then from [11, Lemma 3] we have for
any X2 such that PŶ X1

= PŶ X2

E[q(X2, Y )] ≥ E[q(X1, Y )]. (21)

This implies that PY Ŷ |X1
satisfies (20) and as a result,

PY Ŷ |X1
∈ Mmax(q, PX1 ). As we will show, this enlarged set

of maximal distributions yields an improved upper bound on
the mismatch capacity. Throughout the paper, we have taken
the convention that X1 represents the sent codeword and X2

represents an auxiliary codeword.

III. MAIN RESULTS

In this section, we introduce over the main results of this
paper. We first introduce an upper bound to the mismatch
capacity.

Theorem 1: Let W, q be channel and decoding metric,
respectively. Then,

Cq(W ) ≤ R̄(W, q). (22)

where

R̄(W, q) Δ= max
PX

min
PY Ŷ |X∈Mmax(q,PX )

PY |X=W

I(PX , PŶ |X), (23)

Proof: See section V-A for the proof of this theorem.
Corollary 1: If some joint conditional distribution

PY Ŷ |X ∈ Mmax(q, PX) for all input distributions PX , then

Cq(W ) ≤ C(PŶ |X). (24)

The next result introduces a sphere-packing upper bound to
the error exponent of mismatched decoding.

Theorem 2: Consider a fixed composition codebook Cn

with length n, rate R and composition pX . The error proba-
bility of Cn with q-decoding over channel W satisfies

− 1
n

log P q
e,max(Cn, W ) ≤ Eq

sp(pX , R + ζn) − δn, (25)

where

Eq
sp(PX , R) = min

PY �Ŷ |X∈Mmax(q,PX )

I(PX ,PŶ |X)≤R

D(PY �|X�PY |X |PX) (26)
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TABLE I

NONZERO ENTRIES OF PY Ŷ |X FOR EXAMPLE 1

and

ζn = (JK − 1)
log(n + 1)

n
+

log 2
n

(27)

δn = O
( log n

n

)
(28)

Proof: See section V-B for the proof of this theorem.
Next we introduce the analogous version of Theorem 2

for a family of type dependent metrics. Firstly we define the
analogous version of Mmax for type dependent metrics. With
a slight abuse of notation we use q(pXY ) to denote a type-
dependent metric q computed for type pXY .

Definition 5: Set Mtd
max(q, PX1 ) is defined as follows

Mtd
max(q, PX1 )

Δ=

{
PY Ŷ |X1

∣∣∣∣ min
PX2|X1Ŷ :

X2−Ŷ X1−Y
PŶ X1

=PŶ X2

q(PX2Y ) ≥ q(PX1Y )

}
(29)

Consider type-dependant metrics q(PXY ) where q is convex
in PY |X when PX is fixed. This is an important family
since important metrics such as maximum mutual information
(MMI) metric defined as q(PXY ) = I(PXY ) have this
property. For this family of metrics, we have exactly the same
statement as that of Theorem 2, but replacing Mmax(q, PX1 )
by Mtd

max(q, PX1 ). See Section V-C for the proof of this
statement.

A. Example

In this part we show the application of our bound to the
counterexample in [10], where the channel and metric are

W =
[
0.97 0.03 0
0.1 0.1 0.8

]
(30)

q =
[
0 0 0
0 log(0.5) log(1.36)

]
. (31)

For this example C(W ) = 0.7133 bits/use, the rate achievable
by 2-letter superposition coding from [10] is R

(2)
sc (W, q) =

0.1991 bits/use and our previous converse [11] stated that
Cq(W ) ≤ R̄q(W ) = 0.6182 bits/use. By numerically solving
the optimization problem in (20) we observe the joint condi-
tional distribution given in Table I is maximal for all input
distributions PX .

Marginalizing the above PY Ŷ |X over Y we obtain

PŶ |X =
[
0.3756 0.6244 0

0.1 0.2044 0.6956

]
. (32)

Therefore, by using Corollary 1 we have

Cq(W ) ≤ C(PŶ |X) (33)

= 0.4999 bits/use. (34)

Observe that the above result can be further improved
by solving the optimization problem in (23). In terms of
computation, unlike the bound proposed in [11], optimizing
(23) is not a simple task. This observation stems from the
fact that the maximal set Mmax(q, PX) in (23) depends on
PX , unlike the maximal set Mmax(q) in [11]. In addition, the
set Mmax(q, PX) is itself defined as an optimization problem
over distributions PX2|XŶ and this makes the problem more
difficult than [11]. As illustrated next, the advantages of
the bound in (23) are potentially significant even under the
conditions of Corollary 1.

B. Comparison With Other Bounds

In this section, we compare the new bound to the mismatch
capacity given in (23) with some of the recent bounds that
have appeared in the recent literature. Recall that all bounds
have the same form

Cq(W ) ≤ max
PX

min
PY Ŷ |X∈M
PY |X=W

I(PX , PŶ |X), (35)

where M is a set of joint conditional distributions. In the
following, we compare the set

Mmax(q, PX1 )

Δ=

{
PY Ŷ |X1

: min
PX2|X1Ŷ :

X2−Ŷ X1−Y
PŶ X1

=PŶ X2

E[q(X2, Y )] ≥ E[q(X1, Y )]

}

(36)

defined in Definition 4 with those from previously proposed
bounds. In particular, we show that all previously proposed
bounds are such that M ⊂ Mmax(q, PX).

To begin with, we compare our recent upper bound derived
in [11]. The expression of the set M is

Mmax(q)
=
{
PY Ŷ |X1

: PY Ŷ |X1
(k1, k2|j) = 0 if j /∈ Sq(k1, k2)

}
,

(37)

where

Sq(k1, k2) =
{
j ∈ X|j = arg max

j�∈X
q(j�, k2) − q(j�, k1)

}
.

(38)

From [11, Lemma 3], we know that if PY Ŷ |X1
∈ Mmax(q)

then

∀X1 : PŶ X1
= PŶ X2

⇒ E[q(X2, Y )] ≥ E[q(X1, Y )]. (39)

However, PY Ŷ |X1
∈ Mmax(q) is not a necessary condition

for (39) to hold. Instead, for PY Ŷ |X1
∈ Mmax(q, PX1) we

have

∀X2 : X2 − X1Ŷ − Y, PŶ X1
= PŶ X2

⇒ E[q(X2, Y )] ≥ E[q(X1, Y )]. (40)
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We observe that PY Ŷ |X1
∈ Mmax(q, PX1 ) is both a necessary

and sufficient condition for (40) being true. Therefore, we
see thanks to the additional Markov chain constraint on X̃ ,
Mmax(q) ⊂ Mmax(q, PX1 ). Indeed, the more constraints are
added to (36), the more joint conditional distributions are able
to satisfy the inequality, thus making the set larger.

Two improved upper bounds of the same family were
presented in [13]. The first bound is expressed as

Cq(W ) ≤ min
PY Ŷ |X∈Γ(ρ,q)

PY |X=W

Cρ(PŶ |X), (41)

where

Γ(ρ, q) = {PY Ŷ |X |PY Ŷ |X(y, ŷ|x) = 0 if x /∈ Sρ,q(y, ŷ)},
(42)

Sρ,q(y, ŷ) =
{
x� ∈ X|x� /∈ arg max

x∈X
ρ(x, ŷ) − q(x, y)

}
.

(43)

The expression of the second bound, which is also valid for
type-dependent metrics, is given by

Cq(W ) ≤ max
PX

min
PY Ŷ |X∈Γ∗(q,PX )

PY |X=W

I(PX , PŶ |X), (44)

where

Γ∗(q, PX) =
{
PY Ŷ |X | ∀VY Ŷ XX̃ : VY Ŷ X � PX × PY Ŷ |X ,

VŶ X = VŶ X̃ ⇒ E[q(X̃, Y )] ≥ E[q(X, Y )]
}
, (45)

and VY Ŷ X � PX × PY Ŷ |X denotes PX × PY Ŷ |X being
absolutely continuous with respect to VY Ŷ X . The second
bound was shown to be stronger than the first one [13], and
we therefore focus on the comparison with the second. By
expressing the set Mmax(q, PX) with a similar notation we
get

Mmax(q, PX) =
{
PY Ŷ |X |∀PY Ŷ XX̃ : PŶ X = PŶ X̃ ,

X̃ − XŶ − Y ⇒ E[q(X̃, Y )] ≥ E[q(X, Y )]
}
.

(46)

Observe that the constraint E[q(X̃, Y )] ≥ E[q(X, Y )]
in the set Γ∗(q, PX) should hold for all VY Ŷ XX̃ with
VY Ŷ X � PX × PY Ŷ |X , VŶ X = VŶ X̃ . Instead, the constraint

E[q(X̃, Y )] ≥ E[q(X, Y )] in the set Mmax(q, PX) must hold
for all PY Ŷ XX̃ such that distribution of Y Ŷ X is equal to
PY Ŷ X but X̃ is further constrained by the Markov chain
property X̃ − XŶ − Y . Therefore, similarly to the previous
comparison, we find that

Γ∗(q, PX) ⊂ Mmax(q, PX). (47)

More recently, a further improvement was reported in [14].
The main bound in [14] is expressed as

Cq(W ) ≤ max
PX

min
PY Ŷ |X∈Θ∗(q,PX )

PY |X=W

I(PX , PŶ |X) (48)

where Θ∗ is defined as

Θ∗(q, PX) = {PY Ŷ |X | ∀PY Ŷ XX̃ : PŶ X = PŶ X̃

⇒ E[q(X, Y )] ≤ E[q(X̃, Y )]} (49)

By comparing the set Θ∗(q, PX) to Mmax(q, PX), we find
that the constraint E[q(X̃, Y )] ≥ E[q(X, Y )] in the set
Θ∗(q, PX) must hold for all PY Ŷ XX̃ such that distribution
of Y Ŷ X is equal to PY Ŷ X , but a further constraint on X̃ is
missing. Since Mmax(q, PX) has an additional Markov chain
constraint on X̃ , we have that

Θ∗(q, PX) ⊂ Mmax(q, PX). (50)

IV. ALTERNATIVE INTERPRETATION OF MAXIMAL SETS

So far, every joint conditional distribution PY Ŷ |X that
belongs to the corresponding maximal set

Mmax(q, PX1 )

Δ=

{
PY Ŷ |X1

: min
PX2|X1Ŷ :

X2−Ŷ X1−Y
PŶ X1

=PŶ X2

E[q(X2, Y )] ≥ E[q(X1, Y )]

}

(51)
from Definition 4 yields a valid upper bound to the mismatch
capacity. The joint conditional distribution that minimizes the
mutual information of the auxiliary channel yields the best
bound. This is the case because maximal joint conditional
distributions are such that if an error is made over the auxiliary
channel PŶ |X , then a mismatched decoding error is made on
the original channel PY |X , constrained to be PY |X = W .
This latter statement also holds for a significant fraction of
the errors, not necessarily all.

In this section, we discuss a different approach to the
construction of the maximal set. Specifically, we first fix
the auxiliary channel V = PŶ |X , and then optimize the
resulting joint conditional distribution to fulfill the maximality
constraint, i.e., if an error is made over the auxiliary channel
V = PŶ |X , then a mismatched decoding error is made
on the original channel W = PY |X . This naturally gives
maximal set of auxiliary channels. Not fixing to the joint
conditional distribution between V, W offers the possibility to
derive a potentially stronger upper bound. Specifically, we first
consider the type p�

Ŷ X1X2
from Lemma 2 such that for most

type conflict errors on channel V , the empirical type p̂ŷx1x2

is equal to p�
Ŷ X1X2

. Then given this type, we can optimize the
joint conditional distribution PY Ŷ |X to fulfill the maximality
condition for type p�

Ŷ X1X2
. This is in contrast to only knowing

the type conflict error condition over the auxiliary channel, i.e.,
p̂ŷx1

= p̂ŷx2
for every joint type p̂ŷx1x2

.
The above interpretation of the construction of the maximal

set, suggests to define it as the following set of all auxiliary
channels V

Vmax(q, PX1)

Δ=

{
V : max

PY Ŷ |X1
:

PŶ |X1
=W

PŶ |X2
=V

min
PX2|X1Ŷ :

X2−Ŷ X1−Y
PŶ X1

=PŶ X2

E[q(X2, Y )] ≥ E[q(X1, Y )]

}
,

(52)
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where the inner minimization corresponds to the choice of type
p�

Ŷ X1X2
and the outer maximization refers to the choice of the

joint conditional distribution with marginals V, W . Observe
that E[q(X1, Y )] is constant for any given PX1 , channel W
and metric q. The following lemma implies that this alternative
definition gives the same bounds to the mismatch capacity
and error exponent as those described in previous sections for
additive decoding metrics.

Lemma 1: The optimization order in (52) can be
exchanged. More precisely,

max
PY Ŷ |X1

:

PY |X1=W
PŶ |X1

=V

min
X2

X2−Ŷ X1−Y
PŶ X1

=PŶ X2

E[q(X2, Y )]

= min
PX2|X1Ŷ :

X2−Ŷ X1−Y
PŶ X1

=PŶ X2

max
PY Ŷ |X1

:

PY |X1=W
PŶ |X1

=V

E[q(X2, Y )]. (53)

Proof: We show the following 3 facts in order to prove
the lemma.

• The set of PY Ŷ |X1
where PY |X1 = W, PŶ |X2

= V is
convex. This is evident, since marginalizing a probability
distribution is a linear operation.

• The set of PX2|X1Ŷ such that X2 − Ŷ X1 − Y and
PŶ X1

= PŶ X2
is a convex set. To prove this statement

we fix PY Ŷ |X1
and consider the set of joint probability

distributions PY Ŷ X1X2{
PY Ŷ X1X2

|PŶ X1
= PŶ X2

,

PY Ŷ X1X2
= PX2|Ŷ X1

PY Ŷ X1

}
(54)

Therefore, if two random variables X̃2, X̄2 both have
joint probability distributions in the above set (54),
then, any new random variable X̂2 drawn according to
PX̂2|Ŷ X1

= αPX̃2|Ŷ X1
+ (1 − α)PX̄2|Ŷ X1

is in set (54).

• Finally, we need to show E[q(X2, Y )] is linear in both
PY Ŷ |X1

and PX2|Ŷ X1
when fixing either of them. This

is proven by expanding E[q(X2, Y )]

E[q(X2, Y )] =
∑

x1,x2,y,ŷ

q(x2, y)PX1(x1)

× PY Ŷ |X1
(y, ŷ|x1)PX2|Ŷ X1

(x2|ŷ, x1),

(55)

which is linear both in PY Ŷ |X1
and PX2|Ŷ X1

when we
fix either of the two.
As a result, we have a convex-concave optimization
problem, and therefore, by the minimax theorem [19],
the order of optimization can be exchanged.

Observe that, as a consequence of the above lemma, every
joint conditional distribution PY Ŷ |X1

∈ Mmax(q, PX1), then
the corresponding PŶ |X1

∈ Vmax(q, PX1). Conversely, for
every PŶ |X1

∈ Vmax(q, PX1), there exists a joint conditional
distribution PY Ŷ |X1

∈ Mmax(q, PX1). Therefore, the opti-
mization problems involving Mmax(q, PX1 ) or Vmax(q, PX1 )
in the calculation of the upper bound to the mismatch capacity
and error exponent give the same result.

We next illustrate how this argument continues to hold for
the optimization of the error exponent for type-dependent met-
rics, but not necessarily for the upper bound to the mismatch
capacity. In particular, for type-dependent metrics, consider
the following set of auxiliary channels

Vtd
max(q, PX1 , W )

Δ=

{
V : max

PY Ŷ |X1
:

PŶ |X1
=W

PŶ |X2
=V

min
PX2|X1Ŷ :

X2−Ŷ X1−Y
PŶ X1

=PŶ X2

q(PX2Y ) ≥ q(PX1Y )

}
.

(56)

We have the following result for the error exponent.
Theorem 3: Consider a fixed composition codebook Cn

with length n, rate R and composition pX . The error prob-
ability of Cn with a type-dependent metric decoder using q
over channel W satisfies

− 1
n

log P q
e (Cn, W ) ≤ Eq

sp(pX , R + ζn) − δn, (57)

where we have

Eq
sp(PX , R)

= min
PY �|X

min
V ∈Vtd

max(q,PX ,PY �|X )

I(PX ,V )≤R

D(PY �|X�PY |X |PX) (58)

and ζn, δn are defined in (27), (28), respectively.
Proof: See Section V-C.

The rate where the the exponent becomes equal to zero is
the following

max
PX

min
V ∈Vtd

max(q,PX ,W )
I(PX , V ). (59)

Unfortunately, the analysis of Section V for this expression
fails to work. The main reason is that the error probability may
in principle decay subexponentially for rates above (59), and
the techniques to prove the mismatch capacity upper bound of
Section V are not sufficient.

V. PROOFS OF THE MAIN RESULTS

A. Proof of Theorem 1

We will use the following results proved in Appendix A.
Theorem 4: Let Cn = {x1, . . . , xM} be a constant com-

position codebook of composition pX and length n. Assume
that PY Ŷ |X ∈ Mmax(q, pX) is a maximal joint conditional
distribution. Then, there exists a joint conditional distribution
P̄Y Ŷ |X ∈ Mmax(q, pX) satisfying

P̄Ŷ |X × pX ∈ Pn(X × Y) (60)

|P̄Ŷ |X × pX − PŶ |X × pX |∞ ≤ 1
n

(61)

|P̄Y |X × pX − PY |X × pX |∞ ≤ K

n
, (62)

and a constant γ > 0 that depends only on PY |X and q such
that

P q
e,max(Cn, P̄Y |X) ≥ γPmax

tce (Cn, P̄Ŷ |X). (63)
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The next result from [11] lower bounds the type-conflict
error probability.

Theorem 5: Under the assumptions of Theorem 4, for every
type pX , there exist n0, Ē(R) > 0 such that if n > n0 and
1
n log |Cn| > I(PX , PŶ |X)

Pmax
tce (Cn, PŶ |X) ≥ 1 − 2−nĒ(R). (64)

We show that for any R > R̄(W, q) there exist n0 > 0,
0 < γ < 1 and δ > 0 such that for any codebook Cn, n > n0

with 1
n log |Cn| ≥ R, we have

P q
e,max(Cn, W ) ≥ γe−δ(1 − 2−nĒ(R)). (65)

We set R = R̄(W, q) + 2ε. We know that for any codebook
Cn of length n and rate R, there exists a constant composition
sub-codebook C�

n ⊂ Cn with length n satisfying, rate R� >
R − J−1

n log(n + 1), and composition pX such that

P q
e,max(Cn, W ) ≥ P q

e,max(C�
n, W ). (66)

Additionally, from [11, Lemma 5] for any ε > 0 there exists a
ν > 0 such that there exists a codebook C̃ñ with the following
properties

min
p̃X (j)>0

p̃X(j) ≥ ν (67)

ñ ≥ n
(
1 − (|X | − 1)ν

)
(68)

P q
e,max(C�

n, W ) ≥ P q
e,max(C̃ñ, W ) (69)

1
ñ

log(|C̃ñ|) ≥
1
n

log(|C�
n|) − ε + O

( log n

n

)
, (70)

where C̃ñ is of composition p̃X . Now, let

P �
Y Ŷ |X = arg min

PY Ŷ |X∈Mmax(q,p̃X )

PY |X=W

I(p̃X , PŶ |X) (71)

be the best joint conditional distribution for constant composi-
tion codes of composition p̃X . Then, by applying Theorem 4
to P �

Y Ŷ |X we have that there exists a distribution P̄Y Ŷ |X that
fulfills the following conditions

P q
e,max(C̃ñ, P̄Y |X) ≥ γPmax

tce (C̃ñ, P̄Ŷ |X). (72)

|P̄Ŷ |X × p̃X − P �
Ŷ |X × p̃X |∞ ≤ 1

ñ
(73)

|P̄Y |X × p̃X − P �
Y |X × p̃X |∞ ≤ K

ñ
(74)

P̄Ŷ |X × p̃X ∈ Pñ(X × Y) (75)

On the other hand, by using Lemma 11 for P �
XY = W ×pX ,

P̄XY = P̄Y |X × pX we have

P q
e,max(C̃ñ, PY |X) ≥ e−δP q

e,max(C̃ñ, P̄Y |X), (76)

where δ = 2K
minPXY (j,k)>0 PXY (j,k) . To provide an upper bound

on δ note that, we have

P �
XY (j, k) = W (k|j)p̃X(j). (77)

We observe that since C̃ñ is a ν-reduction of C�
n, from (67)

we have that the right hand side of (77) is either equal to zero
or bigger than or equal to νW (k|j). Therefore,

min
PXY (j,k)>0

PXY (j, k) ≥ ν · min
W (k|j)>0

W (k|j) (78)

As a result we have,

0 ≤ δ ≤ 2K

ν · minW (k|j)>0 W (k|j) , (79)

which only depends on the channel, and ε, since ν depends
on ε.

Finally, we apply Theorem 5 to codebook C̃ñ. Therefore,
we have that there exists n0 such that for n > n0 if

1
ñ

log |C̃ñ| > max
PX

min
PY Ŷ |X∈Mmax(q,PX )

PY |X=W

I(PX , PŶ |X) (80)

≥ min
PY Ŷ |X∈Mmax(q,p̃X)

PY |X=W

I(p̃X , PŶ |X), (81)

we have that

Pmax
tce (C̃ñ, PŶ |X) ≥ 1 − 2−ñĒ(R), (82)

where in (81) we have chosen p̃X as input distribution instead
of the maximizing one.

Finally, by combining (66), (72), (76) and (82) we get

P q
e,max(Cn, PY |X) ≥ P q

e,max(C�
n, PY |X) (83)

≥ P q
e,max(C̃ñ, PY |X) (84)

≥ e−δP q
e,max(C̃ñ, P̄Y |X) (85)

≥ e−δγPmax
tce (C̃ñ, P̄Ŷ |X) (86)

≥ γe−δ(1 − 2−ñĒ(R)) (87)

≥ γe−δ(1 − 2−n (1−(|X |−1)ν) Ē(R)). (88)

where (88) is bounded away from zero as n tends to infinity.

B. Proof of Theorem 2

The proof is based on three lemmas. Lemma 2, shows a
lower bound to the type-conflict error probability of code
Cn over an auxiliary channel. Lemma 3, shows that if the
outputs of W and those of the auxiliary channel and connected
by an appropriately constructed graph, then a type-conflict
error in the auxiliary channel yields a q-decoding error in W .
Lemma 4, shows that if the joint conditional distribution that
defines W and the auxiliary channel is maximal according to
(20), then, the error probability of the q-decoder over channel
W is lower-bounded by the type-conflict error probability over
the auxiliary channel multiplied by a constant.

Lemma 2: Assume codebook Cn consists of M codewords
of composition pX used over a DMC PŶ |X . Assume that
the conditional type pŶ |X1

is such that M |Tx1(pŶ |X1
)| ≥

2|T (pŶ )|. Then, there exists a joint type pŶ X1X2
such that

pŶ X1
= pŶ X2

and

P
[
∃x2 ∈ Cn \ {x1} s.t. p̂ŷx1x2

= pŶ X1X2
|x1

]
≥ 1

2(n + 1)J2K−1
P
[
Tx1(pŶ |X1

)|x1

]
, (89)

where the probabilities are computed w.r.t. n uses of channel
PŶ |X .

Proof: Before proving this lemma we explain its main
application. This lemma implies that at least a polynomial
fraction of elements ŷ of Tx1(pŷ|x1

) cause a type conflict
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error with some codeword x2, when x1 is sent and ŷ received
as the output of the auxiliary channel, for a fixed joint type
p̂ŷx1x2

= pŶ X1X2
.

From [20, Lemma 4] we have there exist a codeword x1 ∈
Cn such that

P
[
∃x2 ∈ Cn \ {x1} s.t. p̂ŷx1

= p̂ŷx2
= pŶ X1

|x1

]
≥ 1

2
P
[
Tx1(pŶ |X1

)|x1

]
, (90)

where the probabilities are computed w.r.t. n uses of channel
PŶ |X . This implies that, assuming x1 ∈ Cn was transmitted,
for at least half of the ŷ ∈ Tx1(pŶ |X1

) we can find a codeword
x2 �= x1 such that p̂ŷ|x1

= p̂ŷ|x2
. Observe that there are at

most (n + 1)J2K−1 joint types p̂ŷx1x2
. Consider an arbitrary

joint type p̃Ŷ X1X2
and define the subset

Ex1(p̃Ŷ X1X2
, pŶ X1

)

=
{
ŷ ∈ Tx1(pŶ |X1

) | ∃x2 ∈ Cn \ {x1},
p̂ŷx1x2

= p̃Ŷ X1X2
, p̃Ŷ X1

= p̃Ŷ X2
= pŶ X1

}
. (91)

In other words, the set Ex1(p̃Ŷ X1X2
, pŶ X1

) is the set of
outputs ŷ ∈ Tx1(pŶ |X1

) such that the joint type of y, x1, x2

is equal to p̃Ŷ X1X2
and the Ŷ X1 and Ŷ X2 marginal types

are equal to the given pŶ X1
. We now define the joint type

p�
Ŷ X1X2

that satisfies the following

p�
Ŷ X1X2

= argmax
p̃Ŷ X1X2

∈Pn(Y×X 2)

|Ex1(p̃Ŷ X1X2
, pŶ X1

)|, (92)

i.e., the joint type p̃Ŷ X1X2
that induces the largest subset

Ex1(p̃Ŷ X1X2
, pŶ X1

) for any given pŶ X1
. In other words, out

of all joint types p̃Ŷ X1X2
, p�

Ŷ X1X2
is the one that contains

the maximum number of outputs ŷ ∈ Tx1(pŶ |X1
) that yield

a type-conflict error.
Observe that the left hand side of (90) can be bounded as

P
[
∃x2 ∈ Cn \ {x1} s.t. p̂ŷx1

= p̂ŷx2
= pŶ X1

|x1

]
≤

∑
p̃Ŷ X1X2

∈Pn(Y×X 2)

P[Ex1(p̃Ŷ X1X2
, pŶ X1

)|x1] (93)

≤ (n + 1)J2K−1
P[Ex1(p

�
Ŷ X1X2

, pŶ X1
)|x1], (94)

where the probability is computed with respect to n uses of
channel PŶ |X , and thus, from (90), we get

P
[
∃x2 ∈ Cn \ {x1} s.t. p̂ŷx1x2

= p�
Ŷ X1X2

|x1

]
≥ 1

2(n + 1)J2K−1
P
[
Tx1(pŶ |X1

)|x1

]
(95)

which completes the proof. The joint type p�
Ŷ X1X2

is the type
pŶ X1X2

whose existence is stated in the lemma.
In the rest of this section whenever p�

Ŷ X1X2
is used we refer

to the type defined in (92).
Corollary 2: The above statement implies that

|Ex1(p
�
Ŷ X1X2

, pŶ X1
)|

|Tx1(pŶ |X1
)| ≥ 1

2(n + 1)J2K−1
. (96)

Proof: We have that

|Ex1(p
�
Ŷ X1X2

, pŶ X1
)|

|Tx1(pŶ |X1
)| =

|Ex1(p
�
Ŷ X1X2

, pŶ X1
)| · P[ŷ|x1]

|Tx1(pŶ |X1
)| · P[ŷ|x1]

(97)

=
P
[
Ex1(p

�
Ŷ X1X2

, pŶ X1
)|x1

]
P
[
Tx1(pŶ |X1

)|x1

]
(98)

≥ 1
2(n + 1)J2K−1

, (99)

where pŷx1
= pŶ X1

, (98) follows from the fact that all
elements of Tx1(pŶ |X1

) are equiprobable when x1 is sent
and (99) is equivalent to (89).

Note that in the next lemmas’ proof we will employ
Corollary 2 rather than Lemma 2.

Similarly to [11], we construct a bipartite graph
Gx1(pY �Ŷ |X1

) in the following way (see [11] for details).
Vertices of this graph are the elements of Tx1(pY �|X1

)
and Tx1(pŶ |X1

). Moreover, y� ∈ Tx1(pY �|X1
) and ŷ ∈

Tx1(pŶ |X1
) are connected if p̂y�ŷx1

= pY �Ŷ X1
. The graph is

regular and we denote the left degree by d1. Ideally, we need
the graph Gx1(pY �Ŷ |X1

) to satisfy the following property: if
y� ∈ Tx1(pY �|X1

) is connected to ŷ ∈ Tx1(pŶ |X1
) in this

graph then for some x2 ∈ Cn/{x1}

qn(x2, y
�) ≥ qn(x1, y

�). (100)

However, in contrast to [11] this is not always the case here.
The next lemma proves a lower bound to the fraction of the
edges in Gx1(pY �Ŷ |X1

) that satisfy the aforementioned desired
property.

Lemma 3: Consider a conditional maximal joint type
pY �Ŷ |X ∈ M̂max(q, pX), for some composition pX , and
construct a graph Gx1(pY �Ŷ |X1

) between the type classes
Tx1(pŶ |X1

) and Tx1(pY �|X1
) as described above. Then, for

every ŷ ∈ Tx1(pŶ |X1
) such that p̂ŷx1x2

= p�
Ŷ X1X2

there are

at least e−nΛnd1 of its neighbours y� ∈ Tx1(pY �|X1
) such that

for some x2 ∈ C\{x1} we have a q-decoding error when x1

is sent, i.e.,

qn(x2, y
�) ≥ qn(x1, y

�), (101)

where Λn = O
(

log n
n

)
.

Proof: Consider ŷ ∈ Tx1(pŶ |X1
). By construction, all y�

that are connected to ŷ in graph Gx1(pY �Ŷ |X1
) satisfy

p̂y�ŷ|x1
= pY �Ŷ |X . (102)

As a result, by using Lemma 5 with T = Y �, S = X2, Z =
(Ŷ , X1) and f(T, S) = q(X2, Y

�) we have

EU [qn(x2, y
�)] = nEpY �|Ŷ X1

×p�
Ŷ X1X2

[q(X2, Y
�)] (103)

≥ nE[q(X1, Y
�)] (104)

= qn(x1, y
�), (105)

where U is a equiprobable random variable over all sequences
y� ∈ Tx1(pY �|X1

) that satisfy p̂y�ŷx1
= pY �Ŷ X1

and
p̂ŷx1x2

= p�
Ŷ X1X2

, (104) follows from pY �Ŷ |X1
being maxi-

mal and (105) is derived from the additivity of the metric q.

Authorized licensed use limited to: CAMBRIDGE UNIV. Downloaded on May 12,2023 at 11:28:29 UTC from IEEE Xplore.  Restrictions apply. 



ASADI KANGARSHAHI AND GUILLÉN I FÀBREGAS: SPHERE-PACKING ERROR EXPONENT FOR MISMATCHED DECODING 2745

The above equation has an important implication: the
expected metric computed on all sequences y� that satisfy
p̂y�ŷx1

= pY �Ŷ X1
is larger than or equal to qn(x1, y

�). In
the rest of this section, we derive a subset of all such y� that
satisfy the mismatch pairwise error condition qn(x2, y

�) ≥
qn(x1, y

�).
The main difficulty in deducing finding such a set directly

from (105) is that pY �|Ŷ X1
×p�

Ŷ X1X2
might not be a type. As

a result, there might not be any y� with the type pY �|Ŷ X1
×

p�
Ŷ X1X2

which satisfies the desired inequality (105). There-
fore, we attempt to express this distribution pY �|Ŷ X1

×p�
Ŷ X1X2

as a linear combination of types that are in a neighborhood of
pY �|Ŷ X1

× p�
Ŷ X1X2

, and then prove the desired property for
one such type.

By using Lemma 8 with Z = Y �, S = (Ŷ , X1), U =
X2, respectively, we can express the distribution pY �|Ŷ X1

×
p�

Ŷ X1X2
as a convex combination of joint types p̃Y �Ŷ X1X2

with marginals pY �Ŷ X1
and p�

Ŷ X1X2
for which |p̃Y �Ŷ X1X2

−
pY �|Ŷ X1

× p�
Ŷ X1X2

|∞ ≤ 1
n . More precisely, we have

pY �|Ŷ X1
× p�

Ŷ X1X2

=
∑

p̃Y �Ŷ X1X2
|p̃Y �Ŷ X1X2

−pY �|Ŷ X1
×p�

Ŷ X1X2
|∞≤ 1

n

p̃Y �Ŷ X1
=pY �Ŷ X1

,p̃Ŷ X1X2
=p�

Ŷ X1X2

α(p̃Y �Ŷ X1X2
)p̃Y �Ŷ X1X2

,

(106)

where ∑
p̃Y �Ŷ X1X2

|p̃Y �Ŷ X1X2
−pY �|Ŷ X1

×p�
Ŷ X1X2

|∞≤ 1
n

p̃Y �Ŷ X1
=pY �Ŷ X1

,p̃Ŷ X1X2
=p�

Ŷ X1X2

α(p̃Y �Ŷ X1X2
) = 1 (107)

and α(p̃Y �Ŷ X1X2
) ≥ 0.

Therefore, from (103) and (106) we have

EU [q(x2, y
�)]

= nEpY �|Ŷ X1
×p�

Ŷ X1X2
[q(X2, Y

�)] (108)

= n
∑

p̃Y �Ŷ X1X2
|p̃Y �Ŷ X1X2

−pY �|Ŷ X1
×p�

Ŷ X1X2
|∞≤ 1

n

p̃Y �Ŷ X1
=pY �Ŷ X1

,p̃Ŷ X1X2
=p�

Ŷ X1X2

α(p̃Y �Ŷ X1X2
)

× Ep̃Y �Ŷ X1X2
[q(x2, y

�)].

(109)

Moreover, from (105) we know EU [qn(x2, y
�)] ≥ qn(x1, y

�),
and therefore, there exists a joint type p̃Y �Ŷ X1X2

such that

nEp̃Y �Ŷ X1X2
[q(X2, Y

�)] = qn(x2, y
�) (110)

≥ qn(x1, y
�). (111)

As a result, by using |p̃Y �Ŷ X1X2
−pY �|Ŷ X1

×p�
Ŷ X1X2

|∞ ≤ 1
n

and Lemma 9 we obtain a lower bound on the number of y�

with the above type p̂y�ŷx1x2
= p̃Y �Ŷ X1X2

|{y� ∈ Tx1ŷ(pY �|Ŷ X1
)|∃x2 ∈ Cn\{x1},

p̂y�ŷx1x2
= p̃Y �Ŷ X1X2

}| = enH(Y �|Ŷ ,X1)−nωn .

(112)

where the entropy is computed using probability distribution
pY �|Ŷ X1

× p�
Ŷ X1X2

.
On the other hand, since d1 is defined as degree of every

ŷ ∈ Tx1(pŶ |X1
) in graph Gx1(pY �Ŷ |X1

) we have that d1 =
enH(Y �|Ŷ ,X1)−nκn where κn = O

(
log n

n

)
. This follows from

the type counting lemma from Gallager’s notes [20] and it can
be derived by noting that degree d1 is equal to the number of
sequences y� such that p̂ŷy�x1

= pŶ Y �X1
when x1, ŷ are

fixed, more precisely d1 = |Tx1ŷ(PY �|Ŷ X1
)|.

As a result, by combining (112) and the fact that d1 =
enH(Y �|Ŷ ,X1)−nκn we have

|{y� ∈ Tx1ŷ(pY �Ŷ |X1
)|∃x2 ∈ Cn\{x1},

p̂y�ŷx1x2
= p�

Y �Ŷ X1X2
}| = e−nωn+nκn · d1

(113)

Also, from (111), for every y� in the above set (113), we have

qn(x2, y
�) ≥ qn(x1, y

�). (114)

By setting Λn = ωn − κn we get the desired result.
Now we construct a new graph G̃x1(pY �Ŷ |X1

) using
Lemma 3. We construct this graph by starting from
Gx1(pY �Ŷ |X1

) and for each ŷ ∈ Tx1(pŶ |X1
) only keeping

the edges that are connected to y� that for some x2 ∈ C\{x1}
we have a q-decoding error, more precisely

qn(x2, y
�) ≥ qn(x1, y

�). (115)

As described in [11], the graph Gx1(pY �Ŷ |X1
) is regular: for

every y� ∈ Tx1(pY �|X1
) the number of ŷ ∈ Tx1(pŶ |X1

)
such that p̂y�ŷx1

= pY �Ŷ X1
is the same; similarly, for every

ŷ ∈ Tx1(pŶ |X1
) the number of y� ∈ Tx1(pY �|X1

) such that
p̂y�ŷx1

= pY �Ŷ X1
is the same.

The graph G̃x1(pY �Ŷ |X1
) is no longer regular. The previous

lemma shows that the degree of any vertex in G̃x1(pY �Ŷ |X1
)

is at least e−nΛnd1 and Λn = O
(

log n
n

)
. Now we can use this

fact to prove the next lemma which relates the q-decoding
error probability in channel PY �|X with the type-conflict error
probability in channel PŶ |X .

Lemma 4: Let pY �Ŷ |X1
∈ M̂max(q, pX1

) be a maximal
joint conditional type and x1 ∈ T (pX1

) be the transmitted
codeword. Then

P q
e,max(Cn, W ) ≥ e−nσnP[Tx1(pY �|X1

)|x1], (116)

where σn = O
(

log n
n

)
and both probabilities are computed

with respect to n uses of channel W .
Proof: Consider the bipartite graph G̃x1(pY �Ŷ |X1

)
obtained by connecting elements Tx1(pY �|X1

) with
Tx1(pŶ |X1

) as described above. For any B ⊂ Tx1(pŶ |X1
) we
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define Ψ(B) as

Ψ(B) =
{
y� ∈ Tx1(pY �|X1

) | y� is connected

to some ŷ ∈ B in graph G̃x(pY �Ŷ |X1
)
}

(117)

We apply Lemma 10 to graph G̃x1(pY �Ŷ |X1
) and we obtain

that for any B ⊂ Tx1(pŶ |X1
)

|Ψ(B)|
|Tx1(pY �|X1

)| ≥ e−nΛn
|B|

|Tx1(pŶ |X1
)| . (118)

Now, let B be the set of all ŷ ∈ Tx1(pŶ |X1
) such that there

exist a type-conflict error with another codeword x2 such that
p̂ŷx1x2

= p�
Ŷ X1X2

from Lemma 2 Eq. (92), i.e.,

B = Ex1(p
�
Ŷ X1X2

, pŶ X1
). (119)

Therefore, from Lemma 3 we have for any y� ∈ Ψ(B) there
exists a codeword x2 �= x1 such that

qn(x2, y
�) ≥ qn(x1, y

�). (120)

We bound the probability of error as follows

P q
e,max(Cn, W )

= P[∃x2 ∈ Cn\{x1}, qn(x2, y
�) ≥ qn(x1, y

�)|x1] (121)

≥ P[∃x2 ∈ Cn\{x1}, qn(x2, y
�) ≥ qn(x1, y

�),
y� ∈ Tx1(pY �|X1

)|x1] (122)

= P[Tx1(pY �|X1
)|x1] · P[∃x2 ∈ Cn\{x1},

qn(x2, y
�) ≥ qn(x1, y

�)|y� ∈ Tx1(pY �|X1
), x1] (123)

= P[Tx1(pY �|X1
)|x1]· (124)∣∣{y�∈Tx1(pY �|X1
)|∃x2∈Cn\{x1}, qn(x2, y

�)≥qn(x1, y
�)
}∣∣

|Tx1(pY �|X1
)|

(125)

≥ P[Tx1(pY �|X1
)|x1] ·

∣∣Ψ(Ex1(pŶ X1X2
, pŶ X1

)
)∣∣

|Tx1(pY �|X1
)| (126)

≥ P[Tx1(pY �|X1
)|x1] · e−nΛn ·

|Ex1(pŶ X1X2
, pŶ X1

)|
|Tx1(pŶ |X1

)|
(127)

≥ P[Tx1(pY �|X1
)|x1] · e−nΛn

1
2(n + 1)J2K−1

, (128)

where all of probabilities are computed with respect to n
uses of channel W , (126) follows from all elements of Ψ(B)
satisfying (120), (127) follows from (118) and (128) follows
from (96). By setting δn = Λn + (J2K − 1) log(n+1)

n we get
the desired result.

Using a standard property of conditional types we have that

P[Tx1(pY �|X1
)|x1] ≥ e−n

(
D(PY �|X1

	PY |X1 |pX1
)+δn

)
(129)

with δn = O
(

log n
n

)
. From standard arguments of the method

of types we obtain (25), where we have set pX = pX1
.

Again using standard arguments (see e.g. [20, Th. 2]) the
result of Theorem 2 is applicable to any code, and not only
constant composition codes. This is due to the fact that every

codebook Cn of rate R has a constant composition sub-
codebook C�

n ⊆ Cn with rate R� > R − J−1
n log(n + 1) with

P q
e,max(Cn, W ) ≥ P q

e,max(C�
n, W ). (130)

Additionally, a similar analysis would give an identical upper
bound to the error exponent using the maximal sets M̂max(q)
from [11].

As is well known, the exponent from Theorem 2 is decreas-
ing in R and Eq

sp(pX , R) = 0 by choosing Y � = Y in (26) at
a rate equal to

R̄q(W, pX) � min
PY Ŷ |X∈Mmax(q,pX)

PY |X=W

I(pX , PŶ |X) (131)

We have shown that for rates R < R̄q(W, pX), the error prob-
ability decays at most exponentially. The proof of Theorem 1
in Section V-A shows that for rates R > maxPX R̄q(W, PX)
the error probability cannot decay sub-exponentially and is
bounded away from zero as n tends to infinity. In the next
subsection, we extend our error exponent analysis to type-
dependent metrics.

C. Type-Dependent Metrics

In this part we show the previous analysis holds for an
important family of type-dependent metrics as well. Namely,
we show the analysis holds for type-dependant metric q(PXY )
where q is convex in PY |X when PX is fixed. This is an impor-
tant family since important metrics such as maximum mutual
information (MMI) metric defined as q(PXY ) = I(PXY ) have
this property. With a slight abuse of notation we use q(pXY )
to denote a type-dependent metric q computed for type pXY .
Recall definition of Mtd

max(q, PX)

Mtd
max(q, PX1)

Δ=

{
PY Ŷ |X1

∣∣∣∣ min
PX2|X1Ŷ :

X2−Ŷ X1−Y
PŶ X1

=PŶ X2

q(PX2Y ) ≥ q(PX1Y )

}
. (132)

For this family of metrics, we have exactly the same
statement as that of Theorem 2, but replacing Mmax(q, PX1 )
by Mtd

max(q, PX1 ).
Here we only discuss the parts of the proof that are different

from that of Theorem 2. To begin with, let pY �Ŷ |X ∈
M̂max(q, pX). Lemma 2 remains valid since the result and
its proof do not depend on the decoding metric nor its
form. We now adapt Lemma 3 to type-dependent metrics.
Assume, we have p�

Ŷ X1X2
as explained in the proof of the

Lemma 2. Moreover, the graph Gx1(pY �Ŷ |X1
) is constructed

similarly. We now want to construct a graph G̃x1(pY �Ŷ |X1
)

analogously to the proof of Lemma 3. To this end, by using
Lemma 8 with Z, S, U = Y �, (Ŷ , X1), X2, respectively, we
can express pY �|Ŷ ,X1

× p�
Ŷ X1X2

as a convex combination
of types that have marginals equal to pY �Ŷ ,X1

, p�
Ŷ X1X2

and

satisfying |p̃Y �Ŷ ,X1X2
− pY �|Ŷ ,X1

× p�
Ŷ X1X2

|∞ ≤ 1
n . More
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precisely, we have

pY �|Ŷ ,X1
× p�

Ŷ X1X2

=
∑

p̃Y �Ŷ ,X1X2
|p̃Y �Ŷ ,X1X2

−pY �|Ŷ ,X1
×p�

Ŷ X1X2
|∞≤ 1

n

p̃Y �Ŷ ,X1
=pY �Ŷ ,X1

,p̃Ŷ X1X2
=p�

Ŷ X1X2

α(p̃Y �Ŷ X1X2
)p̃Y �Ŷ ,X1X2

,

(133)

where ∑
p̃Y �Ŷ X1X2

|p̃Y �Ŷ ,X1X2
−pY �|Ŷ X1

×p�
Ŷ X1X2

|∞≤ 1
n

p̃Y �Ŷ ,X1
=pY �Ŷ ,X1

,p̃Ŷ X1X2
=p�

Ŷ X1X2

α(p̃Y �Ŷ X1X2
) = 1 (134)

and α(p̃Y �Ŷ X1X2
) ≥ 0. We will now show that there

exists a type p�
Y �Ŷ X1X2

such that |p̃Y �Ŷ ,X1X2
− pY �|Ŷ ,X1

×
p�

Ŷ X1X2
|∞ ≤ 1

n and the mismatched decoder makes an error,
i.e.,

q(pY X2
) ≥ q(pY X1

). (135)

This can be seen by the fact that q(PXY ) is convex in PY |X
and using (133). More precisely, if we define f(PY Ŷ X1X2

) =
q(PX2Y ), then, f(PY Ŷ X1X2

) is convex in PY Ŷ X1X2
when

PX2 is fixed. As a result, we have

q(PY �X2)
= f(pY �|Ŷ ,X1

× p�
Ŷ X1X2

) (136)

= f

( ∑
p̃Y �Ŷ ,X1X2

|p̃Y �Ŷ ,X1X2
−pY �|Ŷ ,X1

×p�
Ŷ X1X2

|∞≤ 1
n

p̃Y �Ŷ ,X1
=pY �Ŷ X1

,p̃Ŷ X1X2
=p�

Ŷ X1X2

α(p̃Y �Ŷ X1X2
)p̃Y �Ŷ ,X1X2

)

(137)

≤
∑

p̃Y �Ŷ ,X1X2
|p̃Y �Ŷ ,X1X2

−pY �|Ŷ ,X1
×p�

Ŷ X1X2
|∞≤ 1

n

p̃Y �Ŷ ,X1
=pY �Ŷ ,X1

,p̃Ŷ X1X2
=p�

Ŷ X1X2

α(p̃Y �Ŷ X1X2
)f(p̃Y �Ŷ ,X1X2

)

(138)

=
∑

p̃Y �Ŷ ,X1X2
|p̃Y �Ŷ ,X1X2

−pY �|Ŷ ,X1
×p�

Ŷ X1X2
|∞≤ 1

n

p̃Y �Ŷ ,X1
=pY �Ŷ X1

,p̃Ŷ X1X2
=p�

Ŷ X1X2

α(p̃Y �Ŷ X1X2
)q(p̃Y �X2

),

(139)

where (137) follows by substituting (133), and (138) follows
by the convexity of f . Throughout this derivation pX2

is fixed
due to the codebook being of constant composition. Therefore,
we obtain the desired result. We now use this type p�

Y �Ŷ X1X2

to construct the graph G̃x1(pY �Ŷ |X1
). The proof proceeds as

that of Theorem 2 with the new graph G̃x1(pY �Ŷ |X1
).

Proof of Theorem 5: The proof is almost identical to the
proof of Theorem 2; we point out the steps that are different.
The main difference with the proof of Theorem 2 is the order
of the choice of the type p�

Ŷ X1X2
and choice of the maximal

joint conditional type as mentioned above. Suppose that we

fix pY �|X and pŶ |X ∈ V̂td
max(q, PX1 , pY �|X) and consider the

type classes Tx1(pŶ |X1
), Tx1(pY �|X1

). Note that we cannot
yet construct a graph between these two type classes, because
we have not specified a joint conditional type. Yet, Lemma 2
still holds, since the maximality condition of the underlying
joint conditional type is not used. Consider the joint type
p�

Ŷ X1X2
from Lemma 2. We can now use the definition of

V̂td
max(q, PX , pY �|X) for which

max
PY Ŷ |X1

:

PY X1=pY �X1
PŶ X1

=pŶ X1

min
PX2|X1Ŷ :

X2−Ŷ X1−Y
PŶ X1

=PŶ X2

q(PX2Y ) ≥ q(PX1Y ). (140)

In other words, there exists a joint conditional distribution
PŶ Y �|X1

which is the maximizer in (140) such that the
marginals satisfy

PY �X1 = pY �X1
(141)

PŶ X1
= pŶ X1

, (142)

and additionally,

q(PX2Y ) ≥ q(PX1Y ), (143)

where X1, X2, Y
�, Ŷ ∼ PY �|Ŷ X1

p�
Ŷ X1X2

. The proof proceeds
as in Section V-C.

APPENDIX A
PROOF OF THEOREM 4

In this section, we prove Theorem 4. The proof uses several
results stated and proved in Appendices B and C.

We first show existence of a joint conditional distribution
P̄Y Ŷ |X ∈ Mmax(q, pX) with properties (60), (61) and (62).
To this end let the joint distribution be PY Ŷ X = PY Ŷ |X ×pX .
Then, we can use Lemma 7 to express PXŶ as follows

PXŶ =
∑

P �
Ŷ X

∈Pn(XY):

|P �
Ŷ X

−PŶ X |∞≤ 1
n

α(P �
XŶ

)P �
XŶ

, (144)

where the coefficients α(·) are non-negative and are such that∑
P �

Ŷ X
∈Pn(XY):

|P �
Ŷ X

−PŶ X |∞≤ 1
n

α(P �
XŶ

) = 1. As a result, by multiplying

both sides of (144) by PY |Ŷ X1
we have that

PY Ŷ X =
∑

P �
Ŷ X

∈Pn(XY):

|P �
Ŷ X

−PŶ X |∞≤ 1
n

α(P �
Ŷ X

)PY |Ŷ XP �
Ŷ X

. (145)

Define the joint conditional distributions

P �
Y Ŷ X

= PY |Ŷ XP �
Ŷ X

(146)

in the sum (145).
The theorem statement assumes that PY Ŷ |X is maximal. We

now claim that at least one of the joint conditional distributions
P �

Y Ŷ X
= PY |Ŷ XP �

Ŷ X
in the sum (145) is maximal. To see

this, assume by contradiction none of the joint conditional
distributions P �

Y Ŷ X
= PY |Ŷ XP �

Ŷ X
in the sum (145) are

maximal. This this implies that for each distribution P �
Y Ŷ X1
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there exists a distribution P �
X2|X1Ŷ

such that the optimization

problem in the definition of the maximal set gives

P �
X2|X1Ŷ

= argmin
PX2|X1Ŷ :

X2−X1Ŷ −Y
P �

Ŷ X2
=P �

Ŷ X1

E[q(X2, Y )] < E[q(X1, Y )], (147)

where the expectations in (147) are computed over joint
distributions P �

Y Ŷ X1X2
= P �

X2|X1Ŷ
P �

Y Ŷ X1
.

Define

PY Ŷ X1X2
=

∑
P �

Ŷ X
∈Pn(XY):

|P �
Ŷ X

−PŶ X |∞≤ 1
n

α(P �
Ŷ X

)P �
Y Ŷ X1X2

(148)

with the same coefficients as in (144). We have that

PŶ X1
= PŶ X2

(149)

PY Ŷ X1X2
= PY |Ŷ X1

PŶ X1X2
, (150)

where (149) follows from the fact that all P �
Ŷ X1X2

in the sum
of equation (148) are such that P �

Ŷ X1
= P �

Ŷ X2
by construction

and (150) follows from the definition of P �
Y Ŷ X

in (146).
We write the expectation condition in (147) as

EPY Ŷ X1X2
[q(X2, Y ) − q(X1, Y )]

=
∑

P �
Ŷ X

∈Pn(XY):

|P �
Ŷ X

−PŶ X |∞≤ 1
n

α(P �
Ŷ X

)EP �
Y Ŷ X1X2

[q(X2, Y ) − q(X1, Y )]

(151)

< 0, (152)

where (151) follows from (148) and (152) follows from (147).
The above inequality contradicts the maximality assumption
of PY Ŷ X1

. Therefore, there must exist at least one P �
Y Ŷ X

in

the sum (145) which is maximal. We call this maximal joint
conditional distribution P̄Y Ŷ X . The distribution P̄Y Ŷ X is such
that

P̄XŶ ∈ Pn(XY) (153)

|P̄Ŷ X − PŶ X |∞ ≤ 1
n

(154)

P̄Y Ŷ X = PY |Ŷ X P̄Ŷ X (155)

fulfilling properties (60) and (61). In addition we have that

|P̄XY (j, k) − PXY (j, k)|
=
∣∣∑

k�
PY |Ŷ X(k|j, k�)P̄XŶ (j, k�) (156)

− PY |Ŷ X(k|j, k�)PXŶ (j, k�)
∣∣ (157)

≤
∑
k�

|P̄XŶ (j, k�) − PXŶ (j, k�)| (158)

≤ K

n
, (159)

where (158) follows from the triangle inequality and
PY |Ŷ X(k|j, k�) ≤ 1 and (159) follows from (154), proving
property (62).

Now we have found a P̄Y Ŷ X with properties (60)–(62). We
need to show that for this P̄Y Ŷ X , we have that

P q
e,max(Cn, P̄Y |X) ≥ γPmax

tce (Cn, P̄Ŷ |X). (160)

In the following, we prove (160). Without loss of generality
assume that x1 is the codeword with maximum type conflict
error on channel PŶ |X . For every message � = 2 . . . , M ,
define the sets

A� = {y | qn(x�, y) ≥ qn(x1, y)} (161)

B� = {ŷ | p̂ŷ|x�
= p̂ŷ|x1

= P̄Ŷ |X}. (162)

The sets A�,B� are the sets of outputs that result in a pairwise
mismatched decoding error or type-conflict error, respectively.
Using these definitions we write the probability of mismatched
decoding error over channel P̄Y |X and the type-conflict error
probability over channel P̄Ŷ |X as

P q
e,max(Cn, P̄Y |X) = P

[ M⋃
m�=2

Am�

]
(163)

Pmax
tce (Cn, P̄Ŷ |X) = P

[ M⋃
�=2

B�,

]
(164)

where both probabilities in (163) and (164) are computed with
respect to P̄n

Y |Ŷ X
× PU , where PU denotes the equiprobable

distribution over the type class Tx1(P̄Ŷ |X). Also define

D� = B�\ ∪�−1
i=1 Bi (165)

with B0 = ∅. Observe that while B� are not necessarily dis-
joint, the newly constructed sets D� are, and thus

⋃M
�=2 B� =⋃M

�=2 D�. Then, we have

P q
e,max(Cn, P̄Y |X) = P

[ M⋃
m�=2

Am�

]
(166)

≥ P

[ M⋃
m�=2

Am�
⋂ M⋃

�=2

B�

]
(167)

= P

[ M⋃
m�=2

Am�
⋂ M⋃

�=2

D�

]
(168)

=
M∑

�=2

P

[ M⋃
m�=2

Am� |D�

]
P[D�] (169)

≥
M∑

�=2

P[A�|D�]P[D�], (170)

where (168) follows from
⋃M

�=2 B� =
⋃M

�=2 D�, (169) follows
from the fact that the sets D� are disjoint and (170) is fol-

lows from lower bounding P

[⋃M
m�=2 Am� |D�

]
by P[A�|D�].

Although, inequality (170) has removed many error events, it
does not weaken our bound since a type conflict error in the
auxiliary channel induces a q-decoding error in the original
channel for the same codewords.
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We now proceed to lower-bounding P[A�|D�]. We first
rewrite P[A�|D�] as follows

P[A�|D�] = P[qn(x�, y) ≥ qn(x1, y)|D�] (171)

=
∑

ŷ∈D�

P[qn(x�, y) ≥ qn(x1, y)|ŷ]
P[ŷ]
P[D�]

, (172)

where the probability in (172) is over output sequences y. A
consequence of Lemma 12 is that, given that x1, x� are fixed,
P[qn(x�, y) ≥ qn(x1, y)|ŷ] depends on ŷ only through their
joint type, i.e.,

P[qn(x�, y) ≥ qn(x1, y)|ŷ]
= P[qn(x�, y) ≥ qn(x1, y)|pŶ X1X�

], (173)

where the joint type pŶ X1X�
= p̂ŷx1x�

. We now proceed to
lower bound the right hand side of (173) by using Lemma
6. In order to apply the lemma to obtain a lower bound on
P[qn(x�, y) − qn(x1, y) ≥ 0|pŶ X1X�

] we proceed with the
following steps:

1) We derive a single-letter expression of the expectation
E[qn(x�, y) − qn(x1, y)|pŶ X1X�

]. To this end, we use
Lemma 13 for Zi = (x1(i), x�(i), ŷ(i)) and Si = Yi

and f(Zi, Si) = q(x�(i), Yi) − q(x1(i), Yi). Then, by
using Lemma 13 we obtain

E[qn(x�, y) − qn(x1, y)|pŶ X1X�
]

= nEPY |X1,Ŷ ×pŶ X1X�
[q(X�, Y ) − q(X1, Y )] (174)

As a result, since P̄Y Ŷ |X1
∈ Mmax(q, pX) is maximal,

then

EPY |X1,Ŷ ×pŶ X1X�
[q(X�, Y ) − q(X1, Y )] ≥ 0. (175)

2) We use Corollary 4 to write the conditional variance
Var[qn(x�, y) − qn(x1, y)|pŶ X1X�

] as

Var[qn(x�, y) − qn(x1, y)|pŶ X1X�
]

= nEpŶ X1X�

[
VarPY |Ŷ X1

[q(X�, Y ) − q(X1, Y )]
]
.

(176)

3) From Lemma 17, we have that qn(x�, y) − qn(x1, y)
given pŶ X1X�

is sub-Gaussian, i.e.,

P[qn(x�, y) − qn(x1, y) ≥ ξ|pŶ X1X�
] ≤ e

−ξ2

n(b−a)2 ,

(177)

where a = 2 minx,y q(x, y), b = 2 maxx,y q(x, y).
4) We apply Corollary 3 to the random variable

qn(x�,y)−qn(x1,y)√
n

and setting θ = 1
|a−b| we obtain

P[qn(x�, y) − qn(x1, y) ≥ 0|pŶ X1X�
]

≥
EpŶ X1X�

[
VarPY |Ŷ X1

[q(X�, Y ) − q(X1, Y )]
]

2κ2(a − b)2

− |a − b|e
−κ2

2

(
1 +

√
2 +

√
2π

κ
+

1
κ2

)
.

(178)

The expected conditional variance in the right hand side of
(178) can potentially be very small. This can happen for types

pŶ X1X�
that have substantial mass in the entries where the

conditional variance VarPY |Ŷ X1
[q(X�, Y )−q(X1, Y )] is zero.

This implies that conditioning on this type does not allow us
to lower bound the probability by a constant, independent of
n, as we would like.

To overcome this problem, we shorten the code and received
sequences by discarding the entries where the above condi-
tional variance is zero. Then, we use again Corollary 3. More
precisely, we define a new type p̃Ŷ X1X�

which places zero
mass in the entries where the conditional variance

σ2
j1,j2,k � VarPY |Ŷ X1

[q(X�, Y ) − q(X1, Y )

|X1 = j1, X� = j2, Ŷ = k] (179)

is zero

p∗
Ŷ X1X�

(k, j1, j2) =

{
0 σ2

j1,j2,k = 0
pŶ X1X�

(k,j1,j2)

n∗ otherewise
, (180)

where ñ ≤ n is the length of the sequences after removing
the zero-variance entries is defined as follows

n∗ = n
∑

j1,j2,k

pŶ X1X�
(k, j1, j2)1

{
σ2

j1,j2,k �= 0
}
. (181)

This type consists of only the k, j1, j2 for which the condi-
tional variance σ2

j1,j2,k in (179) is σ2
j1,j2,k �= 0. We redefine the

auxiliary channel output and the two codewords accordingly,
by eliminating the entries with zero variance. More precisely,
x∗

1, x
∗
� , ŷ

∗ are defined by eliminating indices 0 ≤ i ≤ n
from x1, x2, ŷ when x1(i) = j1, x�(i) = j2, ŷ(i) = k and
σ2

j1,j2,k = 0.
We define y∗ as the corresponding shortened length-n∗

channel output sequence. Then, we notice that

P[qn(x�, y) ≥ qn(x1, y)|pŶ X1X�
]

= P[qn∗
(x∗

� , y
∗) ≥ qn∗

(x∗
1, y

∗) + μ∗|p∗
Ŷ X1X�

], (182)

where we replace the zero-variance entries by

μ∗ = E[qn∗
(x∗

� , y
∗) − qn∗

(x∗
1, y

∗)|p∗
Ŷ X1X�

]

− E[qn(x�, y) − qn(x1, y)|pŶ X1X�
], (183)

where μ∗ is the overall change in metric difference.
Therefore, (182) follows from the fact that eliminating zero-

variance entries at the positions as described in (180) corre-
sponds to cases where the metric difference was a constant in
that position.

Notice that with the previous procedure we have

Var[qn∗
(x∗

� , y
∗) − qn∗

(x∗
1, y

∗)|p∗
Ŷ X1X�

]

= n∗
Ep∗

Ŷ X1X�

[VarPY |Ŷ X1
[q(X�, Y )] − q(X1, Y )]] (184)

≥ n∗σ2, (185)

where

σ2 = min
j1,j2,k:

σ2
j1,j2,k>0

σ2
j1,j2,k (186)

> 0 (187)

where σ2
j1,j2,k has been defined in (179).
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We now proceed to repeat steps 3) and 4) of the above
procedure. We first use Lemma 17 and obtain that

E[qn∗
(x∗

� , y
∗) − qn∗

(x∗
1, y

∗)|p∗
Ŷ X1X�

] = μ ≥ μ∗, (188)

P[|qn∗
(x∗

� , y
∗) − qn∗

(x∗
1, y

∗) − μ| ≥ ξ|p∗
Ŷ X1X�

]

≤ 2e
−ξ2

n∗(b−a)2 . (189)

We now apply Corollary 3 as in step 4), and get that

P[qn∗
(x∗

� , y
∗) − qn∗

(x∗
1, y

∗) ≥ μ∗|p∗
Ŷ X1X�

]

= P[qn∗
(x∗

� , y
∗) − qn∗

(x∗
1, y

∗) ≥ μ|p∗
Ŷ X1X�

] (190)

≥ σ2

2κ2(a − b)2
− |a − b|e

−κ2
2

(
1 +

√
2 +

√
2π

κ
+

1
κ2

)
,

(191)

where a = 2 minx,y q(x, y), b = 2 maxx,y q(x, y).
By setting κ large enough we get a uniform bound for all

n∗ > 0. Let γ > 0 denote such a bound, i.e.,

P[qn∗
(x∗

� , y
∗) − qn∗

(x∗
1, y

∗) ≥ μ∗|p∗
Ŷ X1X�

] ≥ γ (192)

for all n∗ > 0. In case n∗ = 0 the expression in left hand side
of (192) equals to 1 and the rest of the proof holds. Therefore,
from (171) we get

P[A�|D�] =
∑

ŷ∈D�

P[qn(x�, y) ≥ qn(x1, y)|ŷ]
P[ŷ]
P[D�]

(193)

≥ γ
∑

ŷ∈D�

P[ŷ]
P[D�]

(194)

= γ, (195)

where (194) follows from (192) and (195) follows from the
fact that P[D�] =

∑
ŷ∈D�

P[ŷ].
Therefore, combining the above inequality with (170) we

get

P q
e,max(Cn, P̄Y |X) ≥

M∑
�=2

P[A�|D�]P[D�] (196)

≥
M∑

�=2

γP[D�] (197)

= γP
[ M⋃

�=2

D�

]
(198)

= γP
[ M⋃

�=2

B�

]
(199)

= γPmax
tce (Cn, P̄Ŷ |X), (200)

where (197) is deduced from (195), (198) is resulted from
the fact that the sets D� are disjoint, (199) follows from⋃M

�=2 B� =
⋃M

�=2 D� and (200) follows from (164). This
concludes the proof.

Unfortunately, the techniques introduced in the proof of
Theorem 4 do not seem to naturally extend to type-dependent
metrics. This implies that the rate at which the error exponent
derived in Section V-C becomes zero might not be the best
possible bound to the mismatch capacity and might potentially

be further improved, since there might be smaller rates where
the error probability decays sub-exponentially.

APPENDIX B
AUXILIARY LEMMAS

In this appendix we study expected values of functions
under the equiprobable distribution over a type class. Let s, z
be sequences of length n from alphabets S,Z respectively
with joint type p̂zs = pZS . Moreover, let f : T × S → R be
an arbitrary additive function, i.e.,

f(t, s) =
n∑

i=1

f(ti, si), (201)

where with a slight abuse of notation we have used the same
f for sequences and their entries.

Let PU be the equiprobable distribution over all sequences
t such that p̂tz = pTZ . In other words, PU denotes the
equiprobable distribution over elements of the conditional type
class Tz(pT |Z), where pTZ is a given type. The lemma below
provides a single-letter expression for EU [f(t, s)].

Lemma 5: With the above assumptions we have

EU [f(t, s)] = nEpT |Z×pZS
[f(T, S)]. (202)

Proof: We have

EU [f(t, s)] = EU

[ n∑
i=1

f(ti, si)
]

(203)

=
n∑

i=1

EU [f(ti, si)] (204)

=
n∑

i=1

EpT |Z×pZ|S=si
[f(T, S)|S = si] (205)

=
∑

s

npS(s)EpT |Z×pZ|S=s
[f(T, S)|S = s]

(206)

= nEpT |Z×pZS
[f(T, S)], (207)

where (204) follows from linearity of expectation and (205)
is deduced from p̂tz = pTZ .

Lemma 6: Let Y be a zero-mean sub-Gaussian random
variable with parameter θ i.e. P[|Y | ≥ ξ] ≤ 2e

−ξ2θ2

2 for all
ξ ≥ 0, then for any a > 0 we have

P[Y ≥ 0] ≥ Var[Y ]
2a2

− 2e
−a2θ2

2

(
1 +

√
2 +

√
2π

aθ
+

1
a2θ2

)
.

(208)

Proof: To begin with, we have that

1{Y ≥ 0} ≥ Y (Y + a)
2a2

1{−a ≤ Y ≤ a}. (209)

For simplicity of notation let I = [−a, a]. Therefore, by taking
expectations from both sides of (209) we get

P{Y ≥ 0} ≥ E

[
Y (Y + a)1{Y ∈ I}

2a2

]
(210)

= E

[
Y 21{Y ∈ I}

2a2

]
+ E

[
Y 1{Y ∈ I}

2a

]
(211)
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= E

[
Y 2

2a2

]
+ E

[
Y

2a

]
− E

[
Y 2

2a2
1{Y /∈ I}

]

− E

[
Y

2a
1{Y /∈ I}

]
. (212)

Now by substituting E[Y ] = 0 and E[Y 2] = Var[Y ] we have

P{Y ≥ 0} ≥ Var[Y ]
2a2

− E

[
Y 2

2a2
1{Y /∈ I}

]

− E

[
Y

2a
1{Y /∈ I}

]
(213)

We now evaluate both expectations in (213). We have that

E

[
Y 2

2a2
1{Y /∈ I}

]
=
∫ ∞

0

P

( Y 2

2a2
1{Y /∈ I} > t

)
dt (214)

=
∫ ∞

0

P

(
|Y | ≥ max{

√
2ta, a}

)
dt

(215)

≤ 2
∫ ∞

0

e−max{2ta2,a2}θ2
dt (216)

= 2
∫ 1

2

0

e−a2θ2
dt + 2

∫ ∞

1
2

e−2ta2θ2
dt

(217)

= e−a2θ2
+

1
a2θ2

e−a2θ2
, (218)

where (214) follows from rewriting the expectation, (216) is
followed from the sub-Gaussianity of Y . Similarly, we have

E

[
Y

2a
1{Y /∈ I}

]

≤ E

[
|Y |
2a

1{Y /∈ I}
]

(219)

≤
∫ ∞

0

P

( |Y |
2a

1{Y /∈ I} > t
)
dt (220)

=
∫ ∞

0

P

(
|Y | ≥ max{2ta, a}

)
dt (221)

≤ 2
∫ ∞

0

e−max{2t2a2,a2}θ2
dt (222)

= 2
∫ √

1
2

0

e−a2θ2
dt + 2

∫ ∞
√

1
2

e−2t2a2θ2
dt (223)

=
√

2e−a2θ2
+ 2

√
2π

1
2aθ

Q(
√

2aθ) (224)

≤
√

2e−a2θ2
+

√
2π

aθ
e−a2θ2

, (225)

where Q is the Gaussian Q-function, (220) follows from the
sub-Gaussianity of Y and (224) follows from the change of
variable u = 2aθt. Moreover, (225) is resulted from using the
Chernoff bound on the Q-function. by substituting (218) and
(225) in (213) we get the desired result.

Corollary 3: For a sub-Gaussian random variable Z with

parameter θ i.e. P[|Z − E[Z]| ≥ ξ] ≤ 2e
−ξ2θ2

2 for all ξ ≥ 0,
for any κ > 0 we get

P[Z ≥ E[Z]] ≥ θ2Var[Z]
2κ2

− 2e
−κ2

2

(
1 +

√
2 +

√
2π

κ
+

1
κ2

)
.

(226)

Proof: By setting a = κ
θ and substituting Y = Z − E[Z]

in the above lemma we get the above inequality.
We will use this form of the inequality throughout the paper.
The next lemma compares the size of the type class

T (pZSU ) for joint type pZSU , with number of sequences
whose marginal types are equal to pZS and pSU .

Lemma 7: Consider type pZSU which is the multiplication
of two types pZSU = pZ|SpSU . We have the following
inequality∣∣{(z, s, u) ∈ Z × S × U|p̂zsu = pZSU}

∣∣∣∣{(z, s, u) ∈ Z × S × U|p̂zs =pZS , p̂su =pSU}
∣∣≥2−nωn ,

(227)

where ωn = O( log n
n ).

Proof: From method of types properties (see e.g. [18],
[20]) we have∣∣{(z, s, u) ∈ Z × S×U|p̂zsu = pZSU}

∣∣
= 2n(H(Z,S,U)+ζn) (228)

= 2n(H(Z|S,U)+H(S,U)+ζn) (229)

= 2n(H(Z|S)+H(S,U)+ζn), (230)

where ζn = O( log n
n ), the entropies in the above expressions

are computed with respect to probability distribution pZSU ,
(228) follows from counting elements of a type class [20],
(229) is derived by using the chain rule of entropy and (230)
is deduced by using pZSU = pZ|SpSU implying that Z is
independent of U given S.

On the other hand∣∣{(z, s, u) ∈ Z × S × U|p̂zs = pZS , p̂su = pSU}
∣∣ (231)

=
∑

p̃ZSU
p̂zs=p̃ZS ,
p̂su=p̃SU

∣∣{(z, s, u) ∈ Z × S × U|p̂zsu = p̃ZSU}
∣∣

(232)

≤ (n + 1)|Z||S||U|

max
p̃ZSU

p̂zs=p̃ZS ,
p̂su=p̃SU

∣∣{(z, s, u) ∈ Z × S × U|p̂zsu = p̃ZSU}
∣∣ (233)

= 2n(H(Z,S,U)+θn) (234)

= 2n(H(Z|S,U)+H(S,U)+θn) (235)

≤ 2n(H(Z|S)+H(S,U)+θn), (236)

where θn = O( log n
n ), (232) is derived by considering all

types with marginals pZS and pSU , (233) follows by upper
bounding the number of types with (n+1)|Z||S||U| and number
of elements of each type class with the number of elements
of the largest one, and (234) follows by counting the elements
of the type class that maximises the expression

max
p̃ZSU

p̂zs=p̃ZS ,
p̂su=p̃SU

∣∣{(z, s, u) ∈ Z × S × U|p̂zsu = p̃ZSU}
∣∣. (237)

In other words, the entropy in (234) is computed with respect
to this maximising type p̃ZSU in the previous expression.
In the proceeding expressions, (234), (235) and (236) the
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same type and its corresponding marginals are used. Eq.
(235) is derived using chain rule of entropy and (236) fol-
lows from H(Z|S, U) ≤ H(Z|S). Since the marginals of
both types pZSU and p̃ZSU are the same, H(Z|S), H(S, U)
are the same in (236) and (230). Therefore, we have
that ∣∣{(z, s, u) ∈ Z × S × U|p̂zsu = pZSU}

∣∣∣∣{(z, s, u) ∈ Z × S × U|p̂zs = pZS , p̂su = pSU}
∣∣

≥ 2n(ζn−θn). (238)

By setting ωn = ζn − θn we get the desired result.
Before stating the next lemma we need to define the convex

hull of a set of vectors.
Definition 6: Let v1, · · · , v� ∈ R

d be vectors in a vec-
tor space. Then convex hull of these vectors denoted by
CVH({v1, · · · , v�}) is defined as the following set

CVH({v1, · · · , v�})

=
{

v ∈ R
d
∣∣ v =

�∑
i=1

αivi, αi ∈ [0, 1],
�∑

i=1

αi = 1
}

.

(239)

Lemma 8: Let pZS , pSU be two joint types. Define the
distribution P �

ZSU = pZ|SpSU and let

A =
{
pZ1S1U1

∈ Pn(Z × S × U)|pZ1S1
= pZS ,

pS1U1
= pSU , |pZ1S1U1

− P �
ZSU |∞ ≤ 1

n

}
. (240)

Then P �
ZSU ∈ CVH(A).

The implication of the above lemma is that while P �
ZSU

is not necessarily a type it can be expressed as a convex
combination of types that are in the neighborhood of P �

ZSU

and also has marginals equal to the marginals of P �
ZSU ,

which are types by definition. Proof: We prove a stronger
result than the one mentioned in the theorem statement.
We have used a simpler version of the lemma’s statement
since it will be what we need in the proofs of the main
results of this paper. We will use induction to prove the the
following statement. For every probability distribution P �

ZSU

and set J ⊆ Z × S × U , we have P �
ZSU ∈ CVH(AJ ),

where

AJ =
{
pZ1S1U1

∈ Pn(Z × S × U) | pZ1S1
= pZS ,

pS1U1
= pSU , |pZ1S1U1

− P �
ZSU |∞ ≤ 1

n
,

∀(i, j, k) ∈ J , pZ1S1U1
(i, j, k) = P �

ZSU (i, j, k)
}

.

(241)

Define the hyperplane H as the set

H = {PZ1S1U1 |PZ1S1 = pZS , PS1U1 = pSU} (242)

where in the definition of H, the quantities PZ1S1U1 are not
assumed to satisfy PZ1S1U1(i, j, k) ≥ 0, but they satisfy∑

z,s,u PZ1S1U1(z, s, u) = 1. This makes the above set a

hyperplane. Therefore, P �
ZSU ∈ H, but since it is a distri-

bution, it satisfies that P �
ZSU (i, j, k) ≥ 0. Define also the

set

HJ = {PZ1S1U1 |∀(i, j, k) ∈ J , PZ1S1(i, j) = pZS(i, j),
PS1U1(j, k) = pSU (j, k)} ⊆ H. (243)

We perform the induction on the dimension, or number of
degrees of freedom, of the set HJ . Recall that P �

ZSU is not
necessarily a type but its marginals P �

ZS = pZS , P �
SU = pSU

are types.
Additionally, define the set B

B =
{

pZ1S1U1
| ∀(i, j, k) pZ1S1U1

(i, j, k) ≥ 0,

|pZ1S1U1
− P �

ZSU |∞ ≤ 1
n

∀(i, j, k) ∈ J , pZ1S1U1
(i, j, k) = P �

ZSU (i, j, k)
}
,

(244)

where in the definition of the set B, the quantities pZ1S1U1

are not assumed to sum to 1, but instead, they are assumed to
satisfy pZ1S1U1

(i, j, k) ≥ 0 for all (i, j, k).
Then, we deduce that P �

ZSU ∈ CVH(B)∩H because P �
ZSU

belongs to both CVH(B) and H. Moreover, the intersection of
CVH(B) and H is a convex set since the intersection of any
convex set and a hyperplane is a convex set.

For any J̃ ⊃ J and P †
ZSU where ∀(i, j, k) ∈ J we have

P †
ZSU (i, j, k) = P �

ZSU (i, j, k) we define a side of set CVH(B)
as the set CVH(BJ̃ ), where

BJ̃ =
{
pZ1S1U1

| ∀(i, j, k), pZ1S1U1
(i, j, k) ≥ 0,

|pZ1S1U1
− P �

ZSU |∞ ≤ 1
n

∀(i, j, k) ∈ J̃ , pZ1S1U1
(i, j, k) = P †

ZSU (i, j, k)
}
(245)

We claim that the intersection of any side of CVH(B) with
set HJ , i.e., CVH(BJ̃ ) ∩ HJ is the convex hull of all types
in CVH(BJ̃ ) ∩HJ .

Observe that if we prove this, then the induction step is
proved. This is true since if the previous claim is proven,
we would deduce that CVH(B) ∩ HJ is itself the convex
hull of types in CVH(B) ∩ HJ . As a result, any element
of CVH(B) ∩ HJ including P �

ZSU can be expressed as a
convex combination of types in CVH(B)∩HJ . Additionally,
observe that from their definition, the set of types that belong
to CVH(B) ∩HJ is equal to AJ .

To prove our claim we notice that for any J ⊂ J̃ we have
that

CVH(BJ̃ ) ∩HJ = CVH(BJ̃ ) ∩HJ̃ . (246)

In addition, observe that

CVH(BJ̃ ) ∩HJ̃ = AJ̃ . (247)

Therefore, from the induction step we deduce that any
distribution P̃ZSU ∈ CVH(BJ̃ ) ∩ HJ̃ can be expressed as a
convex combination of types in this side CVH(BJ̃ ) ∩ HJ̃ .
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Therefore, the desired induction step is proven. Since we
perform induction over the dimension of HJ , when this
dimension is 1, this is a trivial statement. Therefore, the proof
by induction is complete.

Lemma 9: Let pX be a type and PX be a distribution such
that |pX − PX |∞ ≤ 1

n . Then we have

|T (pX)| = 2nH(X)−ωn (248)

|ωn| ≤
|X | log n

n
, (249)

where the entropy is computed with respect to distribution PX .
Proof: This lemma has been proven in [20].

The following lemma is eventually used for connecting type
conflict errors of the auxiliary channel PŶ |X and mismatch
decoding errors of PY |X . Since for such connections we use a
bipartite graph and not all of the edges of the bipartite graph
are useful we need the following lemma as a lower bound
to the number of erroneous sequences under mismatched
decoding.

Lemma 10: Let Gx(pY Ŷ |X) be a regular bipartite graph
between type classes Tx(pY |X) and Tx(pŶ |X) with right

degree r1 and left degree r2. Construct a graph G̃x(pY �Ŷ |X1
)

by removing some edges connected to every ŷ ∈ Tx(pŶ |X)
in such a way that at least αr1 of these edges for 0 < α < 1
remain. Then, for every set B ⊂ Tx(pŶ |X) we have

|Ψ(B)|
|Tx(pY |X)| ≥ α

|B|
|Tx(pŶ |X)| , (250)

where Ψ(B) is defined as

Ψ(B) =
{
y ∈ Tx1(pY |X1

) | y is connected

to some ŷ ∈ B in graph G̃x(pY Ŷ |X1
)
}
. (251)

Proof: Observe that when we eliminate some edges, the
degree of every y ∈ Tx(pY |X) is at most r2 and degree of
every element in ŷ ∈ Tx(pŶ |X) is at least αr1. Therefore, if
we count the number of edges between B and Ψ(B) and call
it e, we have

α|B|r1 ≤ e ≤ r2|Ψ(B)|. (252)

The above inequality holds since degree of every vertex in
B ⊂ Tx(pŶ |X) is at least αr1 therefore, e is at least |B|αr1.
On the other hand, degree of every element in Ψ(B) is at most
r2. As a result, e is at most |Ψ(B)|r2. In addition, observe that

|Tx(pŶ |X)|r1 = |Tx(pY |X)|r2. (253)

which follows by counting the number all edges in graph
Gx(pY Ŷ |X). As a result, by substituting r1

r2
from (253) in (252)

we get

|Ψ(B)|
|Tx(pY |X)| ≥ α

|B|
|Tx(pŶ |X)| . (254)

Lemma 11: Let PY X , P̄Y X be two joint distributions such
that |P̄XY − PXY |∞ ≤ K

n . Then, there exists an N0 such

that for any n > N0 and for any pair of sequences (x, y) ∈
Xn × Yn with joint type p̂xy we have

e−δ ≤
n∏

i=1

PXY (xi, yi)
P̄XY (xi, yi)

≤ eδ, (255)

where δ = 2K
minPXY (j,k)>0 PXY (j,k) .

In addition, for any codebook Cn

P q
e,max(Cn, PY |X) ≥ e−δP q

e,max(Cn, P̄Y |X). (256)

Proof: We have the following

n∏
i=1

PXY (xi, yi)
P̄XY (xi, yi)

=
∏
j,k

[
PXY (j, k)
P̄XY (j, k)

]np̂xy(j,k)

(257)

=
∏
j,k

[
P̄XY (j, k) + PX,Y (j, k) − P̄X,Y (j, k)

P̄XY (j, k)

]np̂xy(j,k)

(258)

≤
∏
j,k

[
P̄XY (j, k) + |PXY (j, k) − P̄XY (j, k)|

P̄Y |X(j, k)

]np̂xy(j,k)

(259)

≤
∏
j,k

(
1 +

δ

n

)np̂xy(j,k)

(260)

=
(
1 +

δ

n

)n

(261)

≤ eδ, (262)

where (260) follows from |P̄XY − PXY |∞ ≤ K
n and the

definition of δ. Moreover, there exists an N0, such that for

n > N0 we have that P̄Y |X(j, k) ≥ PY |X (j,k)

2 . The other
inequality is derived similarly.

As a result, without loss of generality assume x1 is the
codeword with maximum probability of error and B be the
set of all output sequences such that cause a q-decoding error
when x1 is sent. Therefore,

P q
e,max(Cn, PY |X) = P[B|x1] (263)

≤ eδ
P̄[B|x1] (264)

= eδP q
e,max(Cn, P̄Y |X), (265)

where the probabilities in (263) and (264) are computed with
respect to PXY and P̄XY , respectively. This concludes the
proof.

APPENDIX C
CONDITIONING ON THE TYPE OF A SEQUENCE

In this section, we study the effect of conditioning on the
type of a sequence when computing some statistical properties
of functions of random sequences.

Lemma 12: Let f : Z × S → R be an arbitrary function
and (Zi, Si), i = 1, 2, . . . , n be random variables taking values
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on alphabets Z,S, respectively. Further assume that

P

[
S = s

∣∣∣Z = z
]

=
n∏

i=1

P[Si = si|Zi = zi] (266)

and PZiSi does not depend on index i. Let p̂z, p̂s denote
the types of z = (z1, . . . , zn), s = (s1, . . . , sn), respectively.
Then, for any function g the expectation

E

[
g
( n∑

i=1

f(Zi, Si)
)∣∣∣Z = z

]
(267)

only depends on p̂z.
Proof: It is sufficient to show that for any z1, z2 that

p̂z1
= p̂z2

we have

E

[
g
( n∑

i=1

f(Zi, Si)
)∣∣∣Z = z1

]

= E

[
g
( n∑

i=1

f(Zi, Si)
)∣∣∣Z = z2

]
. (268)

We have

E

[
g
( n∑

i=1

f(Zi, Si)
)∣∣∣Z = z

]

=
∫
Sn

g
( n∑

i=1

f(zi, si)
)

P

[
S1 = s1, · · · , Sn = sn

∣∣∣Z = z
]
dS

(269)

=
∫
Sn

g
( n∑

i=1

f(zi, si)
) n∏

i=1

P[Si = si|Zi = zi]dS (270)

where (270) follows from (266). Now notice that with a
permutation of indices we can turn z1 into z2. Moreover, the
expression in (270) is invariant under permutation of indices
because PZiSi does not depend on index i. Therefore, the
expression in (270) is equal for z1 and z2. This finishes the
proof.

Having the above lemma in mind, we study the problem of
conditioning on types in the following results.

Lemma 13: Under the assumptions of Lemma 12, we have
that

E

[
n∑

i=1

f(Zi, Si)
∣∣∣p̂z

]
= nEPS|Z×p̂z

[f(Z̃, S)] (271)

where Z̃ is a random variable with distribution p̂z.
Proof: We have that

E

[
n∑

i=1

f(Zi, Si)
∣∣∣p̂z

]
= E

[
n∑

i=1

∑
z

f(z, Si)p̂z(z)

]
(272)

=
n∑

i=1

∑
z

E [f(z, Si)] p̂z(z) (273)

=
n∑

i=1

∑
z

EPS|Z̃=z
[f(z, S)]p̂z(z)

(274)

= nEp̂z

[
EPS|Z̃

[
f(Z̃, S)

∣∣∣Z̃]] (275)

= nEPS|Z̃×p̂z(z)[f(Z̃, S)], (276)

where (272) is derived using the fact that PZiSi does not
depend on index i, (273) is derived from the linearity of
expectation, (274) follows by replacing random variables Si

by S which does not affect the expectation and (276) follows
from the tower rule of conditional expectation.

Lemma 14: Under the assumptions of Lemma 13 we have

E

[( n∑
i=1

f(Zi, Si)
)2∣∣∣p̂z

]
= n2

EPS|Z×p̂z
[f(Z̃, S)]2

+ nEPS|Z×p̂z
[f(Z̃, S)2] − nEp̂z

[
EPS|Z [f(Z̃, S)|Z̃]2

]
,

(277)

where Z̃ is a random variable with distribution p̂z.
Proof: By expanding the term in the expectation we have

E

[( n∑
i=1

f(Zi, Si)
)2∣∣∣p̂z

]

= E

[∑
i�=k

f(Zi, Si)f(Zk, Sk)
∣∣∣p̂z

]
+ E

[ n∑
i=1

f(Zi, Si)2
∣∣∣p̂z

]

(278)

Then for the first term of the right hand side of (278) we can
use Lemma 13

E

[ n∑
i=1

f(Zi, Si)2
∣∣∣p̂z

]
= nEPZ|S×p̂z

[f(Z̃, S)2], (279)

where Z̃ is a random variable with distribution p̂z. Moreover,
for the second term of right hand side of (278) we have

E

[∑
i�=k

f(Zi, Si)f(Zk, Sk)
∣∣∣p̂z

]

= E

[ ∑
z1 �=z2

∑
i�=k

f(z1, Si)f(z2, Sk)p̂z(z1)
np̂z(z2)
n − 1

]

+ E

[∑
z

∑
i�=k

f(z, Si)f(z, Sk)p̂z(z)
np̂z(z) − 1

n − 1

]
(280)

=
n

n − 1
E

[∑
i�=k

∑
z1,z2

f(z1, Si)p̂z(z1)f(z2, Sk)p̂z(z2)
]

− 1
n − 1

E

[∑
i�=k

∑
z

f(z, Si)f(z, Sk)p̂z(z)2
]

(281)

=
n

n − 1

∑
i�=k

EPS|Z×p̂z

[
f(Z̃, Si)

]
EPS|Z×p̂z

[
f(Z̃, Sk)

]

− 1
n − 1

∑
i�=k

Ep̂z

[
EPS|Z [f(Z̃, Si)|Z̃]EPS|Z [f(Z̃, Sk)|Z̃]

]
(282)

= 2
(

n

2

)(
n

n − 1
EPS|Z×p̂z

[
f(Z̃, S)

]2
− 1

n − 1
Ep̂z

[
EPS|Z [f(Z̃, S)|Z̃]2

])
, (283)
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where (280) follows from expanding the expectation when
the type of the sequence is known and PZiSi does not
depend on index i. Observe that (280) is divided into two
parts because it addresses z1, z2 being equal or not in the
expression f(z1, Si)f(z2, Sk). Observe that there are two
terms separating all cases depending on whether z1, z2 are
equal or not. When they are not equal, the number of such
possibilities is np̂z(z1)np̂z(z2) while the number of choices
is n(n−1), yielding a probability equal to n

n−1 p̂z(z1)p̂z(z2).
Similarly, when z1 = z2 = z, the number of such pos-
sibilities is np̂z(z1)(np̂z(z2) − 1), while the number of
choices remains n(n − 1), yielding a probability equal to

1
n−1 p̂z(z1)(np̂z(z2) − 1). Eq. (281) follows by rearranging
the terms. Additionally, (282) follows by taking the expecta-
tion inside using Lemma 13. Combining (279) and (283) with
(278) we get the result.

Corollary 4: Under the assumptions of Lemma 13 we have

Var
[ n∑

i=1

f(Zi, Si)
∣∣∣p̂z

]
= nEp̂z

[
VarPS|Z [f(Z̃, S)|Z̃]

]
,

(284)

where Z̃ is a random variable with distribution p̂z.
Proof:

Var
[ n∑

i=1

f(Zi, Si)
∣∣∣p̂z

]

= E

[( n∑
i=1

f(Zi, Si)
)2∣∣∣p̂z

]
− E

[ n∑
i=1

f(Zi, Si)
∣∣∣p̂z

]2

(285)

= n2
EPS|Z×p̂z

[f(Z̃, S)]2 + nEPS|Z×p̂z
[f(Z̃, S)2]

− nEp̂z

[
EPS|Z [f(Z̃, S)|Z̃]2

]
− n2

EPS|Z×p̂z
[f(Z̃, S)]2

(286)

= nEPS|Z×p̂z
[f(Z̃, S)2] − nEp̂z

[
EPS|Z [f(Z̃, S)|Z̃]2

]
(287)

= nEp̂z
[VarPS|Z [f(Z̃, S)|Z̃]] (288)

where (285) follows from the definition of variance, and (286)
follows by directly using Lemmas 13 and 14.

Lemma 15: Let (Zi, Si), i = 1, 2, . . . , n be i.i.d random
variables, z = (Z1, Z2, . . . , Zn) and A ⊂ Pn

Z then

E

[ n∑
i=1

f(Zi, Si)
∣∣∣A] ≥ n min

p̂z∈A
EPS|Z×p̂z

[
f(Z̃, S)

]
(289)

Proof: We have

E

[ n∑
i=1

f(Zi, Si)
∣∣∣A]

=
1

P(A)
E

[( n∑
i=1

f(Zi, Si)
)
1{p̂z ∈ A}

]
(290)

≥ min
p̂z∈A

E

[( n∑
i=1

f(Zi, Si)
)∣∣∣p̂z

]
(291)

= n min
p̂z∈A

EPS|Z×p̂z

[
f(Z̃, S)

]
, (292)

where (290) follows from the definition of conditional expec-
tation and (292) follows from using Lemma 13.

The next result introduces a lower bound on the variance.
Lemma 16: With the above assumptions we have

Var
[ n∑

i=1

f(Zi, Si)
∣∣∣A] ≥ min

p̃Z∈A
Var

[ n∑
i=1

f(Zi, Si)
∣∣∣p̃Z

]

(293)

= n min
P̃Z∈A

EP̃Z

[
VarPS|Z [f(Z̃, S)|Z̃]

]
(294)

Proof: To show this we use the law of total variance which
is stated below as a reminder. For any two random variable
X, Y we have

Var[X ] = EY [Var[X |Y ]] + VarY [E[X |Y ]] (295)

As a result, by setting Y = p̂Z meaning the random variable
that denoted the type of the random variable Z . Then, we have

Var
[ n∑

i=1

f(Zi, Si)
∣∣∣A]

= EY

[
Var

[ n∑
i=1

f(Zi, Si)
∣∣∣A, Y

]]

+ VarY

[
E

[ n∑
i=1

f(Zi, Si)
∣∣∣A, Y

]]
(296)

≥ EY

[
Var

[ n∑
i=1

f(Zi, Si)
∣∣∣A, Y

]]
(297)

≥ min
p̃Z∈A

Var
[ n∑

i=1

f(Zi, Si)
∣∣∣p̃Z

]
(298)

= n min
P̃Z∈A

EP̃Z

[
VarPS|Z [f(Z̃, S)|Z̃]

]
. (299)

In the next lemma we prove a concentration inequality for
the same setting. In particular, we show that by conditioning on
the type of a sequence we get a sub-Gaussian random variable.
We prove the tail bound for the sum

∑n
i=1 f(Zi, Si) when

conditioned on the type p̂z .
The following lemma is an application of the Hoeffding’s
lemma but we prove it for completeness.

Lemma 17: Let f, Zi, Si be defined the same as Lemma 13.
Further assume for all z we have a ≤ f(z, S)−E[f(z, S)] ≤ b.
Then,

P

[∣∣∣ n∑
i=1

f(Zi, Si) − μ
∣∣∣ ≥ ξ

∣∣∣p̂z

]
≤ 2e

−ξ2

n(b−a)2 , (300)

where μ = E
[∑n

i=1 f(Zi, Si)|p̂z

]
. Proof: Assume

μz = E[f(z, S)], then for any λ > 0

P

[ n∑
i=1

f(Zi, Si) − μ ≥ ξ
∣∣∣p̂z

]

= P

[
eλ(�n

i=1 f(Zi,Si)−μ) ≥ eλξ
∣∣∣p̂z

]
(301)

≤
E

[
eλ(�n

i=1 f(Zi,Si)−μ)
∣∣∣p̂z

]
eλξ

(302)
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=
∏

z E
[
eλ(f(z,S)−μz)

]np̂z(z)

eλξ
(303)

≤
∏

z e
1
8 λ2(a−b)2np̂z(z)

eλξ
(304)

=
e

1
8 λ2(a−b)2

eλξ
(305)

≤ e
−ξ2

n(b−a)2 , (306)

where (302) is derived for Markov’s inequality. Additionally,
(303) follows from noticing that frequency of f(z, Si) appear-
ing in the expression

∑n
i=1 f(Zi, Si) for some i is exactly

np̂z(z) and because Sis are i.i.d. the index of the appearance
does not impact the moment generating function. Moreover,
(305) is followed from setting λ = 4ξ

n(b−a)2 . Therefore, (300)
follows from

P

[∣∣∣ n∑
i=1

f(Zi, Si) − μ
∣∣∣ ≥ ξ

∣∣∣p̂z

]

= P

[ n∑
i=1

f(Zi, Si) − μ ≥ ξ
∣∣∣p̂z

]

+ P

[ n∑
i=1

f(Zi, Si) − μ ≤ −ξ
∣∣∣p̂z

]
(307)

and writing the same steps (301)–(306) for

P

[∑n
i=1 f(Zi, Si) − μ ≤ −ξ

∣∣∣p̂z

]
.
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