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Abstract—The objective of this paper is twofold. First, it On the other hand, the remarkably fast growth of smart-
presents a brief overview of existing driver and passenger phone ownership has motivated the move towards exploiting
identification approaches which rely on smartphone data. This smartphones versatile set of sensors, such as the Global

includes listing the typically available sensory measurements and S . . .
highlighting a few key practical considerations for automotive Navigation Satellite System (GNSS) receiver and Inertial Mea-

settings. Second, a simple identification method that utilises the surement Units (IMUs), in automotive applications. Examples
smartphone inertia measurements and, possibly, doors signal is include: traffic state estimation [10], navigation [11], driver

proposed. It is based on analysing the user behaviour during assistance [12] and many others. Interestingly, the problem
entry, namely the direction of turning, and extracting relevant ¢ gatermining the smartphone to vehicle position is closely
salient features, which are distinctive depending on the side of . . T

entry to the vehicle. This is followed by applying a suitable rela_lted (or corr_espon_ds_) to the driver anq passenger(s) identifi-
classifier and decision criterion. Experimental data is shown to Cation task. This capitalises on the premise that the smartphone

demonstrate the usefulness and effectiveness of the introducedis:

probabilistic, low-complexity, identification technique. 1) usually in the vicinity of its owner, and
Index Terms—Identification, connected vehicles, classification, 2) a personal item, which is not shared with other users,
intelligent vehicles, sensor data fusion. unlike a (smart) key-fob, which can be used/shared by multiple
vehicle drivers.
|. INTRODUCTION Smartphone-to-vehicle localisation, which covers inside
A. Background and Motivation and/or outside the vehicle, hence enables identifying the

There has been lately a considerable interest in leverag front R i b
the recent advances in the sensing, data storage-proces r or, Iront or réear passenger. Recognition can be per-
ed before or after entering the car. Locating the phone

and wireless communications technologies in vehicles to i hin th hicl ¢ oth b loved t
troduce smart functionalities. Their aim is to offer drivers ang' "' "€ VENicle can, amongst ofhers, be employed to
imise distractions induced by using a smartphone whilst

passengers, not only safer, but also a personalised and Iving. For example, the driver's smartphone services can be
pleasant driving experience [1], [2]. This goes beyond th ccordingly restricted [8], [13].

classical Advanced Driver Assistance Systems (ADAS) [3?’ Additionally, realising a connected cooperative vehicle en-

[4] and route guidance services [5] to customising the vehicle . . .
D o . vironment is currently attracting immense interest from re-
interior and adapting its systems to the driver and passenger(s ) ;

) L searchers and OEMs around the world, mainly due to its
profiles and preferences, for example seat positions, settin - L

. ; ! Importance to autonomous driving [14]-[16]. This includes
reminders, temperature control, HMI, infotainment systen\wl hicle to vehicle, vehicle to infrastructure and vehicle to cloud
etc. Nevertheless, such functionalities rely fundamentally %ommunications, icallv with strinaent latency and perfor
identifying the vehicle user [6], [7], particularly when a vehicle . , typically g y and perior

) : : mance requirements. Thus, a smartphone user identification

has multiple drivers. Most importantly, they requiabelled

. . . solution can exchange data with the vehicle in a connected
pertinent data, i.e. for a known user, from various sources .
. . . set-up. It can also have access to the vehicle data (e.g. doors
such as in-vehicle sensing systems or smartphones or ©dighal, which indicates whether a given vehicle door is opened
infrastructure, to learn preferences, profiles and behaviours. gnal, ! : given P
r closed), user’s calendar, journeys history, etc.

Driver identification is also relevant to insurance telematlcg, . . o

. . . , .. Therefore, a smartphone-based driver/passenger(s) identifi-

for instance the driving style can guide setting the user’s . . o ; . .

. : ; o . cation or phone-to-vehicle localisation solution, possibly in

premium by insurance firms [8]. Establishing this style can bae connected vehicle environment, has various applications
based on recorded data from the vehicle On-Board Diagnostics ' pp

(OBD) system or present smartphone(s), assuming a kol intelligent vehicles. This comprises, but not limited to,

driver identity. Other automotive applications that require dafy, vorng personalised driving experience via adapting in-

. . . . epicle systems, insurance telematics and minimising distrac-
tagging, thereby driver recognition, encompass those a|mec¥a

reducing the carbon footprint of driving as per the user’s traver > Vehicle keyless entry systems, and security in ge_neral,
X : IS another area that can benefit from an additional modality for
history, traffic status and others [9].

confirming the identity of the present user(s), i.e. from his/her
B. I. Ahmad, P. M. Langdon and S. J. Godsill are with the Engineeringmartphone data [17], [18]. In this paper, various categories
Department, University of Cambridge, Trumpington Street, Cambridge, Ulgf existing smartphone-based driver and passenger(s) recog-
CB2 1PZ. Emailsfbia23, pml24, sjg3p@cam.ac.uk. . . . . . e .
M. Delgado and T. Popham are with Jaguar Land Rover, Coventry, URItiON techniques are outlined. A simple, novel, identification
Emails: {tpopham, amunozgd®jaguarlandrover.com. approach is subsequently proposed and evaluated.

ﬁ}r‘i/sent vehicle user(s), i.e. if the smartphone owner is the
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B. Contributions

Despite this wide range of sensory data, an identification

The contributions of this paper are twofold. First, it give§o|ution should consider the following practical issues:

a brief overview of the main six categories wbn-intrusive
smartphone-based identification approaches. This exclude®
those that involve the drivers/passengers actively identifying
themselves to the vehicle, e.g. via a specialised automotive
hardware-firmware for face or voice recognition. The key fea-
tures and limitations of the addressed techniques are outlined.
This follows listing relevant smartphone sensory data and
highlighting a few crucial practical considerations.

Second, a low-complexity driver/passenger(s) identification
method is introduced. It fuses the smartphone sensory data
and can utilise vehicle signals (namely, doors signal) in a
connected environment. It also involves detecting walking and
stopping actions. The proposed approach relies on analysing)
the user motion during entry to vehicle, capturing salient
features, that vary depending on the entry side (driver or
passenger). Unlike prior work, e.g. in [13], [19], the method in-
troduced here is independent of the phone position-orientation.
It considers the gradient of the turning angle during the¢
entry micro-movementsExtracted features are utilised by a
classifier to determine the probability of the user being a
driver or passenger. A decision criterion is then applied; it can
employ the doors signal to distinguish between front or rear
present vehicle users. Overall, this paper presents a simple,
yet effective, probabilistic identification approach.

Finally, experimental data from various pilot studies and un-
der several conditions illustrate the usefulness of the proposed
driver/passenger recognition technique, with and without the
availability of the doors signal.

C. Paper Outline .

The remainder of this paper is organised as follows. In Sec-
tion Ill, smartphone sensory data and various considerations
are listed. A brief overview of existing identification methods,
including those reliant on analysing the user behaviour, is
given in Section Ill. The proposed identification approach is
described in Section IV and its performance is assessed in
Section V. Conclusions are drawn in Section VI.

Il
The common sensors/receivers in a smartphone, particularhB

SENSORY DATA AND PRACTICAL CONSIDERATIONS

Data quality built-in smartphone sensors are not primar-
ily designed for vehicle telematics or accurate localisation
applications. For example, a smartphone IMU chipset can
belong to a low grade of inertial sensors since their use is
typically limited to correctly adjusting the phone display
orientation (portrait or landscape). Whilst these IMUs can
provide data rates in the range 2if — 300 Hz, their data

can exhibit significant bias, drift factor, misalignment, and
random errors [21]. However, employing suitable data
fusion and statistical filtering algorithms can mitigate the
impact of such measurements imprecisions [22], [23].
Phone Position the phone can be held in arbitrary
positions-orientations (e.g. hand, pocket and bag), which
cannot be assumed to be fixed during approaching or en-
tering the vehicle. This causes ambiguities to processing
data from orientation-dependent sensors such as IMUs.
Automotive Settingsndoor (e.g. underground or covered
car parks) and/or dense urban environments can have
detrimental impact on the data quality from several
smartphone exteroceptive receivers due to occlusions
and multipath fading in complex settings. For example,
quality of GNSS data (if available) can be poor [23]. Sim-
ilarly, the coverage or Received Signal Strength Indicator
(RSSI) for RF transmissions, e.g. Bluetooth/BLE, WiFi
and cellular, can be notably attenuated, especially when
there are obstacles (cars and walls) between the phone
and transmitters. Contrary to classical indoor positioning
applications, here obstacles and environment can dynam-
ically change, e.g. parked cars, pedestrians, etc.

Power Consumptiarthe power consumption of data col-
lection and processing of any smartphone-based service
is critical, given the limited available power resources.
For example, IMU sensors utilised in the identification
method proposed in this paper, consume, on average,
substantially less power compared with GNSS [24]; even
with sampling the GNSS receiver at low rates due to its
cold/warm/hot-start nature [8], [25].

LE I: Selected smartphone sensors/receivers relevant to the

those relevant to the phone-to-vehicle positioning (identificamartphone-to-vehicle positioning problem and their measurements.

tion) problem, can be categorised into (see Table I):

Sensor/Receiver ||

Observations

« Inertia sensorsaccelerometer(s) and gyroscope(s).

Inertia

o Exteroceptive sensors/receiver’GNSS, magnetometer, Accelerometer || Acceleration across X, y and z axis.
camera(s), microphone(s), Bluetooth/BLE, WiFi, cellulaj____ Gyroscope Angular velocity across x, y and z axis.
and Near Field Communication (NFC) and others. Exteroceptive

. . GNSS Position, planar speed/course, etc.
In a connected setup (e.g. via a mobile or local networky Wagnetometers || Magnetic flux across x, y and z axis.
smartphones can additionally receive, with minimum delay  Barometer Atmospheric pressure (altitude data).
[16], vehicle data and user information. The former cam Bluetooth/BLE RSSI and source/recipient credentials
incorporate the (raw or processed) signals: doors, suspensions, NFC Source/recipient credentials
steering, braking, pedals press and others. Such data can|B&iFi and Cellular [[ RSSI and source credentials
received from custom-made in-vehicle loggers or directly from Cameras Images.
the OBD via a dongle [20]. Whereas, other user information___Microphones || Audio.

can be available via the cloud, e.g. calender, travel history, ete

tData can also be exchanged with source/recipient or via a network
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[1l. RELATED WORK ON SMARTPHONE-BASED smartphone [31], [32]. It is noted that proximity technologies
IDENTIFICATION: AN OVERVIEW are addressed separately in Section IlI-F.

Figure 1 depicts the in-vehicle regions for the Driveg Analysing Human Motion
(D), Passenger Front (P-F), Passenger Rear Offside (P-RO i )
and Passenger Rear Nearside (P-RN), in the UK; thes nother common approach is to analyse the user motion

regions can be analogously defined for a left hand drigi/fing-after entering the vehicle from the phone sensory
configuration. The identification solution aims to associaffdte; thus this category encompasses the driver/passenger(s)
a present user/smartphone with one of these four clasd&Sodnition technique introduced in this paper. As well as
In general, smartphone-based driver/passenger(s) identificaffGify motion, other movements, such as those associated with
approaches can be divided into six categories. They are lis t-belt fastening and pedal pressing, can be considered [13],

in Table II, highlighting when and where the classificatioht2l- FOr instance, the phone IMU data related to entering the

is accomplished. Certain methods can only identify a sub&&hicle and seat-belt fastening (e.g. gyroscope observations)

of the potential four users in Fig. 1, see Table II. We recdffcorporate distinct features depending on the entry side.
that intrusive none-smartphone-based techniques, which d4Rereas, detecting a pedal press from the accelerometer data

involve the users identifying themselves to the vehicle (e. _.d'f:ate_s that the user is th_e driver. This generally aIIow;
via a biometric scanner or an HMI interface for ID entry ofiStinguishing between a driver and passenger from their

camera for face recognition and others) are not discussed h&Paartphones data, which suffices in certain applications such
as tagging the driver data. It cannot however differentiate

A. Accurate Localisation between front or rear passengers, e.g. the entry behaviours

The ubiquitous GNSS positioning services on smartphon@sPoth D and P-RO, who are both on the same vehicle side,
is the obvious candidate for providing the sought phone-t§&n be indistinguishable from one another. . _
vehicle localisation information, including the user’s exact seatAnalysing human motion during and after entering the vehi-
position, i.e. D, P-F, P-RO and P-RN. However, differentiatingf€ iS susceptible to behaviou_r_al variations and errors gener_ated
between a driver and a passenger demands an accuracy hi§ief® phone arbitrary positions. For example, the tumning
than, approximately, half the width or length of the vehicldnotion and pedal-pressing detectors in [13], [19] assume that
e.g. errors should be less tharrsm. This performance re- the smartphone is in a lower-body pocket. Seat-belt activity is
quirement is excessively onerous for a smartphone localisatfé#fectable only when the phone is in an upper-body pocket
service [23], especially in indoor/covered car parks or denbe3]- Nevertheless, and as shown in Section 1V, capturing
urban areas. This is in addition to the high power consumpti6pPresentative features and using additional data can lead to
of GNSS solutions, quickly draining the phone battery [24]_formulat|ng a reliable identification solution that is based on

Nonetheless, the current advances in Pedestrian Dead Ré#@lysing the driver/passenger(s) motion during vehicle entry.
oning (PDR) and indoor positioning can enable smartphoné—
to-vehicle positioning that meets high accuracy specifications
(e.g. less than 50 cm) by fusing various sensory data such aSeveral studies have been conducted on performing driver
inertia data, magnetometer, RSSI (either opportunistically, eigentification by studying individual driving styles and travel
from existing WiFi and cellular transmitters, or from dedicateBehaviours [33], see [34] for an overview. This can include the
on-vehicle RF transmitters, e.g. bluetooth beacons) and po$idal use, steering, braking, travel history, previous routes and
bly an intermittent GNSS signal [23], [26]-[30]. Besides, ultra€ven physiological signals (e.g. ECG and skin conductance).
wideband (UWB) technology, which is poised to proliferatd hese methods typically have high training requirements (e.g.
in SmartphoneS, can deliver h|gh accuracy positioning, e.g. g?mand the avallab”lty of extensive labelled data SetS) and

using on-vehicle UWB beacons to measure time-of-flight @ntails considerable computational cost. Furthermore, detec-
tion is restricted to the driver, and it is accomplished after

the start of the journey. Whilst signals such as speed and
R steering-turning can be obtained (albeit noisy) from the phone
\ sensors, such solutions assume that certain OBD or wearable
technology [35] data is available to the smartphone in a
connected environment.

Modelling Driving Behaviour

D. Forces within a Moving Vehicle

This builds on the observation that specific forces, measured
by accelerometers, vary depending on where in the vehicle the
accelerometer is placed [36]—[38]. This is detectable during
Passenger significant dynamical events, e.g. when passing a pothole

Offside or during notable cornering (lateral accelerations). Related

(P-RO) methods require the presence of at least tellaboratingin-

vehicle IMUs located at different positions in the car interior,
Fig. 1: Driver and passengers nonoverlapping zones in or near for instance a smartphone and a vehicle-fixed IMU. Since
vehicle; they can be accordingly extended. the difference in the specific forces reported by the two (or
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TABLE II: Selected driver-passenger recognition approaches highlighting when, where and who can be identified.

Approach Identification Time Detect Inside/Outside Vehicle| Identifiable Users
Accurate Localisation|| Before and after entry to the vehicle Inside and/or outside All
Motion Behaviour During-after entry; before journey starts Inside Driver and passenger
Driving Behaviour After the start of the journey Inside Driver
In-vehicle Forces After the start of the journey Inside All
Audio Ranging After entry and/or during the journey Inside All
Proximity/MF/Other Before and after entry Inside and/or outside -

more) IMUs only depends on their relative positions, and Other signals measurable by the smartphone, such as Mag-
not on their absolute locations, this identification solution isetic Field (MF) fluctuations due to starting the vehicle engine,
applicable when the “absolute” accurate position of one o&n permit determining if the phone is in the front or back half
the IMU sensors is known. The delay in accomplishing thef the vehicle as in [19]. Alternatively, the phone-to-vehicle
user recognition task can be substantial, e.g. after the starposition can be estimated, however coarse, by analysing the
a journey. This relies on the presence or undertaking highdynartphone magnetometer observations [44]. Finally, amongst
dynamical events; see [38] for a recent overview. others, pressure sensors can be used [45], e.g. mounted on
E. Audio Ranging each seat to estimate Fhe Qriver/passenger(g) weight(s). _Prior
] knowledge of the users’ weights can then facilitate identifying
It employs the smartphone embedded microphone(s) to @$sm by sharing this data with the smartphone.
tablish the phpne (owner) i.n—vehic'le position. It uses audio sig-\whilst the above brief overview serves the purpose of out-
nals, of inaudible frequencies, emitted from several speakersiffg the main visible smartphone-based driver/passenger(s)
the vehicle stereo system, possibly in a programmed sequepgggnition techniques, several methods can be implemented

[39], [40]. Such signals can be instigated by the smartphor[ﬁ, an identification system as in [13] and [19].
e.g. after it pairs with the vehicle infotainment system via

Bluetooth. The generated audio signals are then recorded by V. PROPOSEDIDENTIFICATION APPROACH
the phone, and analysed to deduce the timing differentials, e.gThe simple approach introduced here can identify
between the left, right, front and back speakers. From thesdver/passenger(s) from smartphone sensory data and doors
differentials, the phone can self-determine its position in thsgnal (if available) in a connected set-up. It relies on analysing
vehicle. Hence, it triangulates its location to one of the fouhe user entry behaviour, namely his/her turning angle and
vehicle quadrants in Fig. 1. Other similar, basic, techniquefrection. This intuitive concept is described in Fig. 2. A
measure the magnitude of emitted inaudible beeps by a giuiver has to turn clockwise during entry, whereas a front or
speaker [13], [19] or the vehicles turn signal [13], to establiskear-nearside passenger has to turn anticlockwise. Therefore,
the phone proximity to the audio signal source. In [40], &lentification is performed prior to the start of a journey.
related seamless-voice-recognition approach is proposed.  Unlike methods that analyse motion during ingress, e.g.
Whilst audio-ranging-based user identification systems gnes], [19], the proposed solution is: a) independent of the
in general accurate and robust [39], [40], they necessitaighicle and smartphone position and orientation, and b) tol-
changing the vehicle firmware and recording audio in afrant to inaccuracies in the heading angle estimations. The
unsupervised manner, which can raise privacy concerns. utilised features (i.e. ingress micro-movements) are clearly
i . o defined. They are based on the gradient of the heading (yaw)
F. Dedicated Hardware, Proximity, Magnetic Field and Other§, 1o \yith respect to north; accurate instantaneous heading
Vehicle-installed RF technology can identify the driver ogalues are not critical. Yaw angle is estimated by fusing
passenger from his/her smartphone; this might entail estimgfe phone’s accelerometer, gyroscope and magnetometer data.
ing the phone proximity to a given transceiver [41]. Examplephis is distinct from [13], [19] where a classifier is directly
include Bluetooth via paring (paring can result in a significant
delay and only reveals the smartphone presence, not its in-
vehicle position), Bluetooth Low Energy (BLE) beacons and
NFC. The latter is of particular interest since modern vehicles
can be equipped with NFC or RFID radio(s) for key-less entry
or engine-start. NFC transceiver(s) can not only expedite the
vehicle-phone pairing, they can identify the driver's smart-
phone (owner) or that closest to it, i.e. proximity. However, the
NFC coverage is notably short, which reduces the classifica-
tion range, and recognition can be limited to driver (e.g. when
unlocking door). Other proximity sensors with longer ranges
can be employed, e.g. BLE beacons in/on the vehicle [26],
[30], [42], [43]. Nevertheless, any proximity-based solutions

have to take into account the prevalent occlusions in tiég. 2: Driver (right) and passenger (left); arrows show direction of
considered automotive scenarios. turning during entry (driver: clockwise and passenger anticlockwise).
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used on the roll and pitch angles (not yaw) during entry, e.qg.
from gyroscope; thus their restriction of having the phone in a
lower-body pocket. Additionally due to the varying positions-
orientations of the phone before and after entry, detecting pedal
press or seat belt movements from IMU data (where phone has
to be in a certain body side) are not considered here.

The introduced approach also incorporates detecting the
start (at timety) and end (at timegr) of an entry action to
the vehicle. This can be achieved via detecting a walking and e »| Read/calculate heading
stopping activities fromrotated accelerometer observations, fmmmm o > angle 6; at time t
i.e. with respect to the Global Coordinates System (GCS). In ’
this paper, we only use the linear accelerations in the GCS
(see Section IV-C), which simplifies the step-detection and )
minimises the required parameters fine-tuning. Additionally, No
doors signal (if available) from the vehicle OBD/CAN-bus,

Door
opened at
to?

Stop
Walking
to?

Yes

Door
closed at
tr?

Sitting
action at
tr?

which reports the status (i.e. open or closed) of all vehicle ' Yes Yes
doors can instead set or rectify the attaingdand . y
Whilst analysing the entry behaviour permits establishing if Extract features from 6; : t € [to + torr 1, tr- torr 2]
the phone/user is in the right (driver) or left (P-F) vehicle side, *
the doors signal can enable differentiating between D and P- Doors — —
RO or P-F and P-RN in Fig. 1. It is noted that the doors signal Signal =~ %] Classifier-Decision
alone is insufficient for identification, even if only one user is {}
present, as the vehicle does not know which smartphone/user Passenger Driver None

is approaching-entering. Since obtaining the doors signal by

the smartphone involves creating a data link with the vehicleig. 3: Overall system flowchart from the onset of entry tat
it is utilised here only when any of the rear doors (R-PO Sperations related to the vehicle doors signal are in blue.
R-RN) is opened or more than two users are simultaneously

returning to vehicle. Therefore, it is a probabilistic approach that can meet pre-

scribed certainty requirements via a decision criterion. Below,
we detail each of the above eight operations, starting with the

Figure 3 depicts the flowchart of the proposed solution, frogtitical feature extraction, classification and decision aspects.
to. At the arrival of a new accelerometer, magnetometer a%d Features. Classification and Decision
gyroscope observations atthe system implements: : '

1) Align the phone axes to GCS; calculate rotation matrix. Let 9@ - 08(t)/0t, t € T, be the grad|_ent_of th_e _headlng
2) Detect (steps) walking by fusing phone data; otherwiszgr?gIe withinZ” = [t0+tOFF'1’ t7 —torr,2], which is split intoV
repeat the previous action at the next time instanth. nonoverlapping time segmerts=7, U7,... UZy. Whereas,
3) Detect stop of walking (i.e. at timg) via step detection; 1 ~
check for doors open/close events; otherwise restart. Yn = o t; 0(t), n=12,.,N, 1)
4) Calculate/refine the heading anglew.r.t. GCS. "
5) Detect the sitting event at tim-; check doors open- and p,, is the number of differentialg; in 7,. Hence, the
close signal. Otherwise, repeat the previous action. features vectorp = [t/1, s, ...,¢)n]" of dimensionsN x 1
6) Extract N features{@bn}iv=1 from all calculatedd; for represents the entry turning micro-movements in each time
t € [to+torr 1, tr — torr 2] during the entry movements. segment7,,. It is intuitive to assume that the user undertakes
Offsets torr1 and togr2 are introduced to permit ad- several micro-turning-movements during ingress, e.g. at 20%,
justing the period of interest in the entry action, e.g4d0%, 60% and 80%; each of varying characteristics. They
excluding events shortly after entering the vehicle.  collectively capture the distinctive entry behaviour. It is em-
7) Apply a classifier to obtain the probability of a user enphasised that identifying the suitable features is fundamental
tering from the right (driver) sidg(R|v) and left (front and several standard classifiers can then be applied [46].
passenger) sidg(L|+) wherey = [, 4o, ..., x| ' For illustration and since this classification problem has only
is the transpose of vector/matrix two classe€ = {R, L}, the linear logistic regressor/classifier
8) Apply a decision criterion; utilise available door signalds described here. The resultant probabilities for each class can
The heading (yaw) angles used in the features vagtare: i) b€ expressed by
unwrapped to circumvent erratic changes, e.g. arolngD®, _ / _
and ii) smoothed with a moving average (filter) to reduce thep(RW’ﬁ) =oB¥).  p(Ll,B) =1-p(R[W.0), ()
impact of fast fluctuations. This does not have any visiblghere 3 is an N x 1 vector obtained from the training data
impact on recognition since the examined features are relatetio(z) = 1/ (1 + e~ *) is the logistic function. Maximizing
to the angle’s gradient, rather than its instantaneous valueghe likelihood from labelled data (i.e. supervised training) can

A. Overall System
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be used to set the optimal values fér This can be performed a x b = (ayb. — a.by)i + (a by — azb.)j + (azby — aybs)k.
offline from recorded data (i.e. batch learning) or it can be arhe Euler angles can be easily attained frifis using
online learning process, for instance gradient-ascent, Newton's | 1
method, etc. We recall that nonlinear logistic classificatiof’t = 51! (M;(3,2)), ¢ = tan™" (=M(3,1)/M(3,3)),
and other classifiers, such as support vector machines can be 0; = tan™ (=M (1,2)/M,(2,2)). (6)
employed in an analogous way [46].

Having determined the sought probabilitie&R|v, 3) and
p(L|, B3), a decision can be made based on minimising

It is noted that the accelerometer measures both the gravita-
tional aJ™ and linearal forces. A low-pass filter extracts the
gravitational component for estimatiig; in (5) .

¢ = arg mine_p 1, E [e(C,C)| 9] (3) Whilst accelerometers and magnetometers suffer from vari-
' ous sources of errors, the gyroscope has a short response time

wherec(C;, CT) is the cost of an incorrect classification. It carand is capable of giving accurate measurements of angular

be easily seen that a binary cost function results in a Maximwspeeds, iew; = [wo: wyq wz7t]/ around the phone

a Posteriori (MAP) estimate, i.e. the most probable class isCS axes. Orientation angles can subsequently be tracked

chosen without a “none” outcome as in Fig. 3. Alternativelygy integrating the gyroscope output. This demands accurate

a threshold criterion can be used, eafR|v), 3) > vr deems initialisation and the gyroscope observations generally can

that the user is entering from the vehicle right side. Thidrift over time leading to erroneous orientations.

permits quantifying the certainly level of the identification Several methods, of varying complexities, fuse results from

operation and establishing cases when the system carfigfclerometer-magnetometer, &, in (5), with those from

a gyroscope, e.g. a rotation matrM; from w, using a

determine, with sufficiently high probability, the user idemifyquaternion representation. A quaternignhas two parts, a

In scenarios where two users (i.e. a driver and passenggftor [z y z]/ and a scalar termo, such thatq =
are returning to the vehicle, determining entry from the left;, (plai+bj +ck)/2) =wtaityj+zk,a= wy./0,
or right hand sides can suffice, except for a driver and relar= w,,/9¢, ¢ = w,;/%, ¥ = |lw], and angle
offside passenger (i.e. behind the driver). The doors signak f:+5t ¥,dt. The left-handed rotation matrix is constructed
is consequently employed to resolve the in-vehicle position
(seat) of the present users, i.e. rear or front. This is handled 1-2y* - 22 2wy S 2w o 2wz 2yw
by linking the smartphone that detected a stop-walking event™i = | 2zy +2zw 1227 —22°  2yz—2zw | (7)
closest to the timestamp of a door opening event, see Fig. 7. vz = 2yw 2yz +2vw 1207 =2y
and (6) is applied [47]. A simple fusion approach is the
complimentary filter:0;, = a6 + (1 — )8;°9% with

The smartphone’s accelerometer, gyroscope and magggefficienta. Other methods focus on the yaw angle due to
tometer observations are with respect to the phone’s referery

Local Coordinates System (LCS). On the other hand, a globz%erelevance n ge”efa' nawgapon tasks, e.g. 23], .[27].' [48]
coordinate system has: 1) an x-axis tangential to the ground®S the focus of this paper is not accurate localisation or
and is pointing East, 2) y-axis is tangential to the grourldDR, the complementary filter or the iOS built-in implemen-
and points the towards north and 3) z-axis points up andtigtion for estimating; can be used. Heading angle estimation
?h?gpigglr%?rlgt éotrtgr?s%?r%g(tjibﬁ g?r;?/rregtignk?)ll ‘{{Vr?ey ﬁgtgt?gfr?“?'r‘om a smartphone with arbitrary positions-orientations and

. X . . : low-quality inertia data is distinct from navigation systems
matrix M; comprised of the following three basic matrices that employ high precision IMUs or IMUs at known (stable)

C. Estimating Rotation Matrix and Heading Angle

1 0 0 cos¢, 0 sing,| Positions, e.g. on a helmet or belt.
M,:= |0 cose; —sing:|, My = 0 1 0 . . .
[0 sinp;  cos ] ( [ sing: 0 cos ¢t] D. Step Detection Using GCS Acceleration Vector
cosf, —sinb; O Similar to calculating the heading (yaw) angle from smart-
M., = [sin 0  cosb; 0] , (4) phone data, step detection is critical to PDR and several
0 0 1 methods exist [23], [27]. To simplify the detection routine and

. . taper variabilities in the utilised IMU data, in this paper we
where; (pitch), ¢, (roll) andf, (yaw) are the rotation anglesonly use the linear accelerations in the GCS z-axis. This also

about ther, y andz axes, respectivelyl; = M. My Ma.i.  inimices any fine-tuning of the detector parameters.
An LCS to GCS transformation of a vector, e.g. 3D acceler- :
After rotating the accelerometer measurement vectat, at

H H H ioGCS __ LCS
at';” Vf_l‘?“?” |fhaccom.[t)llts_hedl via’ I *t_Mtat 4 omihe Z-axis componentS©S(t) is extracted, i.e. last element
y utilising the gravitational accelerations and magnetomg;”. Gcs A nighpass filtering (e.g. cut-off frequendy: — 0.9

te_rhdar:a at_tl_metl, ;\hz ro_tgt_lon Imatrlx can b(Z?expressed by, %z) is first applied to obtain the linear acceleratioh(t),
with the original Android implementation [47], followed by a lowpass filter to remove high frequency noise
a e ; >
M(t) = [e; n u;]/, ) (e.g. fc =5 Hz) yleldmg a. (t); simple filters can be utilised,
such as a moving average. Here, we adopt the three stage
e; = a¥ x my/|ad® x my|, n; = e, x a¥®/|e; x a¥®| thresholding procedure in [27]. Each threshold produces a

andu; = e; x n;/|e; x ny|. Vectora?™® is the gravitational S€t of time instants within a predefined time wind@v=

accelerations from IMU data aneh, denotes the magne-[t — W,t+ W] around the current observation timeas per
tometer observation vector; product of twhx 1 vectors o Tpeak argmax, al (tp) s.t. alz(t,,) > vp andt, € %.

z
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Peak Criterion 5 Peak to Valley Criterion V EXPER IMENTAL RESU LTS

I
3

Several pilot experimental studies are conducted in various
cars, namely Land Rover and Jaguar XF, XJ and F Pace. The
total number of assessed approaches-entries is 107 trials/tracks

accel (m/sz)
accel (m/sz)
o

&

I
3

) . © Traitovatey undertaken by seven participants (one female). In these pilot
3 5 : e 11 13 35 Z o 11 13  gstudies, a participant walks to the car from behind, left and
Slope Grasions Crterion Detected Stuns bs por () right sides of the vehicle. He/she then enters to the designated

seat position, namely driver D or front passenger P-F, see
Fig. 1. Two phone positions were considered, i.e. in hand
and in a front or back trouser pocket; orientation is arbitrary.
The split is nearly even between these tested conditions, i.e.
approach side, in-vehicle seat and phone position. In each trial
35 ;me (5 moo3 35 Zime (Sf; 1113 an iOS application provides the raw accelerometer, gyroscope
and magnetometer data at rates36f— 50 Hz. A CAN-bus
analyser reports the doors signal, whichnist utilised for
identification in these trials. For the step detection and data
e TheaTovalley ENSUres that the peak-to-valley differencéusion, the parameters are fixed1at = 0.5s, v = 0.5 m/s’
(before and after a step) is above a certain threshd@d7peakrovaiey= 1.5 /s’ anda = 0.95. Whilst 2-D features
value ypy. This eliminate scenarios where acceleratiovector ¢» € R?, for equal partitions|7;| = |72|, and equal
fluctuations do not vary enough to constitute a step. Weights are used, a MAP decision is applied. Thus, the output
o TsiopeGradiert €NSUres that the accumulative acceleratidd €ither a driver (clas#) or passenger (class) as per (2).
slope is negative on the left-side and positive on the front Overall, the identification success rate of the introduced
side to eliminate sharp-sudden data fluctuations. approach is approximate§3% in all trials without using the
This requires rotated-filtered z-axis acceleratiohg) for the doors signal. The phone position (hand or pocket) did not have
time WindOW ‘i A Step is detected W|th a t|me |ag W, a visible impaCt on the success rate and majority of incorrect
whereW < 1 s is typical and depends on the IMU data rateclassifications are attributed to erroneous estimatiortg, ofe.
For a given IMU measurement and time winddly the detecting a stopping-entering event.
detected step(s) time(s), if any, is given by; Figure 5 shows two examples where a user walks and
enters the vehicle; it displays the heading angle estimates
and detected steps from phone data. It can be noticed that a
Figure 4 depicts an example of these times. Threshgidand driver turns clockwise and front passenger turns anticlockwise
~vpy can be set for a common scenario or adaptively modifieduring entry. Figure 6 depicts the 2-D featurd$, = 2 in
The former is often sufficient as in the experiments below. (1), capturing the turning behaviour &% and 100% of
the ingress action from all trials; doors signal is employed to
E. Detect Stop Walking and Sitting Actions correctto (when relevant). The figure also shows the decision
Let Tswep be the set of step timesgep in (8) from the
beginning of the ongoing walking action up to the current
time instant.. An up-to-date running average of step duration: . 400 7
i.e. time gap between two successive steps, is kept and it g 39 | o Detected Step/Sitting ol
denoted byl's mean A stop-walking action is detected at time £ 200 - | = Last Step Before Entry |
to if no steps are detected f@fl's mean fOr instancex = 2.5, 100
and a sitting action at timer is indicated by an additional Mmg
step-like-activity (with a shorter time window, i.e. smalléf) o F— s

H . -100 L 1 L L
measured after the stop action. Several measures can be t: ” 15 16 17 18 19 20 21 2

N
3

| -y

accel (m/sz)
o

)
o
2
accel (m/s®)
o

* TSiapeGradient

-5

&

Fig. 4: Step detection with (8) showin@peakrovaliey@nd Tsiopecradient

tStep = TPeakU TPeakToVaIIeyU TSIopeGradient (8)

Heading Ang

i i i

to eliminate short or initial detected steps, e.g. a nominal st time (s)
action is preceded by at leakt consecutive steps (e.g¢ = (a) Driver (D) entry from the right side of the forward facing car.
8). Offset times can be set t@rr1= torr2= 0.57'smean 300 ‘ \ T ‘
_ 250 - -
F. Final Remarks 5

2200 -

The simplicity of this smartphone-based approach, such tt g
none of its modules apply a complex algorithm, is pivotal t % 19011 by N
its appeal. Whilst it predominantly relies on capturing salier £ 100 Peraee SRS 0e
features from the smartphone IMU data, it presents an effect  so ‘ : ‘ ‘
driver/passenger(s) identification solution as per the results h " 10 i timf () 1 20 2 2
flt/]ifhnoet)f:tefe dcetltzr(]:tlgrllnmgifﬁljy(’jslt ga; ?ﬁoggﬁ:ﬁg dlr;nc_cl)_gi)l';gcltllo?o(b) Front Passenger (P-F) entry from left side of the forward facing car.
improve the recognition accur,acy. , Fig. 5: Heading angle); and steps for user walking-entering to car.
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6r Driver
x Driver x 800 ‘ ‘ ‘ ‘ : ‘ —
> —0, 4
o L
Pas;sgnger »® 2600 ® Detected Step/Sitting|]
| |~ — Decision Boundary X £
4 x 5
. x & 400 4
~. X x T ~e—"e—"e o g
e ¥ xx X X % 200 I I I | | | | | | | |
2 S Xx x% X)é 35 36 37 38 39 40 41 42 43 44 45 46 47
S x % X time (s)
RN ~ X X %x )%(kx x x % 500 Passenger Rear Offisde (P-RO)
~. X T T T T T T T T T T T
S ° o~ ~ )&Xxx x e 791
= 0f ° o 80 o %o T~ - x % 8,400 [ ® Detected Step/Sitting|]
oo@g o>~ 5
o o We o X $ 300 | B
5 % o o ~ e T W’\.
2 o o oo [s] ~ ~ - 200 I I I I I I I I I I I
o © [ss] ~ 35 36 37 38 39 40 41 42 43 44 45 46 47
~ time (s)
° o RN Door Signals - High = Close and Low = Open
4t ) ) 1 T T T T T T
o .
- ol |~ Driver Door| |
—P-RO Door
© 1
6 . . L . . ) ‘
-6 -4 -2 0 2 4 6 or i i | ; ; ; ; ‘ i i i

'L,/' 35 36 37 38 39 40 41 42 43 44 45 46 4;7
1 time (s)
Fig. 6: Considered entry featuresV(= 2) in (1) for a driver and Fig. 7: Heading angle and door signals (high “1” is closed and low

passenger with the decision boundary of the linear logistic regress@r. IS opened) for D and P-RO concurrently approaching-entering car.
Green square is last the step prior to entering car and triangle indicates

the time instant the relevant door was opened by the respective user.
boundary between the two classes (D and P-F) of the logistic

regressor in (2). It is attained from maximising the likelihoo ilot studies; even when doors signal is not used. Future work
function via a gradient-ascent optimiser. Figure 6 iIIustrat-ﬁ | '

. udes extended experimental evaluations in naturalistic set-
that the selected representative features do depend on the Fﬁges and devising more principled formulation for associating
of entry, i.e. entering from the left (front passenger) or rigm1e doors signal with each present smartphone.

(driver) sides, and a basic linear logistic classifier can suffice.Similar to other smartphone-based identification techniques
Another pilot study was conducted where: i) a driver firsé !

h boot or R-PO d or t tering th hi common challenge is determining when the user is near or
opens he car-boot or R- oor prior to entering the ve 'Cfgtering the vehicle, i.e. when to perform the identification

and ii) two or more participants simultaneously approac : ; - - ;
. . eration. Whilst walking-stopping or door signals are used
the car (from behind or left or right) and enter. In bot%% g-stopping g

i0s. th toh is either in hand ket An i ove, other modalities (e.g. phone pairing with vehicle, pres-
scenarios, the smartphone IS either in-hand or pockeL. AN Ifpeq of 5 key-fob, inaccurate proximity sensing or localisation,
application, which implements all the system componentsgfq

Section IV developed: this i tes the d . c.) can be also utilised.
ection 1V, was developed, this Incorporates e door SignalSyy js emphasised that the strength of the proposed approach

The obtained success rates are: is its simplicity. It is expected that it will be employed within

. Dr!vgr first opens car boot or P-RO door (to put bag) PrOTy hierarchical system that implements several identification
to sitting: 87.5% (8 trials).

Dri 4 P-RO h 100% (8 trial methods at various stages, before and after the start of a
) F(r)lver an D Palfplgogﬁ\l -ePntsz)ca 0 (h trlats). hiclDew journey, to improve the driver/passenger(s) classification
- Four users (D, P-F, P-RN, P-RO) approach-enter vehiclg, ,«iness and accuracy. This paper serves as impetus to future

approximately 90% (24 trials). research into analysing human behaviour, as measured by a

.Figure 7 depicts heading angle, steps.and doors signal foérﬁartphone, during and after entering vehicles, to determine
driver and R-PO concurrently approaching-entering the vefgh-

. _ . . ) e user identify. In a connected set-up, other vehicle signals
cle, i.e. both_enter from th_e dnver_ (rlg_ht) side of the_ vehicl e.g. seat belt and pedal-presses) can be employed to aid or
Thereby, their entry behaviours (direction of the turning angle : ; L
S . . - L L ide the identification procedure.
during ingress) is noticeably similar. This figure exhibits ho
a door signal, i.e. opening-action closest to a detected stopping
action, can facilitate distinguishing between a driver and P-RO. )
In summary, these limited pilot studies clearly demon- The authors would like to thank Jaguar Land Rover for
strate the usefulness and effectiveness of the proposed I&#rding this work under the CAPE agreement.

complexity smartphone-based identification solution.
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