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Driver and Passenger Identification from
Smartphone Data

Bashar I. Ahmad, Patrick M. Langdon, Simon J. Godsill, Mauricio Delgado and Thomas Popham

Abstract—The objective of this paper is twofold. First, it
presents a brief overview of existing driver and passenger
identification approaches which rely on smartphone data. This
includes listing the typically available sensory measurements and
highlighting a few key practical considerations for automotive
settings. Second, a simple identification method that utilises the
smartphone inertia measurements and, possibly, doors signal is
proposed. It is based on analysing the user behaviour during
entry, namely the direction of turning, and extracting relevant
salient features, which are distinctive depending on the side of
entry to the vehicle. This is followed by applying a suitable
classifier and decision criterion. Experimental data is shown to
demonstrate the usefulness and effectiveness of the introduced
probabilistic, low-complexity, identification technique.

Index Terms—Identification, connected vehicles, classification,
intelligent vehicles, sensor data fusion.

I. I NTRODUCTION

A. Background and Motivation

There has been lately a considerable interest in leveraging
the recent advances in the sensing, data storage-processing
and wireless communications technologies in vehicles to in-
troduce smart functionalities. Their aim is to offer drivers and
passengers, not only safer, but also a personalised and more
pleasant driving experience [1], [2]. This goes beyond the
classical Advanced Driver Assistance Systems (ADAS) [3],
[4] and route guidance services [5] to customising the vehicle
interior and adapting its systems to the driver and passenger(s)
profiles and preferences, for example seat positions, setting
reminders, temperature control, HMI, infotainment system,
etc. Nevertheless, such functionalities rely fundamentally on
identifying the vehicle user [6], [7], particularly when a vehicle
has multiple drivers. Most importantly, they requirelabelled
pertinent data, i.e. for a known user, from various sources
such as in-vehicle sensing systems or smartphones or even
infrastructure, to learn preferences, profiles and behaviours.

Driver identification is also relevant to insurance telematics,
for instance the driving style can guide setting the user’s
premium by insurance firms [8]. Establishing this style can be
based on recorded data from the vehicle On-Board Diagnostics
(OBD) system or present smartphone(s), assuming a known
driver identity. Other automotive applications that require data
tagging, thereby driver recognition, encompass those aimed at
reducing the carbon footprint of driving as per the user’s travel
history, traffic status and others [9].
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On the other hand, the remarkably fast growth of smart-
phone ownership has motivated the move towards exploiting
smartphones versatile set of sensors, such as the Global
Navigation Satellite System (GNSS) receiver and Inertial Mea-
surement Units (IMUs), in automotive applications. Examples
include: traffic state estimation [10], navigation [11], driver
assistance [12] and many others. Interestingly, the problem
of determining the smartphone to vehicle position is closely
related (or corresponds) to the driver and passenger(s) identifi-
cation task. This capitalises on the premise that the smartphone
is:

1) usually in the vicinity of its owner, and
2) a personal item, which is not shared with other users,

unlike a (smart) key-fob, which can be used/shared by multiple
vehicle drivers.

Smartphone-to-vehicle localisation, which covers inside
and/or outside the vehicle, hence enables identifying the
present vehicle user(s), i.e. if the smartphone owner is the
driver or, front or rear passenger. Recognition can be per-
formed before or after entering the car. Locating the phone
within the vehicle can, amongst others, be employed to
minimise distractions induced by using a smartphone whilst
driving. For example, the driver’s smartphone services can be
accordingly restricted [8], [13].

Additionally, realising a connected cooperative vehicle en-
vironment is currently attracting immense interest from re-
searchers and OEMs around the world, mainly due to its
importance to autonomous driving [14]–[16]. This includes
vehicle to vehicle, vehicle to infrastructure and vehicle to cloud
communications, typically with stringent latency and perfor-
mance requirements. Thus, a smartphone user identification
solution can exchange data with the vehicle in a connected
set-up. It can also have access to the vehicle data (e.g. doors
signal, which indicates whether a given vehicle door is opened
or closed), user’s calendar, journeys history, etc.

Therefore, a smartphone-based driver/passenger(s) identifi-
cation or phone-to-vehicle localisation solution, possibly in
a connected vehicle environment, has various applications
in intelligent vehicles. This comprises, but not limited to,
delivering personalised driving experience via adapting in-
vehicle systems, insurance telematics and minimising distrac-
tions. Vehicle keyless entry systems, and security in general,
is another area that can benefit from an additional modality for
confirming the identity of the present user(s), i.e. from his/her
smartphone data [17], [18]. In this paper, various categories
of existing smartphone-based driver and passenger(s) recog-
nition techniques are outlined. A simple, novel, identification
approach is subsequently proposed and evaluated.
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B. Contributions

The contributions of this paper are twofold. First, it gives
a brief overview of the main six categories ofnon-intrusive
smartphone-based identification approaches. This excludes
those that involve the drivers/passengers actively identifying
themselves to the vehicle, e.g. via a specialised automotive
hardware-firmware for face or voice recognition. The key fea-
tures and limitations of the addressed techniques are outlined.
This follows listing relevant smartphone sensory data and
highlighting a few crucial practical considerations.

Second, a low-complexity driver/passenger(s) identification
method is introduced. It fuses the smartphone sensory data
and can utilise vehicle signals (namely, doors signal) in a
connected environment. It also involves detecting walking and
stopping actions. The proposed approach relies on analysing
the user motion during entry to vehicle, capturing salient
features, that vary depending on the entry side (driver or
passenger). Unlike prior work, e.g. in [13], [19], the method in-
troduced here is independent of the phone position-orientation.
It considers the gradient of the turning angle during the
entry micro-movements. Extracted features are utilised by a
classifier to determine the probability of the user being a
driver or passenger. A decision criterion is then applied; it can
employ the doors signal to distinguish between front or rear
present vehicle users. Overall, this paper presents a simple,
yet effective, probabilistic identification approach.

Finally, experimental data from various pilot studies and un-
der several conditions illustrate the usefulness of the proposed
driver/passenger recognition technique, with and without the
availability of the doors signal.

C. Paper Outline

The remainder of this paper is organised as follows. In Sec-
tion III, smartphone sensory data and various considerations
are listed. A brief overview of existing identification methods,
including those reliant on analysing the user behaviour, is
given in Section III. The proposed identification approach is
described in Section IV and its performance is assessed in
Section V. Conclusions are drawn in Section VI.

II. SENSORYDATA AND PRACTICAL CONSIDERATIONS

The common sensors/receivers in a smartphone, particularly
those relevant to the phone-to-vehicle positioning (identifica-
tion) problem, can be categorised into (see Table I):

• Inertia sensors:accelerometer(s) and gyroscope(s).
• Exteroceptive sensors/receivers: GNSS, magnetometer,

camera(s), microphone(s), Bluetooth/BLE, WiFi, cellular
and Near Field Communication (NFC) and others.

In a connected setup (e.g. via a mobile or local network)
smartphones can additionally receive, with minimum delay
[16], vehicle data and user information. The former can
incorporate the (raw or processed) signals: doors, suspensions,
steering, braking, pedals press and others. Such data can be
received from custom-made in-vehicle loggers or directly from
the OBD via a dongle [20]. Whereas, other user information
can be available via the cloud, e.g. calender, travel history, etc.

Despite this wide range of sensory data, an identification
solution should consider the following practical issues:

♦ Data quality: built-in smartphone sensors are not primar-
ily designed for vehicle telematics or accurate localisation
applications. For example, a smartphone IMU chipset can
belong to a low grade of inertial sensors since their use is
typically limited to correctly adjusting the phone display
orientation (portrait or landscape). Whilst these IMUs can
provide data rates in the range of20−300 Hz, their data
can exhibit significant bias, drift factor, misalignment, and
random errors [21]. However, employing suitable data
fusion and statistical filtering algorithms can mitigate the
impact of such measurements imprecisions [22], [23].

♦ Phone Position: the phone can be held in arbitrary
positions-orientations (e.g. hand, pocket and bag), which
cannot be assumed to be fixed during approaching or en-
tering the vehicle. This causes ambiguities to processing
data from orientation-dependent sensors such as IMUs.

♦ Automotive Settings: indoor (e.g. underground or covered
car parks) and/or dense urban environments can have
detrimental impact on the data quality from several
smartphone exteroceptive receivers due to occlusions
and multipath fading in complex settings. For example,
quality of GNSS data (if available) can be poor [23]. Sim-
ilarly, the coverage or Received Signal Strength Indicator
(RSSI) for RF transmissions, e.g. Bluetooth/BLE, WiFi
and cellular, can be notably attenuated, especially when
there are obstacles (cars and walls) between the phone
and transmitters. Contrary to classical indoor positioning
applications, here obstacles and environment can dynam-
ically change, e.g. parked cars, pedestrians, etc.

♦ Power Consumption: the power consumption of data col-
lection and processing of any smartphone-based service
is critical, given the limited available power resources.
For example, IMU sensors utilised in the identification
method proposed in this paper, consume, on average,
substantially less power compared with GNSS [24]; even
with sampling the GNSS receiver at low rates due to its
cold/warm/hot-start nature [8], [25].

TABLE I: Selected smartphone sensors/receivers relevant to the
smartphone-to-vehicle positioning problem and their measurements.

Sensor/Receiver Observations
Inertia

Accelerometer Acceleration across x, y and z axis.
Gyroscope Angular velocity across x, y and z axis.

Exteroceptive
GNSS Position, planar speed/course, etc.

Magnetometers Magnetic flux across x, y and z axis.
Barometer Atmospheric pressure (altitude data).

Bluetooth/BLE RSSI and source/recipient credentials†.
NFC Source/recipient credentials†.

WiFi and Cellular RSSI and source credentials†.
Cameras Images.

Microphones Audio.
†Data can also be exchanged with source/recipient or via a network.
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III. RELATED WORK ON SMARTPHONE-BASED

IDENTIFICATION: AN OVERVIEW

Figure 1 depicts the in-vehicle regions for the Driver
(D), Passenger Front (P-F), Passenger Rear Offside (P-RO)
and Passenger Rear Nearside (P-RN), in the UK; these
regions can be analogously defined for a left hand drive
configuration. The identification solution aims to associate
a present user/smartphone with one of these four classes.
In general, smartphone-based driver/passenger(s) identification
approaches can be divided into six categories. They are listed
in Table II, highlighting when and where the classification
is accomplished. Certain methods can only identify a subset
of the potential four users in Fig. 1, see Table II. We recall
that intrusive none-smartphone-based techniques, which can
involve the users identifying themselves to the vehicle (e.g.
via a biometric scanner or an HMI interface for ID entry or
camera for face recognition and others) are not discussed here.

A. Accurate Localisation

The ubiquitous GNSS positioning services on smartphones
is the obvious candidate for providing the sought phone-to-
vehicle localisation information, including the user’s exact seat
position, i.e. D, P-F, P-RO and P-RN. However, differentiating
between a driver and a passenger demands an accuracy higher
than, approximately, half the width or length of the vehicle,
e.g. errors should be less than0.75m. This performance re-
quirement is excessively onerous for a smartphone localisation
service [23], especially in indoor/covered car parks or dense
urban areas. This is in addition to the high power consumption
of GNSS solutions, quickly draining the phone battery [24].

Nonetheless, the current advances in Pedestrian Dead Reck-
oning (PDR) and indoor positioning can enable smartphone-
to-vehicle positioning that meets high accuracy specifications
(e.g. less than 50 cm) by fusing various sensory data such as
inertia data, magnetometer, RSSI (either opportunistically, e.g.
from existing WiFi and cellular transmitters, or from dedicated
on-vehicle RF transmitters, e.g. bluetooth beacons) and possi-
bly an intermittent GNSS signal [23], [26]–[30]. Besides, ultra-
wideband (UWB) technology, which is poised to proliferate
in smartphones, can deliver high accuracy positioning, e.g. by
using on-vehicle UWB beacons to measure time-of-flight to

Fig. 1: Driver and passengers nonoverlapping zones in or near the
vehicle; they can be accordingly extended.

smartphone [31], [32]. It is noted that proximity technologies
are addressed separately in Section III-F.

B. Analysing Human Motion

Another common approach is to analyse the user motion
during-after entering the vehicle from the phone sensory
data; thus this category encompasses the driver/passenger(s)
recognition technique introduced in this paper. As well as
entry motion, other movements, such as those associated with
seat-belt fastening and pedal pressing, can be considered [13],
[19]. For instance, the phone IMU data related to entering the
vehicle and seat-belt fastening (e.g. gyroscope observations)
incorporate distinct features depending on the entry side.
Whereas, detecting a pedal press from the accelerometer data
indicates that the user is the driver. This generally allows
distinguishing between a driver and passenger from their
smartphones data, which suffices in certain applications such
as tagging the driver data. It cannot however differentiate
between front or rear passengers, e.g. the entry behaviours
of both D and P-RO, who are both on the same vehicle side,
can be indistinguishable from one another.

Analysing human motion during and after entering the vehi-
cle is susceptible to behavioural variations and errors generated
by the phone arbitrary positions. For example, the turning
motion and pedal-pressing detectors in [13], [19] assume that
the smartphone is in a lower-body pocket. Seat-belt activity is
detectable only when the phone is in an upper-body pocket
[13]. Nevertheless, and as shown in Section IV, capturing
representative features and using additional data can lead to
formulating a reliable identification solution that is based on
analysing the driver/passenger(s) motion during vehicle entry.

C. Modelling Driving Behaviour

Several studies have been conducted on performing driver
identification by studying individual driving styles and travel
behaviours [33], see [34] for an overview. This can include the
pedal use, steering, braking, travel history, previous routes and
even physiological signals (e.g. ECG and skin conductance).
These methods typically have high training requirements (e.g.
demand the availability of extensive labelled data sets) and
entails considerable computational cost. Furthermore, detec-
tion is restricted to the driver, and it is accomplished after
the start of the journey. Whilst signals such as speed and
steering-turning can be obtained (albeit noisy) from the phone
sensors, such solutions assume that certain OBD or wearable
technology [35] data is available to the smartphone in a
connected environment.

D. Forces within a Moving Vehicle

This builds on the observation that specific forces, measured
by accelerometers, vary depending on where in the vehicle the
accelerometer is placed [36]–[38]. This is detectable during
significant dynamical events, e.g. when passing a pothole
or during notable cornering (lateral accelerations). Related
methods require the presence of at least twocollaborating in-
vehicle IMUs located at different positions in the car interior,
for instance a smartphone and a vehicle-fixed IMU. Since
the difference in the specific forces reported by the two (or
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TABLE II: Selected driver-passenger recognition approaches highlighting when, where and who can be identified.

Approach Identification Time Detect Inside/Outside Vehicle Identifiable Users
Accurate Localisation Before and after entry to the vehicle Inside and/or outside All

Motion Behaviour During-after entry; before journey starts Inside Driver and passenger
Driving Behaviour After the start of the journey Inside Driver
In-vehicle Forces After the start of the journey Inside All
Audio Ranging After entry and/or during the journey Inside All

Proximity/MF/Other Before and after entry Inside and/or outside -

more) IMUs only depends on their relative positions, and
not on their absolute locations, this identification solution is
applicable when the “absolute” accurate position of one of
the IMU sensors is known. The delay in accomplishing the
user recognition task can be substantial, e.g. after the start of
a journey. This relies on the presence or undertaking highly
dynamical events; see [38] for a recent overview.

E. Audio Ranging

It employs the smartphone embedded microphone(s) to es-
tablish the phone (owner) in-vehicle position. It uses audio sig-
nals, of inaudible frequencies, emitted from several speakers of
the vehicle stereo system, possibly in a programmed sequence
[39], [40]. Such signals can be instigated by the smartphone,
e.g. after it pairs with the vehicle infotainment system via
Bluetooth. The generated audio signals are then recorded by
the phone, and analysed to deduce the timing differentials, e.g.
between the left, right, front and back speakers. From these
differentials, the phone can self-determine its position in the
vehicle. Hence, it triangulates its location to one of the four
vehicle quadrants in Fig. 1. Other similar, basic, techniques
measure the magnitude of emitted inaudible beeps by a given
speaker [13], [19] or the vehicles turn signal [13], to establish
the phone proximity to the audio signal source. In [40], a
related seamless-voice-recognition approach is proposed.

Whilst audio-ranging-based user identification systems are
in general accurate and robust [39], [40], they necessitate
changing the vehicle firmware and recording audio in an
unsupervised manner, which can raise privacy concerns.

F. Dedicated Hardware, Proximity, Magnetic Field and Others

Vehicle-installed RF technology can identify the driver or
passenger from his/her smartphone; this might entail estimat-
ing the phone proximity to a given transceiver [41]. Examples
include Bluetooth via paring (paring can result in a significant
delay and only reveals the smartphone presence, not its in-
vehicle position), Bluetooth Low Energy (BLE) beacons and
NFC. The latter is of particular interest since modern vehicles
can be equipped with NFC or RFID radio(s) for key-less entry
or engine-start. NFC transceiver(s) can not only expedite the
vehicle-phone pairing, they can identify the driver’s smart-
phone (owner) or that closest to it, i.e. proximity. However, the
NFC coverage is notably short, which reduces the classifica-
tion range, and recognition can be limited to driver (e.g. when
unlocking door). Other proximity sensors with longer ranges
can be employed, e.g. BLE beacons in/on the vehicle [26],
[30], [42], [43]. Nevertheless, any proximity-based solutions
have to take into account the prevalent occlusions in the
considered automotive scenarios.

Other signals measurable by the smartphone, such as Mag-
netic Field (MF) fluctuations due to starting the vehicle engine,
can permit determining if the phone is in the front or back half
of the vehicle as in [19]. Alternatively, the phone-to-vehicle
position can be estimated, however coarse, by analysing the
smartphone magnetometer observations [44]. Finally, amongst
others, pressure sensors can be used [45], e.g. mounted on
each seat to estimate the driver/passenger(s) weight(s). Prior
knowledge of the users’ weights can then facilitate identifying
them by sharing this data with the smartphone.

Whilst the above brief overview serves the purpose of out-
lining the main visible smartphone-based driver/passenger(s)
recognition techniques, several methods can be implemented
by an identification system as in [13] and [19].

IV. PROPOSEDIDENTIFICATION APPROACH

The simple approach introduced here can identify
driver/passenger(s) from smartphone sensory data and doors
signal (if available) in a connected set-up. It relies on analysing
the user entry behaviour, namely his/her turning angle and
direction. This intuitive concept is described in Fig. 2. A
driver has to turn clockwise during entry, whereas a front or
rear-nearside passenger has to turn anticlockwise. Therefore,
identification is performed prior to the start of a journey.

Unlike methods that analyse motion during ingress, e.g.
[13], [19], the proposed solution is: a) independent of the
vehicle and smartphone position and orientation, and b) tol-
erant to inaccuracies in the heading angle estimations. The
utilised features (i.e. ingress micro-movements) are clearly
defined. They are based on the gradient of the heading (yaw)
angle with respect to north; accurate instantaneous heading
values are not critical. Yaw angle is estimated by fusing
the phone’s accelerometer, gyroscope and magnetometer data.
This is distinct from [13], [19] where a classifier is directly

Fig. 2: Driver (right) and passenger (left); arrows show direction of
turning during entry (driver: clockwise and passenger anticlockwise).
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used on the roll and pitch angles (not yaw) during entry, e.g.
from gyroscope; thus their restriction of having the phone in a
lower-body pocket. Additionally due to the varying positions-
orientations of the phone before and after entry, detecting pedal
press or seat belt movements from IMU data (where phone has
to be in a certain body side) are not considered here.

The introduced approach also incorporates detecting the
start (at timet0) and end (at timetT ) of an entry action to
the vehicle. This can be achieved via detecting a walking and
stopping activities fromrotated accelerometer observations,
i.e. with respect to the Global Coordinates System (GCS). In
this paper, we only use the linear accelerations in the GCS
(see Section IV-C), which simplifies the step-detection and
minimises the required parameters fine-tuning. Additionally,
doors signal (if available) from the vehicle OBD/CAN-bus,
which reports the status (i.e. open or closed) of all vehicle
doors can instead set or rectify the attainedt0 and tT .

Whilst analysing the entry behaviour permits establishing if
the phone/user is in the right (driver) or left (P-F) vehicle side,
the doors signal can enable differentiating between D and P-
RO or P-F and P-RN in Fig. 1. It is noted that the doors signal
alone is insufficient for identification, even if only one user is
present, as the vehicle does not know which smartphone/user
is approaching-entering. Since obtaining the doors signal by
the smartphone involves creating a data link with the vehicle,
it is utilised here only when any of the rear doors (R-PO or
R-RN) is opened or more than two users are simultaneously
returning to vehicle.

A. Overall System

Figure 3 depicts the flowchart of the proposed solution, from
t0. At the arrival of a new accelerometer, magnetometer and
gyroscope observations att, the system implements:

1) Align the phone axes to GCS; calculate rotation matrix.
2) Detect (steps) walking by fusing phone data; otherwise,

repeat the previous action at the next time instantt+h.
3) Detect stop of walking (i.e. at timet0) via step detection;

check for doors open/close events; otherwise restart.
4) Calculate/refine the heading angleθt w.r.t. GCS.
5) Detect the sitting event at timetT ; check doors open-

close signal. Otherwise, repeat the previous action.
6) ExtractN features{ψn}

N
n=1 from all calculatedθt for

t ∈ [t0 + tOFF,1, tT − tOFF,2] during the entry movements.
Offsets tOFF,1 and tOFF,2 are introduced to permit ad-
justing the period of interest in the entry action, e.g.
excluding events shortly after entering the vehicle.

7) Apply a classifier to obtain the probability of a user en-
tering from the right (driver) sidep(R|ψ) and left (front
passenger) sidep(L|ψ) whereψ = [ψ1, ψ2, ..., ψN ]′; x′

is the transpose of vector/matrixx.
8) Apply a decision criterion; utilise available door signals.

The heading (yaw) angles used in the features vectorψ are: i)
unwrapped to circumvent erratic changes, e.g. around±180◦,
and ii) smoothed with a moving average (filter) to reduce the
impact of fast fluctuations. This does not have any visible
impact on recognition since the examined features are related
to the angle’s gradient, rather than its instantaneous values.

Fig. 3: Overall system flowchart from the onset of entry att0;
operations related to the vehicle doors signal are in blue.

Therefore, it is a probabilistic approach that can meet pre-
scribed certainty requirements via a decision criterion. Below,
we detail each of the above eight operations, starting with the
critical feature extraction, classification and decision aspects.

B. Features, Classification and Decision

Let θ̃(t) = ∂θ(t)/∂t, t ∈ T , be the gradient of the heading
angle withinT = [t0+tOFF,1, tT −tOFF,2], which is split intoN
nonoverlapping time segmentsT = T1 ∪T2...∪TN . Whereas,

ψn =
1
μn

∑

t∈Tn

θ̃(t), n = 1, 2, ..., N, (1)

and μn is the number of differentials̃θt in Tn. Hence, the
features vectorψ = [ψ1, ψ2, ..., ψN ]′ of dimensionsN × 1
represents the entry turning micro-movements in each time
segmentTn. It is intuitive to assume that the user undertakes
several micro-turning-movements during ingress, e.g. at 20%,
40%, 60% and 80%; each of varying characteristics. They
collectively capture the distinctive entry behaviour. It is em-
phasised that identifying the suitable features is fundamental
and several standard classifiers can then be applied [46].

For illustration and since this classification problem has only
two classesC = {R,L}, the linear logistic regressor/classifier
is described here. The resultant probabilities for each class can
be expressed by

p(R|ψ, β) = σ(β′ψ), p(L|ψ, β) = 1 − p(R|ψ, β), (2)

whereβ is an N × 1 vector obtained from the training data
andσ(z) = 1/ (1 + e−z) is the logistic function. Maximizing
the likelihood from labelled data (i.e. supervised training) can
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be used to set the optimal values forβ. This can be performed
offline from recorded data (i.e. batch learning) or it can be an
online learning process, for instance gradient-ascent, Newton’s
method, etc. We recall that nonlinear logistic classification
and other classifiers, such as support vector machines can be
employed in an analogous way [46].

Having determined the sought probabilitiesp(R|ψ, β) and
p(L|ψ, β), a decision can be made based on minimising

Ĉ = arg minC={R,L}E
[
c(C, C+)| ψ

]
(3)

wherec(Ci, C+) is the cost of an incorrect classification. It can
be easily seen that a binary cost function results in a Maximum
a Posteriori (MAP) estimate, i.e. the most probable class is
chosen without a “none” outcome as in Fig. 3. Alternatively,
a threshold criterion can be used, e.g.p(R|ψ, β) > γR deems
that the user is entering from the vehicle right side. This
permits quantifying the certainly level of the identification
operation and establishing cases when the system cannot
determine, with sufficiently high probability, the user identify.

In scenarios where two users (i.e. a driver and passenger)
are returning to the vehicle, determining entry from the left
or right hand sides can suffice, except for a driver and rear
offside passenger (i.e. behind the driver). The doors signal
is consequently employed to resolve the in-vehicle position
(seat) of the present users, i.e. rear or front. This is handled
by linking the smartphone that detected a stop-walking event
closest to the timestamp of a door opening event, see Fig. 7.

C. Estimating Rotation Matrix and Heading Angle

The smartphone’s accelerometer, gyroscope and magne-
tometer observations are with respect to the phone’s reference
Local Coordinates System (LCS). On the other hand, a global
coordinate system has: 1) an x-axis tangential to the ground
and is pointing East, 2) y-axis is tangential to the ground
and points the towards north and 3) z-axis points up and is
perpendicular to the ground. A conventional way to perform
this coordinate transformation at timet is by the rotation
matrix Mt comprised of the following three basic matrices

Mx,t =




1 0 0
0 cos ϕt − sin ϕt

0 sin ϕt cos ϕt



 , My,t =




cos φt 0 sin φt

0 1 0
− sin φt 0 cos φt





Mz,t =




cos θt − sin θt 0
sin θt cos θt 0

0 0 1



 , (4)

whereϕt (pitch),φt (roll) andθt (yaw) are the rotation angles
about thex, y andz axes, respectively;Mt = Mz,tMy,tMx,t.
An LCS to GCS transformation of a vector, e.g. 3D acceler-
ation vector, is accomplished viaaGCS

t = Mta
LCS
t .

By utilising the gravitational accelerations and magnetome-
ter data at timet, the rotation matrix can be expressed by, as
with the original Android implementation [47],

M(t) =
[
e′

t n′
t u′

t

]′
, (5)

et = agrav
t × mt/|a

grav
t × mt|, nt = et × agrav

t /|et × agrav
t |

andut = et × nt/|et × nt|. Vector agrav
t is the gravitational

accelerations from IMU data andmt denotes the magne-
tometer observation vector; product of two3 × 1 vectors

a × b = (aybz − azby)i + (azbx − axbz)j + (axby − aybx)k.
The Euler angles can be easily attained fromMt using

ϕt = sin−1(Mt(3, 2)), φt = tan−1(−Mt(3, 1)/Mt(3, 3)),

θt = tan−1(−Mt(1, 2)/Mt(2, 2)). (6)

It is noted that the accelerometer measures both the gravita-
tional agrav

t and linearal
t forces. A low-pass filter extracts the

gravitational component for estimatingMt in (5) .
Whilst accelerometers and magnetometers suffer from vari-

ous sources of errors, the gyroscope has a short response time
and is capable of giving accurate measurements of angular
speeds, i.e.ωt =

[
ωx,t ωy,t ωz,t

]′
around the phone

LCS axes. Orientation angles can subsequently be tracked
by integrating the gyroscope output. This demands accurate
initialisation and the gyroscope observations generally can
drift over time leading to erroneous orientations.

Several methods, of varying complexities, fuse results from
accelerometer-magnetometer, e.g.Mt in (5), with those from
a gyroscope, e.g. a rotation matrixMq

t from ωt using a
quaternion representation. A quaternionq has two parts, a
vector

[
x y z

]′
and a scalar termω, such that q =

exp (φ(ai + bj + ck)/2) = ω + xi + yj + zk, a = ωx,t/ϑt,
b = ωy,t/ϑt, c = ωz,t/ϑt, ϑt = ‖ωt‖2 and angle
φ =

∫ t+δt

t
ϑtdt. The left-handed rotation matrix is constructed

Mq
t =




1 − 2y2 − 2z2 2xy − 2zw 2xz + 2yw
2xy + 2zw 1 − 2x2 − 2z2 2yz − 2xw
2xz − 2yw 2yz + 2xw 1 − 2x2 − 2y2



 (7)

and (6) is applied [47]. A simple fusion approach is the
complimentary filter: θt = αθgyro

t + (1 − α)θmag,acc
t with

coefficientα. Other methods focus on the yaw angle due to
its relevance in general navigation tasks, e.g. [23], [27], [48].

As the focus of this paper is not accurate localisation or
PDR, the complementary filter or the iOS built-in implemen-
tation for estimatingθt can be used. Heading angle estimation
from a smartphone with arbitrary positions-orientations and
low-quality inertia data is distinct from navigation systems
that employ high precision IMUs or IMUs at known (stable)
positions, e.g. on a helmet or belt.

D. Step Detection Using GCS Acceleration Vector

Similar to calculating the heading (yaw) angle from smart-
phone data, step detection is critical to PDR and several
methods exist [23], [27]. To simplify the detection routine and
taper variabilities in the utilised IMU data, in this paper we
only use the linear accelerations in the GCS z-axis. This also
minimises any fine-tuning of the detector parameters.

After rotating the accelerometer measurement vector att,
the z-axis componentaGCS

z (t) is extracted, i.e. last element
in aGCS

t . A highpass filtering (e.g. cut-off frequencyfC = 0.9
Hz) is first applied to obtain the linear accelerational

z(t),
followed by a lowpass filter to remove high frequency noise
(e.g.fC = 5 Hz) yielding âl

z(t); simple filters can be utilised,
such as a moving average. Here, we adopt the three stage
thresholding procedure in [27]. Each threshold produces a
set of time instants within a predefined time window̃T =
[t − W, t + W ] around the current observation timet, as per

• TPeak: arg maxtp al
z(tp) s.t. al

z(tp) > γP and tp ∈ T̃.
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Fig. 4: Step detection with (8) showingTPeakToValleyandTSlopeGradient.

• TPeakToValley: ensures that the peak-to-valley difference
(before and after a step) is above a certain threshold
value γPV . This eliminate scenarios where acceleration
fluctuations do not vary enough to constitute a step.

• TSlopeGradient: ensures that the accumulative acceleration
slope is negative on the left-side and positive on the front
side to eliminate sharp-sudden data fluctuations.

This requires rotated-filtered z-axis accelerationsâl
z(t) for the

time window T̃. A step is detected with a time lag ofW ;
whereW < 1 s is typical and depends on the IMU data rate.

For a given IMU measurement and time window̃T, the
detected step(s) time(s), if any, is given by:

tStep = TPeak∪ TPeakToValley∪ TSlopeGradient. (8)

Figure 4 depicts an example of these times. ThresholdsγP and
γPV can be set for a common scenario or adaptively modified.
The former is often sufficient as in the experiments below.

E. Detect Stop Walking and Sitting Actions

Let TStep be the set of step timestStep in (8) from the
beginning of the ongoing walking action up to the current
time instantt. An up-to-date running average of step durations,
i.e. time gap between two successive steps, is kept and it is
denoted byTS,mean. A stop-walking action is detected at time
t0 if no steps are detected forκTS,mean, for instanceκ = 2.5,
and a sitting action at timetT is indicated by an additional
step-like-activity (with a shorter time window, i.e. smallerW )
measured after the stop action. Several measures can be taken
to eliminate short or initial detected steps, e.g. a nominal stop
action is preceded by at leastK consecutive steps (e.g.K =
8). Offset times can be set totOFF,1 = tOFF,2 = 0.5TS,mean.

F. Final Remarks

The simplicity of this smartphone-based approach, such that
none of its modules apply a complex algorithm, is pivotal to
its appeal. Whilst it predominantly relies on capturing salient
features from the smartphone IMU data, it presents an effective
driver/passenger(s) identification solution as per the results in
the next section. Ultimately, it can be applied in conjunction
with other detection methods, e.g. those listed in Table II, to
improve the recognition accuracy.

V. EXPERIMENTAL RESULTS

Several pilot experimental studies are conducted in various
cars, namely Land Rover and Jaguar XF, XJ and F Pace. The
total number of assessed approaches-entries is 107 trials/tracks
undertaken by seven participants (one female). In these pilot
studies, a participant walks to the car from behind, left and
right sides of the vehicle. He/she then enters to the designated
seat position, namely driver D or front passenger P-F, see
Fig. 1. Two phone positions were considered, i.e. in hand
and in a front or back trouser pocket; orientation is arbitrary.
The split is nearly even between these tested conditions, i.e.
approach side, in-vehicle seat and phone position. In each trial
an iOS application provides the raw accelerometer, gyroscope
and magnetometer data at rates of30 − 50 Hz. A CAN-bus
analyser reports the doors signal, which isnot utilised for
identification in these trials. For the step detection and data
fusion, the parameters are fixed atW = 0.5s, γP = 0.5 m/s2

andTPeakToValley= 1.5 m/s2 andα = 0.95. Whilst 2-D features
vector ψ ∈ R2, for equal partitions|T1| = |T2|, and equal
weights are used, a MAP decision is applied. Thus, the output
is either a driver (classR) or passenger (classL) as per (2).

Overall, the identification success rate of the introduced
approach is approximately93% in all trials without using the
doors signal. The phone position (hand or pocket) did not have
a visible impact on the success rate and majority of incorrect
classifications are attributed to erroneous estimations oft0, i.e.
detecting a stopping-entering event.

Figure 5 shows two examples where a user walks and
enters the vehicle; it displays the heading angle estimates
and detected steps from phone data. It can be noticed that a
driver turns clockwise and front passenger turns anticlockwise
during entry. Figure 6 depicts the 2-D features,N = 2 in
(1), capturing the turning behaviour at50% and 100% of
the ingress action from all trials; doors signal is employed to
correctt0 (when relevant). The figure also shows the decision

(a) Driver (D) entry from the right side of the forward facing car.

(b) Front Passenger (P-F) entry from left side of the forward facing car.

Fig. 5: Heading angleθt and steps for user walking-entering to car.
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Fig. 6: Considered entry features (N = 2) in (1) for a driver and
passenger with the decision boundary of the linear logistic regressor.

boundary between the two classes (D and P-F) of the logistic
regressor in (2). It is attained from maximising the likelihood
function via a gradient-ascent optimiser. Figure 6 illustrates
that the selected representative features do depend on the side
of entry, i.e. entering from the left (front passenger) or right
(driver) sides, and a basic linear logistic classifier can suffice.

Another pilot study was conducted where: i) a driver first
opens the car-boot or R-PO door prior to entering the vehicle,
and ii) two or more participants simultaneously approach
the car (from behind or left or right) and enter. In both
scenarios, the smartphone is either in hand or pocket. An iOS
application, which implements all the system components in
Section IV, was developed; this incorporates the door signals.
The obtained success rates are:
- Driver first opens car boot or P-RO door (to put bag) prior
to sitting: 87.5% (8 trials).
- Driver and P-RO approach-enter car: 100% (8 trials).
- Four users (D, P-F, P-RN, P-RO) approach-enter vehicle:
approximately 90% (24 trials).

Figure 7 depicts heading angle, steps and doors signal for a
driver and R-PO concurrently approaching-entering the vehi-
cle, i.e. both enter from the driver (right) side of the vehicle.
Thereby, their entry behaviours (direction of the turning angle
during ingress) is noticeably similar. This figure exhibits how
a door signal, i.e. opening-action closest to a detected stopping
action, can facilitate distinguishing between a driver and P-RO.

In summary, these limited pilot studies clearly demon-
strate the usefulness and effectiveness of the proposed low-
complexity smartphone-based identification solution.

VI. CONCLUSIONS

This paper introduces a simple probabilistic approach for
driver/passenger(s) identification using the smartphone and
vehicle doors signal (if available). It analyses the user motion
during entry and captures salient ingress features. It is shown
to deliver a notably high (e.g. exceeding 90%) in selected

Fig. 7: Heading angle and door signals (high “1” is closed and low
“0” is opened) for D and P-RO concurrently approaching-entering car.
Green square is last the step prior to entering car and triangle indicates
the time instant the relevant door was opened by the respective user.

pilot studies; even when doors signal is not used. Future work
includes extended experimental evaluations in naturalistic set-
tings and devising more principled formulation for associating
the doors signal with each present smartphone.

Similar to other smartphone-based identification techniques,
a common challenge is determining when the user is near or
entering the vehicle, i.e. when to perform the identification
operation. Whilst walking-stopping or door signals are used
above, other modalities (e.g. phone pairing with vehicle, pres-
ence of a key-fob, inaccurate proximity sensing or localisation,
etc.) can be also utilised.

It is emphasised that the strength of the proposed approach
is its simplicity. It is expected that it will be employed within
a hierarchical system that implements several identification
methods at various stages, before and after the start of a
new journey, to improve the driver/passenger(s) classification
robustness and accuracy. This paper serves as impetus to future
research into analysing human behaviour, as measured by a
smartphone, during and after entering vehicles, to determine
the user identify. In a connected set-up, other vehicle signals
(e.g. seat belt and pedal-presses) can be employed to aid or
guide the identification procedure.
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