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ABSTRACT

This paper describes a complete low-complexity imaging

system based on a single MEMS scanning mirror and a single

photodetector, together with customized image enhancement

algorithms based on sparse signal representation. Due to

very low complexity of our developped optical set-up for

image acquisition, resulting images suffer visible artifacts.

We propose an iterative denoising-deblurring algorithm for

image enhancement, which offers significant improvement

over wavelet denoising with soft-thresholding. Several image

enhancement algorithms are compared using the blind image

quality indices (BIQI) as well as visual experience.

Index Terms— image enhancement, sparse representa-

tion

1. INTRODUCTION

Recent trends in miniaturization are increasingly motivating

multidisciplinary research into manufacturing technologies,

optics, micro- and nano-technology and signal/image pro-

cessing in order to manufacture cheap image acquisition

equipment with low power consumption. Current advances

indicate that while it is possible via micro-electromechanical

systems (MEMS), nano-technology and optics, to manufac-

ture such miniature devices, the price to pay is poor image

quality. This motivates the need for powerful image process-

ing restoration methods.

This paper builds on the low-cost and miniature optical

imaging system proposed in [1], with only a single MEMS

scanning mirror and a single photo-detector. The penalty of

the cheap and extremely low cost acquisition complexity of

the system was a poor imaging performance. To enhance

the acquired images, wavelet denoising with soft thresholding

[11] together with bilinear interpolation were used providing

some improvements, but visual results presented in [1] still

indicate much room for improvement.

Therefore, to enhance the resulting image, we propose

two major improvements to the system of [1]. First, the

image-capture architecture is improved via smaller pinhole
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and better focussing optics which resulted in higher SNR at

the photodetector. Secondly, we replace the wavelet denois-

ing with soft thresholding algorithm by an iterative image

denoising-deblurring algorithm that jointly removes noise

and blur in the experimentally generated image. The pro-

posed algorithm exploits sparsity of the image. It is based on

learning the best “dictionary” to sparsely represent noisy im-

age data using K-SVD [2] with Orthogonal Matching Pursuit

(OMP) [5], and then applying reflexive boundary condition

with Tikhonov Regularization [3] for deblurring. The process

iterates between denoising and deblurring until a satisfactory

condition is met or no further improvement can be noticed.

Additionally, we apply blind image quality indices (BIQI)

[6] to objectively assess the quality of the reconstructed im-

ages post image processing since there is no original image in

this case for classical peak signal-to-noise ratio (PSNR) com-

parison. We restrict BIQI indexing by taking into account

only relevant artifacts: white noise, blur, and fast fading.

The key contribution of the paper is the overall multidis-

ciplinary system design: from the experimental optical setup

with a MEMS scanner to image processing. The paper mod-

ifies, adapts, and tests several image enhancement tools tai-

lored to the specific nature of our low-complexity imaging

experimental set-up. The rest of the paper is organized as

follows. Section 2 outlines how we acquire images with our

experimental set-up, Section 3 describes the proposed image

enhancement algorithm, and the last two sections are dedi-

cated to performance analysis and conclusions.

2. OPTICAL IMAGING SYSTEM

This section describes our experimental optical imaging sys-

tem (see Fig. 1), that is built on the system proposed in [1].

A single electrical bulb shining on a printed image (ob-

ject) is used as source generator. Light reflected from the ob-

ject passes through a system of lenses and a macro-mirror is

used to fold the optical path between the MEMS mirror and

the object to obtain a compact footprint for the imaging sys-

tem. The demagnified image is incident on the MEMS scan-

ning mirror of size 2.5x2.5 mm2. The light reflected from

the MEMS mirror passes through a pinhole and is incident

on the single photo-detector. The focusing optics ensure that

the light captured from the object is fully intercepted by the

surface of the scanning micromirror as it travels to the pin-
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Fig. 1. System setup.

hole. The image that is formed at the plane of the pinhole can

be shifted with high precision in the xy-plane by scanning

the MEMS mirror in the horizontal and/or vertical direction

under electrical control. A National Instruments Digital Ac-

quisition (NI DAQ) module, which contains a microcontroller

programmable by a PC, is used to finely adjust the mirror ori-

entation in programmable steps. The same PC is also used

to collect readings from the photo-detector’s output which is

also connected to the NI DAQ module. Different scanning

rates were tested and we observed that 90Hz was accepted as

the rate that offered the best tradeoff between the acquisition

time and performance.

The image acquisition process proceeds as follows. First,

we fixed the control voltage on one actuator pair of the mi-

cromirror, which controls vertical shift, and changed the volt-

age on the other pair, which controls horizontal shift, by a

fixed voltage step. For each voltage level, the photo-detector

sees only one part of the projected image through the pinhole.

The reading that corresponds to the accumulated brightness

of this area is recorded by the PC. By changing the voltage,

the area seen by the detector shifts from left to right. After the

entire row is scanned, the voltage on the horizontal actuator is

reset and the voltage on the vertical actuator incremented by a

voltage step. This corresponds to conventional scanning with

a negative scanning raster. To reduce the size of the scanned

area we used a pinhole of 50μm in diameter, which differs

from 300μm used in [1]. Another difference compared to the

system of [1] lies in replacing three biconvex lenses with focal

length of 10cm by a digital camera lens, namely Canon EFS

18-55mm, plus a wide-angle lens, namely Fujiyama 0.42xAF

digital wide lens. Consequently, the light intensity received

by the photodetector is significantly improved, and the field

view is increased (due to the wide lens). This way signal-

to-noise ratio (SNR) at the photodetector is increased from

4-5dB with the system of [1] to more than 35dB.

As mentioned before, due to the low complexity of the

imaging system, the acquired images still suffer a high level

of random noise due to measuring equipment. In order to

mitigate the effect of noise, for each pixel of the image, we

repeat each pixel measurement 100 times, obtaining 100 volt-

age readings, which are averaged to obtain final pixel values.

Some examples of the resulting images are shown in Figs. 3

(a) and 4 (a). The acquired images are then fed to the image

enhancement algorithm described next.

3. BLIND IMAGE DENOISING/DEBLURRING

Figs. 3 (a) and 4 (a) indicate that the images suffer from a high

level of mainly white noise, due to the non-polarized light

source and measurement equipment, and from defocussing

blur. In this section we describe the proposed image enhance-

ment algorithm, whose block diagram is depicted in Fig. 2.

The core of the algorithm comprises the iterative image de-

noising method via sparse signal representation [2], and a

deblurring technique, applying reflexive boundary condition

with Tikhonov Regularization [3].

Fig. 2. The proposed algorithm, where the switch is flipped

up for the first iteration, and the switch is down for the next

remaining iterations.

The proposed algorithm is initialised as follows. The ex-

perimental image acquired from the optical imaging system

described in Section 2 is first interpolated from their acquired

size of 128×128 pixels to the desired size of 512×512 pixels.

The next step is the estimation of white noise level σ and blur

level β, that can be achieved either heuristically, or using, for

example, the methods of [7, 6].

The interpolated image Î1 together with the two afore-

mentioned noise parameters is then fed to the iterative de-

noising block comprising OMP-based sparse coding with a

dictionary update. Image denoising using sparse image rep-

resentation is a powerful technique competitive to state-of-

the-art denoising methods. The idea is to “learn” the best

basis functions or “dictionary” that leads to the sparsest im-

age representation, and denoise the image in the sparsest do-

main. Several techniques for denoising using sparse image

representation have been proposed (see, for example, [2, 8]

and references therein). In this paper we follow the state-

of-the-art approach of [2], and resort to K-SVD for dictio-
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nary learning and OMP for sparse coding via l0 norm mini-

mization. The process iterates between dictionary adaptation

and the sparse coding stage until the error falls below a pre-

determined threshold. We used the interpolated noisy image

Î1 for training with overlapping patches. Once the error falls

below the threshold, the image is recovered by averaging of

the overlapping denoised patches.

The denoising step is followed by a deblurring step.

A number of deblurring methods were tested, namely (i)

Tikhonov image deblurring using the FFT algorithm and

the Kronecker decomposition, (ii) the truncated SVD image

(tsvd) deblurring using DCT or FFT algorithm, and (iii) blind

Tikhonov image deblurring using DCT algorithm (tik-dct)

[3]. We observed that for our application the first two algo-

rithms generated worse results than tik-dct. Tik-dct restores

the image using a DCT-based Tikhonov filter [4] with the

identity matrix as the regularization operator. We used the

point spread function for out-of-focus blur.

The process of noise parameter estimation, denoising, and

deblurring is repeated until a pre-determined number of iter-

ations is reached. Note that after each denoising-deblurring

iteration, noise parameters σ and β, and the number of iter-

ations within the KSVD-denoising block [2] are reduced to

account for the improved intermediate image quality.

4. RESULTS
In this section we report our image enhancement results. In

order to assess the quality of the denoised-deblurred images

and compare results to other techniques, besides subjective vi-

sual experience, we use the blind image quality indices (BIQI)

of [6]. BIQI is a non-reference image quality indices that as-

sume no knowledge of the distortion affecting the image. The

method first classifies images into five difference distortion

categories (JPEG, JPEG2000, white Gaussian noise, blur, fast

fading), and then assess the quality of the image. BIQI pro-

vides a quality index between 0 and 100, with 0 being the

best quality and 100 the worst. BIQI are obtained by training

and corresponds well to the human visual experience [6]. We

modified the original BIQI taking only into account relevant

artifacts, due to white Gaussian noise, blur, and fast fading.

Several state-of-the-art denoising and deblurring tech-

niques are compared. The proposed method comprises the

K-SVD denoising algorithm with OMP sparse coding and

blind Tikhonov image deblurring using DCT algorithm (tik-

dct). For comparison, we also test under same conditions the

following denoising algorithms: framelet denoising (FD) [9],

complex 2D dual-tree DWT (DT-DWT) [10], and wavelet

denoising with soft thresholding (WST) [11, 12]; and the

following deblurring algorithms: Tikhonov image deblurring

using the FFT algorithm and the Kronecker decomposition

(tik-fft), and the truncated SVD image deblurring using DCT

or FFT algorithm (tsvd-dct).

We present our results for two images (objects compris-

ing capital letters “G”, and “R”) generated from our optical

Table 1. The BIQI results for the six algorithms and the two

experimental images.

Algorithm G R
Original 88.98 100

FD 50.75 56.16

DT-DWT 58.47 56.25

WST 98.23 95.06

Proposed 1 iter 65.63 74.46

Proposed 2 iter tik-fft 47.38 53.50

Proposed 2 iter tsvd-dct 60.45 66.98

Proposed 2 iter 37.16 24.76

imaging experimental set-up of Sec. 2.

All images obtained by our experimental setup are of size

128×128 pixels. The images are first interpolated using bilin-

ear interpolation to the size of 512×512 pixels, and then the

enhancement algorithms are applied as described in Sec. 3.

For the proposed algorithm, we always start with 10 iter-

ations for the K-SVD image denoising, set noise deviation to

σ = 15, and blur level to β = 1.2, which we found to be best

heuristically. In the second iteration after the first deblurring,

the blur level was decreased fourfold, noise deviation set to 1,

and the number of K-SVD iterations decreased to 5.

Table 1 shows the BIQI results, for all tested denoising al-

gorithms coupled with tik-dct, and where the image acquired

from our optical imaging set-up is referred to as “Original”.

It can be seen from the table that the proposed algorithms sig-

nificantly improve image quality compared to the experimen-

tal output. Also noteworthy is that the WST algorithm used in

[1] performs worst for all images. For letters “R” and “G”, the

proposed algorithm significantly outperforms the other three.

“Proposed 2 iter tik-fft (tsvd-dct)” show results of the pro-

posed method, when instead of tik-dct, tik-fft or tsvd-dct is

used. It can be seen that tik-dct is the best choice.

The second iteration of the proposed algorithm signifi-

cantly improves the BIQI. However, we observe no improve-

ment with further iterations. K-SVD alone (without deblur-

ring) gives worse performance (for example, BIQI of 81.14

for letter “R” and 66.36 for letter “G”), which shows useful-

ness of the tik-dct deblurring step. However, tik-dct deblur-

ring after WST did not improve image quality.

The resulting images are shown in Figs. 3 and 4. We

can see that the enhancement algorithms improve the experi-

mentally obtained images since the final reconstructions look

cleaner (less noisy) and somewhat sharper. The proposed al-

gorithm seems the most successful, especially in denoising.

5. CONCLUSION
We propose a complete imaging system, from experimental

setup to image processing of the experimentally acquired im-

ages. The system uses a single MEMS mirror and a single

photodetector to scan the image, thus ensuring low complex-

ity, low power consumption, and small equipment size once
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Fig. 3. Letter “R”: Visual quality comparison.

manufactured. The images acquired from the imaging hard-

ware are significantly enhanced by customizing state-of-the-

art algorithms to specific MEMS images. Objective and sub-

jective results demonstrate impressive image quality improve-

ment between enhanced images and the experimental outputs.

Due to the multidisciplinary nature of this work, future

work to improve the overall system can go via two routes.

One is improving the experimental setup, and the other is to

better tailor denoising and deblurring steps into a single cohe-

sive enhancement algorithm based on sparse representation.
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