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Abstract—In this paper, we propose a new wavelet-based image
deconvolution algorithm to restore blurred images based on a
Gaussian scale mixture model within the variational Bayesian
framework. Our sparsity-regularized model approximates an
l0 norm by reweighting an l2 norm iteratively. We derive a
hierarchial Bayesian estimation with the use of subband adaptive
majorization-minimization which simplifies computation of the
posterior distribution, and has been shown to find good solutions
in the non-convex search space. The proposed method is flexible
enough to incorporate group-sparse optimization.

I. INTRODUCTION

Image deconvolution can usually be modeled as a linear
inverse problem where the objective is to estimate the sharp
image x from the blurred image y:

y = Hx + n (1)

where H is a M ×M convolution matrix, and n is Gaussian
noise with zero mean and variance ν2. In general this is
an ill-posed problem and therefore regularization methods
are typically applied to stabilize the solution. Wavelet-based
regularization methods are good for image restoration prob-
lems because the wavelet transform of natural images tends
to be sparse [1]. The discrete wavelet transform exhibits a
characteristic signal-dependent structure and represents this
structure in a compact manner [2]. To well capture the
statistical dependencies, the Gaussian Scale Mixture (GSM)
has been widely applied to model wavelet coefficients whose
energies are not randomly distributed [2].

However, wavelet-based image deconvolution is challenging
because convolution operators are not simply represented in
the wavelet domain [1]. Furthermore, wavelet-based regular-
ization leads to large high-dimensional optimization problems
because wavelet priors are often non-differentiable and some-
times even non-convex [3]. To address these problems, several
authors have proposed the use of majorization-minimization
(MM) techniques together with sparsity-based regularizers to
alternate iteratively between a Landweber update and wavelet
thresholding [3]–[6].

In this paper, we propose a wavelet-regularized image
deconvolution algorithm (VBMM) which is a combination of
hierarchical Bayesian estimation, using variational Bayesian
(VB) inference, with a subband-adaptive MM method for effi-
ciently finding maxima of posterior distributions. A significant
contribution of our approach is to cause both of these iterative
methods to converge simultaneously. In addition, we show
that VBMM can efficiently incorporate group-sparse models,

that are appropriate for tight-frame (redundant) wavelet trans-
forms. We illustrate this with dual-tree complex wavelets (DT
CWT) which are well matched to VBMM because of their
good sparsity versus redundancy tradeoff, high computational
efficiency, and ability to decorrelate typical blur kernels. The
latter property is a key to fast VBMM convergence.

The paper is organized as follows. Section II discusses the
advantages of VB inference. Section III describes the key
formulations of our statistical model. Section IV shows our
continuation strategy and presents the proposed algorithm.
Simulation results are shown in Section V.

II. ADVANTAGES OF VARIATIONAL BAYESIAN INFERENCE

From a Bayesian perspective, many practical methods for
sparse signal recovery are equivalent to performing maximum
a posteriori (MAP) estimation which generates MAP point
estimates using a sparsity-inducing prior distribution [8]. For
instance, the l1-norm approach to regression corresponds to
performing MAP estimation using a Laplacian prior [2].
However point estimates do not define much of the available
signal space, and better convergence is achieved if approximate
distributions of the posterior density are used. In fact, VB
inference possesses this property by providing a distribution
that approximates the posterior distribution of the hidden
variables [7], and it has been shown in [8] that VB inference
can effectively smooth out local minima and help to ensure
that a near-global minimum solution is found.

III. MODEL FORMULATIONS

In this section we present the formulations of our statistical
model. To obtain a wavelet-based formulation, we note that the
image x can be represented by wavelet expansion as x = Mw
where w is a N×1 vector representing all wavelet coefficients,
and M is the inverse wavelet transform whose columns are the
wavelet basis functions. In the case of an orthogonal basis, M
is a square orthogonal matrix, whereas for an over-complete
dictionary (e.g. a tight frame), M has N columns and M rows,
with N > M [3]. The linear model in (1) then becomes

y = HMw + n (2)

and the resulting likelihood of the data can be shown to be

p(y|w, ν2) =
(
2πν2

)−M
2 exp{− 1

2ν2
‖y −HMw‖2} (3)

A GSM model is now employed to model the wavelet
coefficients. Inspired from [9], we adopt a model which
incorporates group sparsity such that wi, the ith group of w,

1081978-1-4799-0248-4/13/$31.00 ©2013 IEEE GlobalSIP 2013



follows a zero mean Gaussian distribution with an (as yet)
unknown variance of σ2

i per element. Therefore the conditional
prior of w can be expressed as

p (w|S) =
G∏
i=1

N
(
wi|0, σ2

i

)
= N

(
w|0,S−1

)
(4)

where wi is a vector of coefficients comprising the ith group
of size gi, S is a diagonal matrix formed from the vector s
whose ith entry is si =1/σ2

i , and G denotes the number of
groups. The case G = N corresponds to independent sparse
modeling of the wavelet coefficients [9]; whereas the case,
G = N/2 and gi = 2 for all i, can be used to model the real
and imaginary parts of G complex coefficients, each with a
2-D circular pdf. To be consistent with the following algebra,
S needs to be of size N ×N and, when N > G, its diagonal
must be an expanded form of s where each si is repeated
gi times. To proceed with Bayesian inference, the posterior
distribution can be calculated via:

p
(
w|y,S, ν2

)
=
p
(
y|w, ν2

)
× p (w|S)

p (y|S, ν2)
(5)

Because both p
(
y|w, ν2

)
and p (w|S) are Gaussian functions

of w, the posterior distribution can be rearranged into a
squared form as

p
(
w|y,S, ν2

)
= N (w|µ,Σ) (6)

with
µ = ν−2ΣMTHTy (7)

Σ =
(
ν−2MTHTHM + S

)−1
(8)

The computation of the posterior variance Σ requires inversion
of the N × N square matrix (ν−2MTHTHM + S). This
operation is not computationally feasible for large images and
3D datasets, as N is often ∼ 107 or more. Here we adopt the
MM technique from [4], together with the recent subband-
adaptive MM from [5] to derive our fast algorithm.

To keep a Bayesian viewpoint, we now introduce the
following approximation model for the posterior distribution:

p
(
w, z|y,S, ν2

)
= p (z|w)× p

(
w|y,S, ν2

)
(9)

where
p (z|w) = exp{−(w − z)T

Λα −MTHTHM

2ν2
(w − z)}

(10)

Note that taking the logarithm of both sides of (9) will give a
similar surrogate function to that proposed in [5]:

Jα(w, z) = J(w) + (w − z)T
Λα −MTHTHM

2ν2
(w − z)

(11)

where Jα(w, z) = − ln p(w, z|y,S, ν2) and J(w) =
− ln p(w|y,S, ν2) from (6). Λα is a diagonal matrix formed
from of a vector α whose elements αj may be opti-
mized independently for each subspace/subband j of M,
such that Λα −MTHTHM is positive definite. This prop-
erty ensures that Jα(w, z) > J(w) for any w 6= z,
and Jα(w, z) = J(w) for w = z [5], and hence

produces monotonicity of the decay of J(w) [3]. Be-
cause p (z|w) ∝ N

(
w|z, ν2(Λα −MTHTHM)−1

)
and

p
(
w|y,S, ν2

)
are Gaussian functions of w, the approximation

model p
(
w, z|y,S, ν2

)
is also a Gaussian distribution and,

when z is given, can be rearranged into the form:

p
(
w|y, z,S, ν2

)
= N

(
w|µ,Σ

)
(12)

with

µ = ν−2Σ[(Λα −MTHTHM)z + MTHTy] (13)

Σ = (ν−2Λα + S)−1 (14)

where Σ
−1

is now purely diagonal and easy to invert. This
gives the subband-adaptive MM technique, whose convergence
rate is improved by keeping the (Λα-MTHTHM) term small.

IV. CONTINUATION STRATEGY

In this section, we describe the continuation strategy for
our Bayesian framework. In the above approximation model
p
(
w|y, z,S, ν2

)
, it is required to estimate the hidden variable

z as well as the inverse signal variance S. Here we keep the
noise variance ν2 as a user parameter in order to be able
to adjust the regularization strength. Note that although it
can be estimated via Bayesian inference, its estimate can be
inaccurate because of the difficulty of accurately separating
broadband signal components from noise. For S, or more
conveniently s, we impose a Gamma distribution because it
is conjugate to the Gaussian distribution and can strongly
encourage sparsity [7].

p(s|a,b) =

G∏
i=1

bai
Γ(a)

sa−1i exp(−bisi) (15)

The rate parameter b = [b1 . . . bG]T has a strong influence on
s. So, as suggested in [10], we further assume b is a vector
associated with a Gamma prior:

p(b|k, θ) =

G∏
i=1

θk

Γ(k)
bk−1i exp(−θbi) (16)

The complete graphical model with hierarchical priors is
shown in Fig. 1. In fact, the model we adopt is a 3-layer
hierarchical prior, similar to the model in [10] except that [10]
uses a Gamma distribution to estimate signal variance σ2. As
a result, the posterior of hidden variables now becomes

p (w, z, s,b|y) =
p(w, z, s,b,y)

p(y)

=
p (y|w, β) p (w|S) p(z|w)p(s|a,b)p(b|k, θ)

p (y)
(17)

where β ≡ ν−2. Note that the exact Bayesian inference of
(17) cannot be performed as the marginal likelihood p (y) is
intractable [7]. To approximate the posterior p(ξ|y) where
ξ = {w, z, s,b}, we adopt the VB approximation, which
provides a distribution q(ξ) to approximate p(ξ|y) [7] [9]. To
be specific, q(ξ) is determined by minimizing the Kullback-
Leibler (KL) divergence between q(ξ) and p(ξ|y) as

KL(q(ξ)‖p(ξ|y)) = −
∫
q(ξ) ln

(p(ξ|y)

q(ξ)

)
dξ (18)
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Fig. 1. The graphic model of linear regression with hierarchical priors. y and
z are Gaussian distributions, w is a GSM, s and b are Gamma distributions.

We note that KL(q(ξ)‖p(ξ|y)) ≥ 0, and equality holds only
when q(ξ) = p(ξ|y) [7]. To find q(ξ), we use the mean-
field approximation which assumes the posterior independence
between w, z, s (and hence S) and b [9], such that

q(ξ) = q(w, z, s,b) ≈ q(w)q(z)q(s)q(b) (19)

Based on this factorization, the distribution of each variable
q(λ), λ ∈ ξ, which minimizes (18) can be optimized as

ln q(λ) = 〈ln p(ξ|y)〉q(ξ\λ)
= 〈ln p(ξ,y)〉q(ξ\λ) + const (20)

where 〈·〉q denotes expectation over q and ξ \ λ means the
set of ξ with λ removed. By sequentially calculating q(λ), we
obtain the following updating rules.
(i) Optimize ln q(w) using (5), (9) and (12)

ln q(w) = 〈ln p(ξ,y)〉q(z)q(s)q(b) + const
= 〈ln(p(y|w, β)p(w|S)p(z|w))〉+ const

= −1

2
wTΣ

−1
w + wTΣ

−1
µ+ const (21)

This represents a Gaussian distribution q(w) with mean µ and
covariance Σ. Thus the mean of w occurs when

w(t+1) = µ(t) (22)

where µ(t) is computed using the current estimates of S(t)

and z(t) as in (13) and (14):

Σ
(t)

=
(
βΛα + S(t)

)−1
(23)

µ(t) = βΣ
(t)

[Λαz
(t) −MTHT (HMz(t) − y)] (24)

(ii) Optimize ln q(z) using (10)

ln q(z) = 〈ln p(ξ,y)〉q(w)q(s)q(b) + const
= 〈ln p(z|w)〉+ const

= −1

2
zTΣzz + zTΣz〈w〉+ const (25)

This represents a Gaussian distribution q(z) where Σz =
ν2(Λα −MTHTHM)−1. Thus provided Λα −MTHTHM
is positive definite, the mean of z occurs when

z(t+1) = 〈w〉 = w(t+1) (26)

(iii) Optimize ln q(s) using (4) and (15)

ln q(s) = 〈ln p(ξ,y)〉q(w)q(z)q(b) + const
= 〈ln(p(w|S)p(s|a,b))〉+ const

=

G∑
i=1

((
a+

gi
2
− 1
)

ln si −
( 〈|wi|2〉

2
+ 〈bi〉

)
si

)
+ const

(27)

This is the exponent of the product of G Gamma distributions
[7]. Thus the mean of si for i = 1 . . . G, occurs when

s
(t+1)
i =

gi + 2a(
‖µ(t)

i ‖2 + tr[Σ
(t)

i ]
)

+ 2b
(t)
i

(28)

where µ
(t)
i and Σ

(t)

i are the components of µ(t) and Σ
(t)

corresponding to group wi, and b(t)i = 〈bi〉 at iteration t.
(iv) Optimize ln q(b) using (15) and (16)

ln q(b) = 〈ln p(ξ,y)〉q(w)q(z)q(s) + const
= 〈ln(p(s|a,b)p(b|k, θ))〉+ const

=
G∑
i=1

((
a+ k − 1

)
ln bi −

(
〈si〉+ θ

)
bi

)
+ const (29)

Thus each q(bi) is a Gamma distribution and the mean of bi,
for i = 1 . . . G, occurs when

b
(t+1)
i =

a+ k

s
(t+1)
i + θ

(30)

The procedure of iteratively updating q(λ) can be seen as
an alternating minimization of KL divergence in (18), which
is repeated until the KL divergence converges [9]. Similar to
the analysis in [10], if we marginalize p(w, s,b) over b and
s, we can obtain the prior pdf p(w) for the ith group as

p(wi) =
( θ

2π

) gi
2

Γ(a+ k)Γ(a+ gi
2 )

Γ(a)Γ(k)

(θ|wi|2

2

)k− gi
2

F (31)

where F = U(a+ k; k+ 1− gi
2 ; θ|wi|2

2 ) is a confluent hyper-
geometric function. By calculating the negative log likelihood,
the optimization function of our model is found to be

Ω(w) = arg min
w

(1

2
‖y −HMw‖2 + ν2

∑
i∈G

φ(wi)
)

(32)

where φ(wi) = − log p(wi). It can be seen from (28) that the
proposed method approximates the l0 norm by reweighting the
l2 norm iteratively, which can be regarded as a relaxation of
Iterative Reweighted Least Squares (IRLS) studied in [11].

V. EXPERIMENTAL RESULTS

In this section, we present a set of experiments to evaluate
our proposed VBMM algorithm. We show that the perfor-
mance of VBMM is better than a closely related and recently
developed image deconvolution algorithm: modified subband-
adaptive iterative shrinkage/thresholding (MSIST) in [6].

For the wavelet basis, we chose the DT CWT because it
has a good frequency selectivity and is almost shift-invariant
[12]. For typical blur H, the DT CWT can compress most
of the energy of MTHTHM into the leading diagonal or
near diagonal terms, which ensures that Λα provides a good
approximation to MTHTHM. Because for the DT CWT
there is energy leakage to adjacent subbands, we computed
Λα=2ρ(MTHTHM) for each subband with thresholding to
a limiting value of 1 when α ≥ 1, which accounts for spectral
leakage. Note that the DT CWT is also chosen for evaluating
MSIST in [6]. Because the DT CWT produces complex

1083



wavelet coefficients, we rearranged them in G=N2 groups of
gi=2 as described in Section III. The standard test image, Cam-
eraman, was used in the experiments for comparative purposes.
We convolved the image with a 9×9 uniform blur kernel.
White Gaussian noise was added to the blurred image and the
blurred signal-to-noise ratio (BSNR)=10 log10

‖Hxr−Hxr‖2
Mν2

was used to define the noise level. xr is the original image and
Hxr is the mean of Hxr. The improvement in signal-to-noise
ratio (ISNR) =10 log10( ‖y−xr‖2

‖Mw−xr‖2 ) was used to evaluate each
estimate w. The initial estimation of xr was achieved by a
Wiener-type filter x0=(HTH+10−3ν2I)−1HTy [6]. For each
group i, the initial estimation of weight was si= gi+2a

‖wi‖2+2b .
In the experiment, we set hyperparameters b(0)=θ=10−6 and
k=0.5 which were found to be optimal. The shape parameter
a can control the initial sparsity pattern of the Gamma distri-
bution. Typically using a small a will converge faster but to a
slightly low ISNR compared to a larger a as shown in Fig. 2.
Although the noise variance was known in the experiment, we
found that for VBMM, a bigger β (by∼2:1) provides a better
performance as it allows the algorithm to put less emphasis
on the regularization.

0 50 100 150 200
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8
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N

R
 (

d
B

)

Iterations

 

 

VBMM a=4

VBMM a=8

MSIST

Fig. 2. ISNR results over 200 iterations, on Cameraman, BSNR: 40 dB.

Fig. 2 compares the ISNR of VBMM to MSIST over 200
iterations when the BSNR of the observation is 40dB. Decon-
volution results are shown in Fig. 3 for visual comparison.
The results show that VBMM reaches a faster convergence
rate and better ISNR results than MSIST. The computation
time for 200 iterations was 10.62 seconds for VBMM and
13.98 seconds for MSIST on a Core i7 PC with 3.40 GHz
Intel Processor. We then considered another two noise levels,
BSNR=20 dB, 50 dB. Table I shows the average ISNR results
of VBMM over 30 noise realizations compared with the results
of MSIST reported in [6]. VBMM requires fewer iterations to
reach a given quality of recovery and consistently outperforms
MSIST at all three noise levels.

TABLE I
AVERAGE ISNR RESULTS OVER 30 NOISE REALIZATIONS, ‘M’

STANDS FOR MSIST, ‘V’ STANDS FOR VBMM

BSNR 20 dB 40 dB 50 dB
Method M V M V M V
10 iters 2.584 2.731 7.011 7.107 8.760 10.148
30 iters 2.990 3.282 7.348 7.531 10.290 10.656
50 iters 3.191 3.491 7.449 7.730 10.601 10.879
70 iters 3.308 3.582 7.506 7.842 10.669 10.996

100 iters 3.403 3.646 7.553 7.939 10.683 11.085

(a) Original (b) Blurred (c) MSIST, ISNR:
7.611 dB

(d) VBMM a=8,
ISNR: 8.042 dB

Fig. 3. Deconvolution results, on Cameraman, BSNR: 40 dB.

VI. CONCLUSION

Here we have proposed the VBMM image deconvolution al-
gorithm, based on hierarchical Variational Bayesian inference
combined with subband-adaptive Majorization-Minimization
for fast convergence. Our model shows how VB approximates
the l0-norm on wavelet coefficients by reweighting the l2-norm
iteratively. Experimental results confirm the performance of
the method. We have considered group-sparse optimization of
complex wavelet coefficients, which can be further extended
for tree-structured wavelet modeling.
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