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ABSTRACT

In this paper, we propose to incorporate wavelet tree struc-
tures into a recently developed wavelet modeling method,
called VBMM. We show that, using overlapped groups,
tree-structured modeling can be integrated into the high-
performance non-convex sparsity-inducing VBMM method,
and can achieve significant performance gains over the
coefficient-sparse version of the algorithm.

Index Terms— Image deconvolution, wavelet tree mod-
eling, variational Bayesian, dual-tree complex wavelets.

1. INTRODUCTION

Image deconvolution appears in many applications of image
processing. The object is to estimate the clean image x from a
blurred image y usually based on a linear observation model:

y = Hx + n (1)

where H is a M×M matrix which approximates the convo-
lution, and n is additive Gaussian noise with variance ν2. In
general, this inverse problem is highly ill-posed, i.e., the di-
rect operator does not have an inverse or it is nearly singular
so that its inverse is very sensitive to noise [1]. In previous
works, it is found that wavelet-based tools, such as the Dis-
crete Wavelet Transform (DWT), are powerful for handling
this ill-posed nature [2, 3, 4]. Most of them are based on
regularization or Bayesian frameworks, which largely rely on
the sparsity assumptions of wavelet-based priors/regularizers
due to the fact that natural images can be represented by rela-
tively few coefficients in the wavelet domain [2]. In general,
wavelet coefficients can often be modeled by heavy-tailed pri-
ors belonging to the Gaussian scale mixture (GSM) class that
captures the local dependencies among different wavelet co-
efficients [3, 5].

It is also well-established that there is a strong persis-
tence of large/small wavelet coefficients across scales [6, 7].
Such patterns can be well represented using a tree structure
where parent-child coefficients at a certain location and ad-
jacent scales are both large or small [6]. Fig. 1 depicts an
example of quadtree structure that corresponds to an 8×8 im-
age with 3-level 2D DWT decomposition. There are many
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Fig. 1. (a) 8×8 image with 3-level 2D DWT decomposition.
(b) quadtree structure of wavelet coefficients.

methods to model this wavelet tree structure such as bivari-
ate shrinkage [8], Hidden Markov Tree (HMT) [9, 10] and
overlapping-group penalty [6, 11, 12]. By integrating such
a tree-approximation, it has been shown to significantly im-
prove the recovery performance [13].

This paper builds on a hierarchical Bayesian modeling of
wavelet coefficients proposed in [14], which is derived from a
group-sparse GSM model. Based on a combination of varia-
tional Bayesian (VB) inference with a subband-adaptive Ma-
jorization Minimization (MM) method, the VBMM algorithm
in [14] effectively simplifies computation of the posterior dis-
tribution and finds good solutions in the non-convex search
space. In addition, VBMM has demonstrated the potential of
group-sparse modeling. For instance, the real and imaginary
parts of the dual-tree complex wavelet transform (DT CWT)
coefficients are clustered into single groups for Bayesian in-
ference [14]. However, tree-structured dependencies among
wavelet coefficients were not fully utilized in VBMM in [14].

To achieve the goal of a fully group sparse solution,
in this paper we propose a new image deconvolution algo-
rithm which incorporates the VBMM model with wavelet
tree structure. The grouping strategies “parent+1child” and
“parent+4children” are explored. The experimental results
show that both strategies result in significantly improved
performance compared with VBMM without an imposed
group structure. One important contribution of the paper is to
provide a new framework which incorporates a wavelet tree
structure in an empirical Bayesian derivation.

The paper is organized as follows. Section 2 describes
the key formulations of our model with grouping strategies.
Section 3 shows the continuation strategy of the proposed al-
gorithm. Experimental results are shown in Section 4.



Fig. 2. Simple example of the non-overlapping transforma-
tion corresponding to the quadtree in Fig. 1(b), using the par-
ent+1child grouping of Fig. 3(a).

2. MODEL FORMULATION

In this section, we describe the formulations of our tree-
structured statistical model. Assume we can represent the
image x by wavelet expansion as x = Mw where M is the
inverse wavelet transform, and w is an N × 1 vector which
contains all wavelet coefficients. This results in a wavelet-
based formulation of (1):

y = HMw + n (2)

It is noted that for an orthogonal basis, M is a square
orthogonal matrix, whereas for an over-complete dictionary
(e.g. a tight frame), M has N columns and M rows, with
N > M [4]. Recent works have shown that modeling wavelet
parent-child relationships can be viewed as an overlapping
group regularization [6, 11]. Inspired from [11], we adopt a
non-overlapping redundant transformation such as w̃ = Dw
to ensure the persistence of large/small coefficients across
scales, where w̃ is a P × 1 vector that forms wavelet coef-
ficients in the non-overlapping space, and the transformation
matrix D indicates the presence (1) or absence (0) of cor-
respondence between the overlapping and non-overlapping
spaces. An example of this non-overlapping redundant trans-
formation is shown in Fig. 2. Note that although DTD 6= I,
DTD is a diagonal matrix, with each entry representing the
number of groups to which a coefficient belongs. For in-
stance, the entry in DTD corresponding to a parent coeffi-
cient with a “parent+1child” grouping scheme, such as coef-
ficient 1 in Fig. 3 (a), will be ‘5’ (one for each of 1’s four
children, plus one singleton group). As a result, we define a
diagonal matrix A such that DTDA = I, and the likelihood
of the data can be shown to be

p(y|ŵ, ν2) =
(
2πν2

)−M2 exp{− 1

2ν2
‖y −HMDT ŵ‖2}

(3)
where ŵ = DAw. In this paper, we propose to model ŵ

using a group sparse GSM model as described in [14]:

p (ŵ|S) =

G∏
i=1

N
(
ŵi|0, σ2

i

)
= N

(
ŵ|0,S−1

)
(4)

where the ith group ŵi is a vector of size gi whose elements
are drawn from a zero-mean Gaussian distribution with a sig-
nal variance σ2

i (as yet unknown), and where G is the number
of groups, and S is a diagonal matrix formed from the vector
s whose ith entry is si =1/σ2

i . Because S needs to be of size
P × P , when P > G, its diagonal is an expanded form of s
where each si is repeated gi times [14].

However, how best to group coefficients is not clear and
becomes an important question. In this paper, we consider two
grouping schemes: “parent+1child” and “parent+4children”
as illustrated in Fig. 3. In the case of “parent+1child” scheme,
the parent coefficient is grouped separately with each child
coefficient, whereas for “parent+4children” scheme the par-
ent coefficient is grouped with all 4 of its children. Note that
in both cases, we group the root-level coefficients individually
since they do not have a parent.

Based on Bayes’ rule, the posterior distribution can be cal-
culated via:

p
(
ŵ|y,S, ν2

)
=
p
(
y|ŵ, ν2

)
× p (ŵ|S)

p (y|S, ν2)
(5)

Because both p
(
y|ŵ, ν2

)
and p (ŵ|S) are Gaussian func-

tions of ŵ, the posterior can be rearranged as

p
(
ŵ|y,S, ν2

)
= N (ŵ|µ,Σ) (6)

where

µ = ν−2ΣDMTHTy (7)

Σ =
(
ν−2DMTHTHMDT + S

)−1
(8)

However, Σ requires the inversion of a P ×P square ma-
trix

(
ν−2DMTHTHMDT + S

)
, which is not computation-

ally feasible for big data sets and images. To derive a fast
algorithm, we adopt a subband-adaptive MM technique pro-
posed in [15]. Here we introduce a hidden variable z and the
following approximation model for its posterior distribution:

p
(
ŵ, z|y,S, ν2

)
= p (z|ŵ)× p

(
ŵ|y,S, ν2

)
(9)
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Fig. 3. Illustration of different grouping strategies: (a) par-
ent+1child, (b) parent+4children. The root-level coefficients
are grouped individually shown as the red rectangles which
represent singleton groups.



and
p (z|ŵ) ∝ exp{−(ŵ −DAz)TQ(ŵ −DAz)} (10)

where

Q =
Λα −DMTHTHMDT

2ν2
(11)

Similar to the argument in [14], we find that Q should be
positive definite to ensure convergence and hence:

Λα � DMTHTHMDT (12)

which is equivalent to requiring that:

DTΛαDA � DTDMTHTHMDTDA

= A−1MTHTHM (13)

where we assume Λ̃α = DTΛαDA. It is known that we need
AΛ̃α � ρ(MTHTHM) in order to fulfill the condition. Var-
ious subband-adaptive methods can be applied to determine
the diagonal matrix AΛ̃α [15, 16]. We can easily compute
the Λα once Λ̃α is found. In practice, Λα is equivalent to
applying non-overlapping transformation to Λ̃α.

Because p (z|ŵ) and p
(
ŵ|y,S, ν2

)
are Gaussian func-

tions of w, when z is given (typically as a previous estimate
for w), the approximation model can be rearranged into a
Gaussian form as

p
(
ŵ|y, z,S, ν2

)
= N

(
ŵ|µ,Σ

)
(14)

with

µ = ν−2Σ[ΛαDAz−DMTHT (HMz− y)] (15)

Σ = (ν−2Λα + S)−1 (16)

where Σ
−1

is now a purely diagonal matrix and easy to invert,
which gives the subband-adaptive MM technique.

3. CONTINUATION STRATEGIES

In this section, we apply the VB approximation to derive the
continuation strategies of our model. To update the variables
appearing in (9), we construct a 3-layer hierarchical prior as
described in [14]. To be more specific, we impose Gamma
distributions for both inverse signal variance s and its rate pa-
rameter b:

p(s|a,b) =

G∏
i=1

bai
Γ(a)

sa−1i exp(−bisi) (17)

and

p(b|k, θ) =

G∏
i=1

θk

Γ(k)
bk−1i exp(−θbi) (18)

When k and θ approach zero, the Gamma prior on p(b)
becomes a noninformative Jeffreys prior, and therefore the

mean of signal variance σ2 approximately follows a nonin-
formative prior. This means that the posterior depends only
on the data and not the prior, which is known to strongly pro-
mote sparse estimates. If the prior knowledge is available for
the model, we can tune the hyperparameters so that the prior
becomes more informative. As a result, we can move between
the informative and noninformative prior more flexibly using
the 3-layer model.

Now we can represent the posterior of hidden variables as

p (ŵ, z, s,b|y) =
p(ŵ, z, s,b,y)

p(y)

=
p (y|ŵ, β) p (ŵ|S) p(z|ŵ)p(s|a,b)p(b|k, θ)

p (y)
(19)

where β ≡ ν−2. Because the marginal likelihood p (y) is
typically intractable to compute, the exact Bayesian inference
of (19) cannot be performed [17]. Here we adopt the VB ap-
proximation to approximate p (ξ|y) using a distribution q (ξ),
where ξ = {ŵ, z, s,b}. It is known that we can find q(ξ) by
minimizing the Kullback-Leibler (KL) divergence between
q(ξ) and p(ξ|y) where

KL(q(ξ)‖p(ξ|y)) = −
∫
q(ξ) ln

(p(ξ|y)

q(ξ)

)
dξ (20)

However q(ξ) cannot be obtained simply as we do not
know p(y). A general approach is the mean-field approxima-
tion where we factorize q(ξ) into disjoint groups:

q(ξ) = q(ŵ, z, s,b) ≈ q(ŵ)q(z)q(s)q(b) (21)

Based on this factorization, the distribution of each vari-
able q(λ), λ ∈ ξ, which minimizes (20) can be optimized as

ln q(λ) = 〈ln p(ξ|y)〉q(ξ\λ)
= 〈ln p(ξ,y)〉q(ξ\λ) + const (22)

where 〈·〉q denotes expectation over q and ξ \ λ means the set
of ξ with λ removed. The procedure of iteratively updating
q(λ), for λ = ŵ, z, s and b in turn, results in Algorithm 1.

Algorithm 1 Tree-structured VBMM Image Deconvolution
1: Inputs: blur kernel H, blurred image y, Λα, a, β, k, θ,

initial estimations of z(0), s(0) and b(0).
2: while iterations t = 0 : tmax or z has converged, do

3: Σ
(t)

=
(
βΛα + S(t)

)−1
4: µ(t) = βΣ

(t)
[ΛαDAz(t)−DMTHT (HMz(t)−y)]

5: ŵ(t+1) = µ(t)

6: z(t+1) = DT ŵ(t+1)

7: s
(t+1)
i =

gi + 2a(
‖µ(t)

i ‖2 + tr[Σ
(t)

i ]
)

+ 2b
(t)
i

for i = 1...G

8: b
(t+1)
i =

a+ k

s
(t+1)
i + θ

for i = 1...G

9: end while
10: Output deblurred image x = Mz



Table 1. BLUR, Noise Variance and BSNR (dB)
Exp. BLUR ν2 BSNR

1 9× 9 uniform 31.10 20
2 9× 9 uniform 0.31 40
3 9× 9 uniform 0.03 50
4 hij = 1/(1 + i2 + j2), i, j = −7, . . . , 7 2 31.85
5 hij = 1/(1 + i2 + j2), i, j = −7, . . . , 7 8 25.85

4. RESULTS

In this section, we test our claim that the VBMM algo-
rithm which incorporates overlapping group sparsity outper-
forms the coefficient-sparse VBMM algorithm, referred to
as Coefficient VBMM (VC) in [14]. We have used both the
“parent+1child” grouping (V1) and the “parent+4children”
grouping (V4) strategies for these experiments. We have
used the DT CWT as our redundant sparsifying transform
because it has good sparsity inducing properties. Because
DT CWT produces complex coefficients, we assume a pair
of real and imaginary coefficients share the same variance
and can be clustered into one group. As a result, we have
G = N

2 groups for VC, G = P+6
4 groups for V1 and

G = P+6
10 groups for V4. Five experiments were performed

as shown in Table 1, where we convolved the Cameraman
image with two different blur kernels: 9 × 9 uniform blur
(Exp. 1-Exp. 3) and 15 × 15 circular-symmetric blur as
hij = 1

1+i2+j2 , i, j = −7, . . . , 7 (Exp. 4-Exp. 5). White
Gaussian noise was added to the blurred image and the
blurred signal-to-noise ratio (BSNR)=10 log10

‖Hxr−Hxr‖2
Mν2

was used to define the noise level. xr is the original im-
age and Hxr is the mean of Hxr. The improvement in
signal-to-noise ratio (ISNR) =10 log10( ‖y−xr‖

2

‖Mz−xr‖2 ) was used
to evaluate the relative performance of VC, V1, and V4. A
regularized Wiener filter x0=(HTH+10−3ν2I)−1HTy was
used to estimate the initial xr and hence z(0) = MTx0 [16].
In the experiment, we set hyperparameters a = θ = 10−6

and adjusted k to control the sparsity where k should satisfy
0 < k < gi

2 . We’ve ensured the matrix Λα for the VC, V1,
and V4 experiments was the same for each test scenario.

For all test cases, incorporating the group sparse penalty
leads to improved deconvolution results in terms of visual
quality and final ISNR. Fig. 4 shows the visual and ISNR re-

(a) Original (b) Blurred (c) VC strategy,
ISNR: 8.09 dB

(d) V4 strategy,
ISNR: 8.29 dB

Fig. 4. Deconvolution and ISNR (dB) results on Exp. 2 for
VC and V4, on Cameraman, BSNR: 40 dB.

Table 2. Average ISNR (dB) results for VC, V1 and V4 over
30 noise realizations using the 9×9 uniform blur.

iters 10 30 50 70 100

Exp.1
VC 2.66 3.15 3.35 3.45 3.52
V1 2.95 3.55 3.67 3.71 3.74
V4 2.96 3.62 3.72 3.74 3.76

Exp.2
VC 7.20 7.66 7.85 7.95 8.04
V1 7.63 7.99 8.11 8.16 8.20
V4 7.57 8.01 8.14 8.20 8.24

Exp.3
VC 10.17 10.66 10.87 10.99 11.08
V1 10.17 10.75 10.94 11.04 11.14
V4 10.19 10.86 11.06 11.16 11.26

sults of Exp. 2 obtained from applying the VC, V1 and V4
algorithms over 200 iterations. V1 performs similarly to V4,
and hence we decided not to display the results due to space
constraints. In Table 2, we show average ISNR values ob-
tained from repeating our experiments over 30 noise realiza-
tions. It is found that both V1 and V4 have faster convergence
and better ISNR results compared with VC. Furthermore, V4
gives better ISNR results than V1. We believe this is because
V4 considers both dependencies across scale and also depen-
dencies within scale. We also tested VC, V1 and V4 on the
circular-symmetric blur and the ISNR results are shown in
Fig. 51. It is observed that both V1 and V4 converge to higher
ISNR values than VC, but V4 converges slower than V1 ini-
tially because DMTHTHMDT becomes less leading diag-
onal using V4, which may cause the (Λα–DMTHTHMDT )
term to be larger and slow down the convergence.
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VC, σ2 = 2 VC, σ2 = 8

Fig. 5. Average ISNR (dB) on Exp. 4 and Exp. 5 for VC, V1,
and V4 over 30 noise realizations.

5. CONCLUSION

Here we have proposed an extension of the VBMM deconvo-
lution algorithm which incorporates tree-structured wavelet
modeling and two grouping strategies are discussed. We have
shown how to incorporate a wavelet tree structure in an em-
pirical Bayesian derivation. Our model gives some useful im-
provements over an equivalent method without wavelet group
structure, while the computation per iteration increases by
about 29 % for V1 or 38 % for V4 group structures, relative to
the basic VC scheme which takes 0.09 seconds per iteration.

1Numerical results of Exp. 4 and Exp. 5 are available online at
http://www-sigproc.eng.cam.ac.uk/Main/GZ243.
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