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Introduction and Motivation

Recap from Handout 3
We represent digital signals as a pulse train

x(t) =
∑

k

akp(t − kT )

ak is the k -th bit (or more in general, symbol) in the message
sequence, ak = ±A

2

T is the symbol period
p(t) is the pulse such that

p(t) =

{
1 t = 0
0 t = ±T ,±2T , . . .

Spectrum of unmodulated signal |X (f )|2 = 1
T |P(f )|2
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Digital Modulation

Introduction
We will use digital modulation techniques when the information
signal is digital
Again the information signal modulates the amplitude, phase or
frequency of a carrier wave

s(t) = a cos(2πfc t + φ)

A few interesting differences wrt analog modulation
For example, phase digital modulation widely employed
The BSC (see end of this Handout) summarises digital modulation
and demodulation effects through ε, the probability of the channel
giving an output in error

Jossy Sayir (CUED) Communications: Handout 4 Lent Term 4 / 44



Digital Modulation
ASK Modulation

Amplitude Shift Keying (ASK)
ASK is the digital counterpart of AM. Considering binary ASK only we
have

sASK(t) =

{
a cos(2πfc t) for information bit 1
0 for information bit 0
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Digital Modulation
ASK Modulation
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Digital Modulation
PSK Modulation

Phase Shift Keying (PSK)
PSK is the digital counterpart of PM. Considering binary PSK (BPSK)
only we have

sPSK(t) =

{
a cos(2πfc t) for information bit 1
a cos(2πfc t + π) for information bit 0

Note that a phase shift of π corresponds to a change of sign

sPSK(t) =

{
a cos(2πfc t) for information bit 1
−a cos(2πfc t) for information bit 0
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Digital Modulation
PSK Modulation
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Digital Modulation
PSK Modulation

Spectrum Calculation
As we have just seen, we can write the BPSK signal as

sBPSK(t) =
∑

k

akp(t − kT )︸ ︷︷ ︸
information signal x(t)

a cos(2πfc t)︸ ︷︷ ︸
carrier

From Handout 3, the spectrum of a digital signal is given by

|X (f )|2 =
1
T
|P(f )|2

where P(f ) = F [p(t)] is the Fourier transform of the pulse p(t).
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Digital Modulation
PSK Modulation

Spectrum Calculation
Therefore, the BPSK spectrum is

SBPSK(f ) =
1
2

[X (f − fc) + X (f + fc)]

If p(t) is a rectangular pulse of unit amplitude and duration T , we have
that

P(f ) = Tsinc (πfT ) and |X (f )|2 = T sinc2 (πfT )

Assuming no overlap between X (f − fc) and X (f + fc) we obtain

|SBPSK(f )|2 =
1
4

[
|X (f − fc)|2 + |X (f + fc)|2

]
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Digital Modulation
Spectrum of PSK Modulation
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Digital Modulation
Spectrum of PSK Modulation
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Digital Modulation
Spectrum of PSK Modulation

Properties
As opposed to analogue modulation, strictly speaking, the
bandwidth is infinite due to sidelobes
Usually bandwidth corresponds to the main lobe
Can also define the bandwidth that contains the 99% of the power
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Digital Modulation
Error Probability of BPSK Modulation

+ y(t)x(t)

z(t)

Equivalent Digital Model
Assuming x(t) =

∑
k akp(t − kT ) (after de-modulation) and

sampling when the pulse is at its peak (i.e., p(t) = 1) we have
Y = X + Z

where X ∈ {±A} and Z is a Gaussian random variable with zero
mean and variance σ2, i.e., Z ∼ N(0, σ2).
Detection rule

I if Y > 0 decide X̂ = +A
I if Y < 0 decide X̂ = −A

We want to calculate the error probability Pe = p(X̂ 6= X )
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Digital Modulation
Error Probability of BPSK Modulation

Error Probability
The error probability can be expressed as
Pe = p(X̂ 6= X )

= p(X̂ = +A|X = −A)p(X = −A) + p(X̂ = −A|X = +A)p(X = +A)

=
1
2
(
p(X̂ = +A|X = −A) + p(X̂ = −A|X = +A)

)
=

1
2
(
p(Y > 0|X = −A) + p(Y < 0|X = +A)

)
= p(Y < 0|X = +A)

due to the symmetry of the problem. Conditioned on X = +A, Y is a
Gaussian random variable, with mean +A and variance σ2, i.e.,
Y ∼ N(+A, σ2).
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Digital Modulation
Error Probability of BPSK Modulation

Error Probability

Given that Y ∼ N(+A, σ2), the error probability can be expressed as

Pe = p(Y < 0|X = +A) =

∫ 0

−∞
pY (y)dy =

∫ 0

−∞

1√
2πσ2

e−
1

2σ2 (y−A)2
dy

=

∫ − A
σ

−∞

1√
2π

e−
u2
2 du = Φ

(
−A
σ

)
= Q

(
A
σ

)
= Q

(√
A2

σ2

)
= Q

(√
2SNR

)
where Φ(x) is the Gaussian cumulative (see Probability notes, handout
3), Q(x)

∆
= 1− Φ(x) and SNR ∆

= A2

2σ2 .

Jossy Sayir (CUED) Communications: Handout 4 Lent Term 16 / 44



Digital Modulation
Error Probability of BPSK Modulation
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Digital Modulation
FSK Modulation

Frequency Shift Keying (FSK)
FSK is the digital counterpart of FM. Considering binary FSK only we
have

sFSK(t) =

{
a cos(2πf 1

c t) for information bit 1
a cos(2πf 0

c t) for information bit 0

Jossy Sayir (CUED) Communications: Handout 4 Lent Term 18 / 44



Digital Modulation
FSK Modulation
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The GSM Modulation

Remember FM modulation?
An FM modulated signal is given by

sFM(t) = a0 cos
(

2πfc t + 2πkf

∫ t

0
x(τ)dτ

)
where x(t) is the information signal.
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The GSM Modulation

GMSK Modulation
The GSM system uses Gaussian Minimum Shift Keying (GMSK)
modulation, which is a digital version of FM

sGMSK(t) = a0 cos
(

2πfc t + 2πkf

∫ t

0
x(τ)dτ

)
x(t) =

∑
k akp(t − kT ) is the digital information signal

p(t) = ce−πc2t2
is the Gaussian pulse

GMSK controls bandwidth expansion and has a compact
spectrum
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Multicarrier Modulation
Frequency Selective Fading Channels

Remember when B ' Bc , the wireless channel introduces severe
distortion to the transmitted signal. More formally, the channel is said
to be frequency selective.

Broadband signal

f

B

f

|X(f)|

B

|H(f)|

Multipath

Channel

We need to equalise the channel, since different frequencies suffer
different attenuations. We will now study what WiFi does...
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Multicarrier Modulation

The Key Idea...
... is to modulate the signal with multiple carriers, so that the signal
modulated onto each carrier looks narrowband and experiences a flat
fading coefficient.

|H(f)X(f)|

f

|X(f)|

B

Multipath

Channel

f

B

Broadband multicarrier signal
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Multicarrier Modulation

How do we implement it?
Consider that we have Nc subcarriers whose frequencies are f1, . . . , fNc

and that we divide our bits in Nc classes a1, . . . ,aNc to modulate each
carrier. We can write the n-th modulated signal as

sn(t) = an cos 2πfnt 0 ≤ t ≤ T

and the multicarrier signal is

sMC(t) =
Nc∑

n=1

sn(t) =
Nc∑

n=1

an cos 2πfnt 0 ≤ t ≤ T
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Multicarrier Modulation

sMC(t)

.
.

.

a1 s1(t)

cos(2πf1t)

aNc sNc(t)

cos(2πfNct)
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Multicarrier Modulation

The choice of the sub-carriers
We choose the sub-carrier frequencies to be orthogonal, i.e.,∫ T

0
cos(2πfnt) cos(2πfmt) = 0 ∀m 6= n

this can be achieved by choosing fn = nfc and fm = mfc
We can recover the data streams a1, . . . ,aNc if the sub-carriers
are orthogonal
We can have a much more compact spectrum than if we had
non-orthogonal carriers
Orthogonal Frequency Division Multiplexing (OFDM), used in
ADSL, WiFi, and many future wireless systems
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Basic Block Diagram
from Handout 1
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Communications Channels

Definition
The medium used to transmit the signal from transmitter to receiver.

and...
introduces attenuation and noise so that the received signal is a faded
and noisy version of what the transmitter sent.

which implies that...
noise and attenuation introduce errors.
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Communications Channels

Error Probability
We define the bit error probability Pe (also bit error rate (BER)) as the
probability that one bit is detected in error at the receiver.

Fundamental measure of the reliability of transmission
Tells us what the percentage of errors is
Pe depends on the amount of noise in the channel
Also measures the quality of service (QoS) requirements
(acceptable quality) of a given system

I Pe ≈ 10−3 for voice (GSM)
I Pe ≈ 10−15 magnetic recording
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An Illustrative Example
The Binary Symmetric Channel

1− ǫ

0

1

0

1

x[n] y[n]

1− ǫ

ǫ

ǫ
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An Illustrative Example
The Binary Symmetric Channel

or equivalently...

z[n] = ...1000010000...

x[n] = ...0101000110... y[n] = ...1101010110...

x [n], y [n] transmitted and received binary sequences
z[n] additive binary noise sequence with Pr(z = 1) = ε, namely,
with probability ε the channel introduces an error
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An Illustrative Example
The Binary Symmetric Channel

1− ǫ

0

1

0

1

x[n] y[n]

1− ǫ

ǫ

ǫ

Error Probability
The bit error probability is

Pe = Pr(y = 1|x = 0) Pr(x = 0) + Pr(y = 0|x = 1) Pr(x = 1)

= ε
1
2

+ ε
1
2

= ε

Can we improve it? How? Let’s repeat the bits and see...
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An Illustrative Example
The Binary Symmetric Channel

Repeat 3 Times
Introducing redundancy: channel coding
We transmit 1 information bit every 3 transmissions
We need at least 2 out of 3 bits in error to declare an information
bit error

Pe = p(3 errors) + p(2 errors) = ε3 + 3ε2(1− ε)
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An Illustrative Example
The Binary Symmetric Channel
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An Illustrative Example
The Binary Symmetric Channel

Repetition Codes
As we increase the repetition factor, we can achieve reliable
communication, i.e., Pe → 0.
Unfortunately R → 0 as well!!
It was widely thought that in order to achieve Pe → 0 we had to
have R → 0.
Until 1948
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Shannon’s Theorem

Theorem
(Shannon 1948) For any communications channel, there exist codes
(with the corresponding encoders and decoders) of rate R < C that
have Pe → 0, where C is the channel capacity. Conversely, if R > C,
Pe cannot approach 0, and reliable transmission is not possible.
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Shannon’s Theorem
The Binary Symmetric Channel

Capacity of the BSC
In the case of the binary symmetric channel

c = 1− h(ε) bits/channel use,
where

h(ε)
∆
= ε log2

1
ε

+ (1− ε) log2
1

1− ε
is the binary entropy function.

For ε = 0 (noiseless channel) we can transmit up to c = 1 bits
every time we use the channel
For ε = 1

2 , the channel generates a random output, so we guess,
and c = 0 bits per transmission
If every use of the channel corresponds to T seconds, then we
define C = c

T bit/second
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Shannon’s Theorem
The Binary Symmetric Channel
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An Illustrative Example
The Binary Symmetric Channel

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

10-4 10-3 10-2 10-1

No Repetition (uncoded)

ε
ε?

Pe

Repetition 3 Shannon

Jossy Sayir (CUED) Communications: Handout 4 Lent Term 39 / 44



An Illustrative Example
The Binary Symmetric Channel
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ε? = c−1
“

R = 1
3

”
−→

= h−1 (1− R)

= 1.74 10−1 ≈ 17%
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The Additive Gaussian Noise Channel

Capacity
The capacity (in bits/second) of the additive white Gaussian channel
with bandwidth B is given by (Shannon 1948)

C = B log2

(
1 +

P
N0B

)
= B log2 (1 + SNR)

where SNR = P
N = P

N0B . This formula is in the data book.
Optimally relates our precious resources: P,B and R
The spectral efficiency c = C

B = log2(1 + SNR) is the normalized
(wrt B) capacity in bits per second per Hertz
A linear increase in power (or SNR) implies logarithmic increase in
rate.
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The Additive Gaussian Noise Channel

Recap...
With sufficiently involved coding techniques, we can transmit binary
digits at a rate

R < B log2 (1 + SNR)

bits per second, with arbitrarily small probability of decoding in error,
namely Pe → 0. Conversely, if R > C reliable communication is not
possible since Pe cannot vanish.
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The Additive Gaussian Noise Channel
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The Additive Gaussian Noise Channel
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