
Pt IB Paper 8 Photo Editing Course 1

Part IB Paper 8

Information Engineering Option

A – Photo Editing Course

Nick Kingsbury – www-sigproc.eng.cam.ac.uk/∼ngk
Given by Joan Lasenby in 2016: www-sigproc.eng.cam.ac.uk/∼jl

April 9, 2016

Lecture 1: Sections 1 & 2.
Lecture 2: Sections 3 & 4.
Lecture 3: Sections 5 & 6.
Lecture 4: Sections 7 & 8.
Lecture 5: Section 9.
Lecture 6: Examples Class

Contents

1 Program Framework for the Photo Editor 4

1.1 Introduction . 4

1.2 The main script file: ph edit . 4

1.3 Opening an input file: ph openfile . 7

1.4 Saving an output file: ph savefile . 8

1.5 Displaying the images: showimages . 9

1.6 Other simple operations within ph edit . 11

2 Cropping the image: ph crop 12

3 Resizing the image: ph resize 16

3.1 The script ph resize . 16

3.2 The function im resize() . 18

3.3 Bi-linear interpolation . 20

2 Pt IB Paper 8 Photo Editing Course

3.4 Bi-cubic interpolation . 22

4 Rotating the image: ph rotate 24

4.1 The script ph rotate . 24

4.2 The function im rotate() . 26

5 Morphing the image: ph morph 30

5.1 The script ph morph . 30

5.2 The function im morph() . 37

6 Colour conversions and colour correction: ph colourshift 40

6.1 Colour Representations: RGB, YUV and HSV 40

6.2 The script ph colourshift . 44

7 Histograms and Lighting correction: ph lightshift 54

7.1 Lighting correction methods . 54

7.2 The script ph lightshift . 56

7.3 The function im histeq() . 59

7.4 The function im lighting() . 60

8 Filtering the image: ph filter 62

8.1 Lowpass Filtering with Gaussian filters . 62

8.2 Highpass Filtering with Gaussian filters . 69

8.3 The script ph filter . 71

8.4 Fourier transform of a Gaussian pulse . 74

9 Enhancing the image: ph enhance 76

9.1 Detecting horizontal and vertical edges . 76

9.2 Adaptive filters for denoising . 79

9.3 Adaptive filters for edge sharpening . 83

9.4 The script ph enhance . 84

Pt IB Paper 8 Photo Editing Course 3

B – Image Features and Matching Course

Roberto Cipolla

C – Image Searching and Modelling
using Machine Learning Methods

Roberto Cipolla

Recommended Textbooks

• A K Jain, Fundamentals of Digital Image Processing, Prentice-Hall, 1989.

• R C Gonzalez and R E Woods, Digital Image Processing, Addison Wesley, 1992.

• M Petrou and P Bosdogianni, Image Processing: The Fundamentals, John Wiley,
1999.

Matlab code for the Photo Editor is downloadable from NGK’s website:
www-sigproc.eng.cam.ac.uk/∼ngk in the section Downloadable teaching material.

4 Pt IB Paper 8 Photo Editing Course

Paper 8 Photo Editing - Section 1 5

1 Program Framework for the Photo Editor

1.1 Introduction

On this course we shall be developing a photo-editor in Matlab, which has a number of
the functionalities of current commercial packages such as Adobe Photo-Shop and Microsoft
Digital Image Suite. Before we can get on to consider detailed algorithms for any of the
functions, we must produce an image display framework and graphical user interface (GUI)
to allow the functions to be called and controlled, and to show their results.

We have chosen to use Matlab as the basis for our system because it allows quite complicated
image processing operations to be implemented with relatively small amounts of code, and
it has the basic functions for providing a suitable GUI for the user to interact with the
program.

We shall first describe the main script file for our editor.

1.2 The main script file: ph edit

The code for the main script file ph_edit.m is shown in fig. 1.2. The editor is started by
typing ph_edit in the command window of Matlab. Script files are different from function
files in Matlab, in that no variables are passed as arguments when script files are called. The
scripts just use the main workspace that is visible to the user (i.e. they are equivalent to
typing commands at the command prompt). For GUIs with buttons and other controls it is
often simplest if the controls create calls to script files rather than to functions.

The first 4 lines of code in ph_edit.m (excluding comment lines) clear the workspace and
open a window for figure(1) (see fig. 1.1), of size 670×940 pixels (pels) with lower left corner
at pel (80,30), which is suitable for a 1024× 768 screen size with task bar on the left edge.
This can be adjusted if required for other screen sizes or task bar locations – adjustment will
be required for high resolution screens.

The next 2 lines of code use the Matlab function uicontrol to produce a prompt box of
style text, and a control button of style pushbutton (the default), in the top left corner of
the figure window. Both are initially blank. promptbox and contrbutton are handles to
these two GUI controls which allow us to modify their modes of use later.

The next line uses another Matlab GUI function

uim = uimenu(’label’,’Photo-edit’);

to set up an extra pull-down menu, Photo-edit, to the right of Help on the menu-bar of
the figure window. The handle for this menu is uim.

We can now add items to the new menu uim, using lines of the form

uimenu(uim,’label’,’Open ’’Before’’’,’call’,’ph_openfile’);

6 Paper 8 Photo Editing - Section 1

which adds an item labelled Open ‘Before’ and defines its callback string (the command
which is executed when this menu item is selected) to be ph_openfile. (We will discuss the
meaning of this label and function shortly.) Note that in Matlab, double quotes are used to
produce single quotes inside a string that is already within single quotes.

The first 5 items of the menu are concerned with opening and saving image files and moving
them between two displayed images, labelled Before and After. We have chosen to display
two images at any given time, so that the ‘before’ and ‘after’ versions of the current image
processing operation can be seen simultaneously. This will be discussed below when we
consider the script file showimages.m.

The last 9 menu items, of the form

uimenu(uim,’label’,’Crop’,’call’,’mode=’’Init’’; ph_crop’,’separator’,’on’);

uimenu(uim,’label’,’Resize’,’call’,’mode=’’Init’’; ph_resize’);

:

provide all the main functions that we will be describing on this course, and each one calls
a different script file, labelled ph_... . All of these script files are controlled by a string
variable mode, which is set to Init when the function is called from this menu, but which
may take other values when it is called by other buttons, set up during its initialisation
phase. A separator bar is introduced above the first item in this part of the menu by setting
its parameter separator to be on.

Finally if the Before image xui does not already exist, there is an automatic call to the
script ph_openfile which prompts the user to select an input image file. Otherwise the
existing images are displayed by a call to showimages. Both of these scripts are described
below.

Before

50 100 150 200 250 300 350

50

100

150

200

250

300

350

After

50 100 150 200 250 300 350

50

100

150

200

250

300

350

0 50 100 150 200 250
0

1

2

3
x 10

4 Histogram of Before

0 50 100 150 200 250
0

1

2

3
x 10

4 Histogram of After

Fig. 1.1: Main window, figure(1), of the editor ph_edit.

Paper 8 Photo Editing - Section 1 7

% phedit.m - Photo Editing main program,

% for the Part IB Paper 8 Image Processing Option - Photo Editing.

%

% This script file opens the main figure window, sets up the GUI menu

% ’Image edit’ and gets an input image file.

% Script files are used for this main program and also for the next level

% of functionality (files ’ph_...’) in order to share the main workspace

% across all top-level functions.

%

% Nick Kingsbury, Cambridge University, 2006.

% Set up the main figure window to use most of a 1024x768 screen.

close all; % Close any open figures.

figure(1);

set(gcf,’position’,[80 30 940 670]); % Change for other screen sizes.

set(gcf,’numbertitle’,’off’,’name’,’IB Paper 8 - Photo Editor’); % Title

% Set up a blank prompt box and a control button in the main window.

promptbox = uicontrol(gcf,’style’,’text’,’pos’,[10 640 160 30]);

contrbutton = uicontrol(gcf,’pos’,[30 620 120 20]);

% Set up ’Photo-edit’ pull-down menu for fig 1.

uim = uimenu(’label’,’Photo-edit’);

% Add individual items to the menu.

uimenu(uim,’label’,’Open ’’Before’’’,’call’,’ph_openfile’);

uimenu(uim,’label’,’Reopen ’’Before’’’,...

’call’,’xui = imread(infile); showimages’);

uimenu(uim,’label’,’Save ’’After’’’,’call’,’ph_savefile’);

uimenu(uim,’label’,’Copy ’’Before’’ to ’’After’’’,...

’call’,’yui=xui; newbefore=0; showimages’);

uimenu(uim,’label’,’Copy ’’After’’ to ’’Before’’’,...

’call’,’xui=yui; newbefore=1; showimages’);

% Put a separator line above the next item.

uimenu(uim,’label’,’Crop’,’call’,’mode=’’Init’’; ph_crop’,’separator’,’on’);

uimenu(uim,’label’,’Resize’,’call’,’mode=’’Init’’; ph_resize’);

uimenu(uim,’label’,’Rotate’,’call’,’mode=’’Init’’; ph_rotate’);

uimenu(uim,’label’,’Morph’,’call’,’mode=’’Init’’; ph_morph’);

uimenu(uim,’label’,’Colour shift’,’call’,’mode=’’Init’’; ph_colourshift’);

uimenu(uim,’label’,’Lighting shift’,’call’,’mode=’’Init’’; ph_lightshift’);

uimenu(uim,’label’,’Add noise’,’call’,’mode=’’Init’’; ph_addnoise’);

uimenu(uim,’label’,’Filter’,’call’,’mode=’’Init’’; ph_filter’);

uimenu(uim,’label’,’Enhance’,’call’,’mode=’’Init’’; ph_enhance’);

% If xui does not exist, get an input image file; else show existing images.

if exist(’xui’)~=1, ph_openfile;

else newbefore=1; showimages;

end

Fig. 1.2: Photo Editor, main script file: ph_edit.m

8 Paper 8 Photo Editing - Section 1

1.3 Opening an input file: ph openfile

The script to open an input file interactively is shown in fig. 1.3. It is called by the Photo-edit
menu item Open ‘Before’ and also at the end of ph_edit.

The first two lines of code use the Matlab function uigetfile to open a GUI window so that
the user can select an input image file of type .tif or .jpg . The directory path and filename
are then concatenated into infile.

The Matlab function imread then reads the image file and saves it in xui, which is an
(m × n × 3) unsigned 8-bit integer (uint8) array. The 3 layers of the array store the red,
green and blue components of the (m× n)-pel colour image, using integers from 0 to 255 to
represent the intensity of each colour component.

If the output image yui does not exist, xui is copied to it.

Finally the two images xui and yui are displayed as Before and After by a call to
showimages. The variable newbefore is set to 1 so that showimages updates Before as
well as After.

% ph_openfile.m

%

% Script to open a file for editing and display it.

%

% Nick Kingsbury, Cambridge University, 2006.

% Prompt user for a tif or jpeg filename.

[Filename,PathName] = uigetfile({’*.tif; *.jpg’,’Image files (*.tif, *.jpg)’},...

’Open Image File’);

infile = [PathName Filename];

% Read the file into (m x n x 3) unsigned integer array xui (the ’Before’ image)

xui = imread(infile);

% Copy xui to yui (’After’) if yui does not already exist.

if exist(’yui’)~=1, yui = xui; end

% Display xui and yui.

newbefore=1; showimages

Fig. 1.3: Script to open an input file: ph_openfile.m

Paper 8 Photo Editing - Section 1 9

1.4 Saving an output file: ph savefile

The script to save an output file interactively is shown in fig. 1.4. It is called by the Photo-edit
menu item Save ‘After’ and also when the Close editor button is pressed.

The first 5 lines of code produce a candidate output filename outfile, based on the input
filename infile. They add _a to the input filename, unless it already has an ending like
this, in which case the final character is incremented to the next letter of the alphabet.

Then the Matlab function uiputfile is called to allow the user to confirm or change this
output filename or to cancel the save process. Finally, as long as FileName is non-zero,
the Matlab function imwrite saves the After image yui in the format defined by the file
extension (.tif or .jpg).

% ph_savefile.m

%

% Script to save the ’After’ image to a file.

%

% Nick Kingsbury, Cambridge University, 2006.

% Suggest an output filename which has ’_a’ appended to the input name.

% If ’_a’ is already appended, change this to ’_b’ etc.

[pathstr,name,ext,versn] = fileparts(infile);

if name(end-1)~=’_’, name = [name ’_a’];

else name(end) = name(end) + 1;

end

outfile = [pathstr ’\’ name ext];

% Prompt user for an output filename.

[FileName,PathName] = uiputfile(outfile,’Save Image File’);

% Write yui to the file if Filename is valid.

if FileName == 0, disp(’’’After’’ image has not been saved.’);

else imwrite(yui,[PathName FileName]);

end

Fig. 1.4: Script to save an output file: ph_savefile.m

10 Paper 8 Photo Editing - Section 1

1.5 Displaying the images: showimages

The script to display the images Before and After, together with their colour histograms,
in the main figure window is shown in fig. 1.5. Colour histograms are a useful way of seeing
whether a given image is using the full range of intensities and colours that are available,
and of quantifying the effects of colour and lighting shifts that can be used to correct for
poor exposure etc.

The code is divided into 4 main sections, to display the two image arrays, xui and yui, and
their two histograms. If the variable newbefore is zero, then only yui and its histogram
are updated, since it is assumed that xui has not changed. This results in a faster update,
especially for larger images (> 0.5 Mpel).

The first section of code (executed if newbefore is true/non-zero) uses 2 Matlab functions:
subplot to select axes in the upper left of the window; and image to plot the RGB-format
uint8 array xui to create the Before image. The following three lines force the pels to be
square, set the image title and force an immediate update of the display. The final two lines
of this section of code set the default prompt message and control-button function.

The second section of code is always executed and creates the After image in much the same
way as the first, in the upper right part of the window.

The third section of code calculates the histogram of xui, and plots it in the lower left of the
window. First, the array barcolour defines the colours used for the three histogram bars
in each bin, which represent the counts of red, green and blue pels within each bin range.
The red and green bar intensities are reduced from unity, so that they appear with a similar
subjective brightness to the blue bars.

To calculate separate histograms for RGB, the 3D array xui is reshaped into an (mn × 3)
matrix xh, in which each column contains all the pels of a given colour. The Matlab function
hist calculates the histograms of the 3 columns of xh (after conversion to data type double
from uint8), and then bar plots the histograms and provides a vector ha of handles to them.
The following for loop uses the handles to set the desired face and edge colour for each set of
bars. We have chosen the histogram bins to be 10 units wide, centred on 4.5, 14.5 · · · 254.5 .
Finally the title is defined and the end limits for the x-axis are set to 0 and 260 (otherwise
they would default to 0 and 300).

The fourth section of code calculates the histogram for yui, and plots it in the lower right
of the window, similarly to the code for the histogram of xui.

Lastly, the zoom function is enabled and, if there is a second figure window enabled (e.g.
for command buttons), it is brought to the foreground. Any additional figure windows are
closed.

Paper 8 Photo Editing - Section 1 11

% showimages.m

%

% Script to display the ’Before’ and ’After’ images and their histograms.

%

% Nick Kingsbury, Cambridge University, 2006.

figure(1)

% Display the ’Before’ image, if it has changed.

if newbefore,

h1 = subplot(’Position’,[0.03 0.35 0.45 0.55]);

xhandle = image(xui);

axis image;

title(’Before’,’FontSize’,14);

drawnow;

% Set the default prompt text and control button function.

set(promptbox,’str’,’Choose ’’Photo-edit’’ menu-function’);

set(contrbutton,’str’,’Close editor’,’call’,’ph_savefile; close all’);

end

% Display the ’After’ image.

h2 = subplot(’Position’,[0.53 0.35 0.45 0.55]);

yhandle = image(yui);

axis image;

title(’After’,’FontSize’,14);

drawnow;

% Define bar colours for the histograms (red, dark green, blue).

barcolour = [0.9 0 0; 0 0.7 0; 0 0 1];

% Display the ’Before’ histogram, if it has changed.

if newbefore,

h3 = subplot(’Position’,[0.03 0.05 0.45 0.2]);

sx = size(xui);

% Reshape image to 3 columns of RGB values.

xh = reshape(xui,prod(sx(1:2)),3);

[nb,hout] = hist(double(xh),4.5:10:254.5); % Calculate histogram.

ha = bar(hout,nb); % Plot histogram.

% Set bar colours and make edge lines the same colour.

for k=1:3,

set(ha(k),’FaceColor’,barcolour(k,:),’EdgeColor’,barcolour(k,:));

end

title(’Histogram of Before’,’FontSize’,14)

set(gca,’XLim’,[0 260]); % Set x-axis limits.

drawnow;

end

Fig. 1.5 continued overleaf.

12 Paper 8 Photo Editing - Section 1

% Display the ’After’ histogram.

h4 = subplot(’Position’,[0.53 0.05 0.45 0.2]);

sy = size(yui);

yh = reshape(yui,prod(sy(1:2)),3);

[nb,hout] = hist(double(yh),4.5:10:254.5);

hb = bar(hout,nb);

for k=1:3,

set(hb(k),’FaceColor’,barcolour(k,:),’EdgeColor’,barcolour(k,:));

end

title(’Histogram of After’,’FontSize’,14);

set(gca,’XLim’,[0 260]);

drawnow;

% Enable zooming of all the images.

zoom on;

% Display command figure (2), if one exists.

figs = findobj(’Type’,’figure’); % Find current figures.

if any(figs==2), figure(2); end % Display figure 2 as command figure.

if any(figs>2), close(figs(find(figs>2))); end % Close any extra figs.

Fig. 1.5: Script to show images: showimages.m

1.6 Other simple operations within ph edit

Before pursuing the more sophisticated processes in the lower part of the Photo-edit menu,
we briefly reconsider the top five menu options (above the separator bar). Referring back to
the middle part of fig. 1.2, we may summarise them as follows:

Open ‘Before’: achieved by a call to ph_openfile.

Reopen ‘Before’: reads again from the input file, and is achieved by the callback string

xui = imread(infile); showimages

Save ‘After’: achieved by a call to ph_savefile.

Copy ‘Before’ to ‘After’: achieved by the callback string

yui=xui; newbefore=0; showimages

Copy ‘After’ to ‘Before’: achieved by the callback string

xui=yui; newbefore=1; showimages

Paper 8 Photo Editing - Section 2 13

2 Cropping the image: ph crop

The script ph_crop is one of 9 script files which implement the main image processing
functions within the Photo editor. They all have a similar format, in which the operation
that is carried out when the script is called is controlled by mode, a string variable in the
main workspace. For clarity, all the available operations, relevant to a particular processing
function, are coded in the same script file and are selected by mode using the switch . . .
case syntax of the Matlab language. Matlab does not allow multiple scripts within a single
file, so this is probably the most straightforward way to achieve this effect.

Those familiar with the switch function in C/C++ should note the following comment from
the Matlab help page on switch:

Unlike the C language switch construct, the MATLAB switch does not fall through.

That is, switch executes only the first matching case, subsequent matching cases

do not execute. Therefore, break statements are not used.

Fig. 2.1 shows the script ph_crop. Its purpose is to crop the image to a particular size by
selecting a rectangle from within the Before image and keeping just the pels within the
crop limits. It creates an After image that is in general smaller than the Before image.
We provide two ways to define the crop rectangle: 1. by entering the min and max X and Y
coordinates of the rectangle; or 2. by selecting a rectangle with the cursor using the Matlab
zoom function.

In this file, there are 5 valid cases for mode, which are selected by the switch statement at
the start:

Init initialises the Crop function. It defines the control button in figure 1 to call the Get
zoom case (see below) and defines the prompt box accordingly. It opens a small
command figure (2) near the top of the screen and, in the for-loop, sets up 4 edit
boxes (with label boxes) for entering / displaying the crop limits numerically, and two
buttons to Crop now and Close the function.

Set limits is called whenever an edit box is used, in order to convert the text in the four
edit boxes to the values of the crop limits {Xmin Xmax Ymin Ymax}. The first for-
loop converts the text to numerical values. Then these values are bounded so that
{Xmin Ymin} lie between 1 and the size of the image minus 1, and {Xmax Ymax} lie
between {Xmin+1 Ymin+1} and the size of the image. The second for-loop writes the
bounded crop limits back into the edit boxes.

Get zoom is called when the control button in figure 1 is pressed. It gets the values of the
Before image axis limits, using the axis handle h1. It is expected that these would
have been set to the desired crop limits by the user operating the Matlab zoom mode
within the figure window with his mouse. Then the values are bounded and written to
the edit boxes as above.

14 Paper 8 Photo Editing - Section 2

Crop now is called when this button in the figure 2 window is pressed. It first checks the
edit boxes (as in Set Limits) to see if the crop limits have changed, and then performs
the crop with

yui = xui(croplim(3):croplim(4),croplim(1):croplim(2),:);

which selects the relevant part of each layer of xui and saves it in yui. Then the After
image is updated with showimages.

Close is called when this button in the figure 2 window is pressed. It closes figure(2) and
redisplays Before and After in figure(1) to show the uncropped and cropped images
respectively.

Paper 8 Photo Editing - Section 2 15

Command window, figure(2):

% ph_crop.m

%

% Script called by ’Crop’ menu item in photo editor.

%

% Nick Kingsbury, Cambridge University, 2006.

switch mode

case ’Init’

% Set up control button in the main window to get zoom coordinates.

figure(1);

set(promptbox,’str’,...

’Zoom in to desired crop window in ’’Before’’ and click this button:’);

set(contrbutton,’str’,’Get zoom coordinates’,...

’call’,’mode=’’Get zoom’’; ph_crop’);

% Open new fig window near top of screen for entering params.

figure(2);

set(gcf,’position’,[400 624 260 100]);

set(gcf,’numbertitle’,’off’,’name’,’Crop Image’);

% Set default crop limits, [xmin xmax ymin ymax].

if exist(’croplim’) ~= 1, croplim = round(axis(h1)); end

label = {’Xmin:’,’Xmax:’,’Ymin:’,’Ymax:’};

for k = 1:4

edbox(k) = uicontrol(gcf,’style’,’edit’,...

’string’,sprintf(’%d’,croplim(k)),’pos’,[70 90-20*k 60 20],...

’call’,’mode=’’Set limits’’; ph_crop’);

uicontrol(gcf,’style’,’text’,’str’,label{k},...

’pos’,[10 90-20*k 60 20]);

end

cropnow = uicontrol(gcf,’str’,’Crop now’,’pos’,[150 70 90 20],...

’call’,’mode=’’Crop now’’; ph_crop’);

closebtn = uicontrol(gcf,’str’,’Close’,’pos’,[180 10 60 20],...

’call’,’mode=’’Close’’; ph_crop’);

Fig. 2.1 continued overleaf.

16 Paper 8 Photo Editing - Section 2

case ’Set limits’

% Get crop limits from edbox(1:4).

for k=1:4,

croplim(k) = round(sscanf(get(edbox(k),’string’),’%f’));

end

% Apply bounds and rewrite them into edbox(1:4).

sx = size(xui);

croplim([1 3]) = min(max(croplim([1 3]),1),sx([2 1])-1);

croplim([2 4]) = max(min(croplim([2 4]),sx([2 1])),croplim([1 3])+1);

for k=1:4,

set(edbox(k),’string’,sprintf(’%d’,croplim(k)));

end

case ’Get zoom’

% Get crop limits from current axis limits of ’Before’ image.

croplim = round(axis(h1));

figure(2);

% Apply bounds and write them into edbox(1:4).

sx = size(xui);

croplim([1 3]) = min(max(croplim([1 3]),1),sx([2 1])-1);

croplim([2 4]) = max(min(croplim([2 4]),sx([2 1])),croplim([1 3])+1);

for k=1:4,

set(edbox(k),’string’,sprintf(’%d’,croplim(k)));

end

case ’Crop now’

% Update limits in case edbox(1:4) have changed.

for k=1:4,

croplim(k) = round(sscanf(get(edbox(k),’string’),’%f’));

end

sx = size(xui);

croplim([1 3]) = min(max(croplim([1 3]),1),sx([2 1])-1);

croplim([2 4]) = max(min(croplim([2 4]),sx([2 1])),croplim([1 3])+1);

for k=1:4,

set(edbox(k),’string’,sprintf(’%d’,croplim(k)));

end

% Crop ’Before’ image and place result in ’After’.

yui = xui(croplim(3):croplim(4),croplim(1):croplim(2),:);

newbefore=0;

showimages;

case ’Close’

close(2);

newbefore=1;

showimages;

end

Fig. 2.1: Script to crop image: ph_crop.m

Paper 8 Photo Editing - Section 3 17

3 Resizing the image: ph resize

The script ph_resize is concerned with resampling the image so that it becomes a different
size (i.e. uses more or fewer pixels). This can be useful if multiple images are to be combined
– perhaps in some sort of collage. In order to achieve resizing, we have written a function
im_resize() which, at its heart, uses the 2-D interpolation function of Matlab interp2().
This is described in section 3.2. First we look at the script which implements the user
interface.

3.1 The script ph resize

This script adopts the same general form as ph_crop. It again comprises five cases selected
by mode, as follows:

Init initialises the Resize function. It opens a command figure (2) near the top of the
screen and initialises the new size for the After image to be the same as the current
size (that of Before). The third element of newsize is a scale factor which relates the
new size to the current size, and this is intialised to unity. The first for-loop sets up
3 edit boxes (with label boxes) for entering / displaying the scale factor and/or new
X and Y sizes numerically, and the second loop inserts the sizes and scale factor in
the boxes. Then a text box is set up to remind the user of the current X and Y sizes.
Finally the buttons Resize now and Close are created.

Set size is called when the X size or Y size box is modified. The values from these two
boxes are saved in newsize(1:2). The values of newsize(1:2) are rewritten to these
boxes and the scale box is blanked (as it is not meaningful if the two sizes are set
independently).

Set scale is called when the Scale box is modified. Its value is saved in newsize(3), and
newsize(1:2) is updated with the new scale factor times the current size. These new
values are then rewritten to the relevant boxes.

Resize now is called when this button is pressed. The values of Y size and X size are
saved in newsize(1:2), and the image is resized by

yui = im_resize(xui,newsize(1:2));

Then showimages displays the resized image yui.

Close is called when this button is pressed. It closes figure(2) and redisplays Before and
After in figure(1) to show the current and resized images respectively.

18 Paper 8 Photo Editing - Section 3

Command window, figure(2):

% ph_resize.m

% Routine called by ’Resize’ menu item in photo editor.

%

% Nick Kingsbury, Cambridge University, March 2006.

switch mode

case ’Init’

% Open new fig window for entering params

figure(2);

set(gcf,’position’,[400 624 260 100]);

set(gcf,’numbertitle’,’off’,’name’,’Resize Image’);

sx = size(xui);

% Set default size to that of xui and default scale to 1.

if exist(’newsize’) ~= 1, newsize = [sx(1:2) 1]; end

label = {’Ysize:’,’Xsize:’,’Scale:’};

for k = 1:3

edbox(k) = uicontrol(gcf,’style’,’edit’,’pos’,[70 20*k-10 60 20]);

uicontrol(gcf,’style’,’text’,’str’,label{k},’pos’,[10 20*k-10 60 20]);

end

for k=1:2,

set(edbox(k),’string’,sprintf(’%d’,newsize(k)),...

’call’,’mode=’’Set size’’; ph_resize’);

end;

set(edbox(3),’string’,sprintf(’%.2f’,newsize(3)),...

’call’,’mode=’’Set scale’’; ph_resize’);

curvals=sprintf(’Current values: Xsize = %d; Ysize = %d’,sx(2),sx(1));

uicontrol(gcf,’style’,’text’,’str’,curvals,’pos’,[10 70 240 20]);

resizenow = uicontrol(gcf,’str’,’Resize now’,’pos’,[160 40 80 20],...

’call’,’mode=’’Resize now’’; ph_resize’);

closebtn = uicontrol(gcf,’str’,’Close’,’pos’,[180 10 60 20],...

’call’,’mode=’’Close’’; ph_resize’);

Fig. 3.1 continued overleaf.

Paper 8 Photo Editing - Section 3 19

case ’Set size’

% Update size directly from Xsize or Ysize boxes.

for k=1:2,

newsize(k)=round(sscanf(get(edbox(k),’string’),’%f’));

set(edbox(k),’string’,sprintf(’%d’,newsize(k)));

end;

set(edbox(3),’string’,’ ’); % Scale is meaningless in this case.

case ’Set scale’

% Update from Scale box.

newsize(3) = sscanf(get(edbox(3),’string’),’%f’);

newsize(1:2) = round(newsize(3) * sx(1:2));

for k=1:2,

set(edbox(k),’string’,sprintf(’%d’,newsize(k)));

end;

set(edbox(3),’string’,sprintf(’%.2f’,newsize(3)));

case ’Resize now’

% Get size from Xsize and Ysize boxes.

for k=1:2,

newsize(k)=round(sscanf(get(edbox(k),’string’),’%f’));

end;

yui = im_resize(xui,newsize(1:2));

newbefore = 0;

showimages;

case ’Close’

close(2);

newbefore = 1;

showimages;

end

Fig. 3.1: Script to resize image: ph_resize.m

3.2 The function im resize()

This function is similar to one called imresize in the Matlab Image Processing toolbox, but
we have tried to avoid using this toolbox as it can be expensive to purchase and the code
for standard Matlab functions can be rather complicated and difficult to understand.

Our function im_resize is shown in fig. 3.2. sx and sy are vectors representing the sizes of
the input and output 3-D image arrays xui and yui.

ri and ci are vectors which define the row and column indices of the sampling points for
the output image from within the input image. In other words, if the columns of a 4-pixel
wide input image contained pixels of unit width centred at

[0.5 1.5 2.5 3.5] (assuming the image edges are at 0.0 and 4.0)

20 Paper 8 Photo Editing - Section 3

and we wished to double the size of the image, then ci would need to be the following vector:

[0.25 0.75 1.25 1.75 2.25 2.75 3.25 3.75]

so that the 8 new locations are still uniformly spaced between the image edges at 0.0 and
4.0 and the pixels are now 0.5 units wide.

function yui = im_resize(xui,newsize)

% function yui = im_resize(xui,newsize)

% Resize xui to newsize(1:2).

%

% Nick Kingsbury, Cambridge University, 2006.

wh = waitbar(0,’Resizing image’);

% Calculate new image size

sx = size(xui);

if length(sx)==2, sx(3) = 1; end % Allow for xui being 2D.

sy = [newsize(1:2) sx(3)];

% ri and ci are the vectors of the row and column indices of the

% locations in xui from which each interpolated point in yui is to come.

% Original locations in xui are [0.5:(sx-0.5)].

% New locations are [0.5:(sy-0.5)] * (sx/sy).

ri = [0.5:sy(1)-0.5]’ * (sx(1)/sy(1));

ci = [0.5:sy(2)-0.5] * (sx(2)/sy(2));

% Correct for Matlab indexing from [1:sx] instead of [0.5:(sx-0.5)],

% and ensure that values in rj and cj lie within the range 1 to sx.

rj = max(min(ri+0.5,sx(1)),1);

cj = max(min(ci+0.5,sx(2)),1);

% Perform the resizing of each colour slice using interp2().

yui = uint8(zeros(sy));

for k = 1:sx(3),

yui(:,:,k) = uint8(interp2(double(xui(:,:,k)),cj,rj,’linear’) + 0.5);

waitbar(k/3); % Increment waitbar after each colour is done.

end

close(wh) % Close wait bar

return

Fig. 3.2: Function to perform resizing of an image: im_resize.m

Paper 8 Photo Editing - Section 3 21

Similarly to halve the size of the image, the pixels would be 2 units wide and ci would be

[1.0 3.0]

These calculations are performed for arbitrary size changes by the 2 lines of code

ri = [0.5:sy(1)-0.5]’ * (sx(1)/sy(1));

ci = [0.5:sy(2)-0.5] * (sx(2)/sy(2));

3.3 Bi-linear interpolation

To calculate pixels at locations that are different from the sampling points in the input
image, we normally use linear interpolation. In 1-D, if we have pixels xa and xb, sampled at
locations a and b, then the linearly interpolated pixel at location p (assumed to lie somewhere
between a and b) is given by:

xp = xa +
p− a

b− a
(xb − xa) =

(b− p)xa + (p− a)xb

b− a
(3.1)

A simple example of this is shown in fig. 3.3(a). The input data points are shown as circles.
The crosses show the interpolated points that would be produced if the number of points
were being doubled, using the above code for ri and ci.

In 2-D, the equivalent operation is bi-linear interpolation, in which the interpolated pixel at
{p, q} is given in terms of the four surrounding pixels

xa,c xa,d

xb,c xb,d

by

xp,q =
(d− q) [(b− p)xa,c + (p− a)xb,c] + (q − c) [(b− p)xa,d + (p− a)xb,d]

(b− a)(d− c)
(3.2)

This is equivalent to performing 1-D linear interpolation twice, first down the columns and
then across the rows (or vice-versa).

In our code, the bi-linear interpolation is performed in 2-D in the for-loop for each colour
slice k of xui, by the standard Matlab function interp2, using the statement

yui(:,:,k) = uint8(interp2(double(xui(:,:,k)),cj,rj,’linear’));

Prior to the for-loop, the vectors ri and ci are modified to become rj and cj by adding 0.5
and constraining their end points so that they do not lie outside of the ranges (1 to sx(1))
or (1 to sx(2)) respectively. We add 0.5 because interp2 assumes that the elements of
xui are centred at locations 1 ... sx(1) and 1 ... sx(2), rather than at the odd multiples
of 0.5 assumed previously. The end points are constrained because interp2 only works
correctly if all of the interpolated points lie within the array of input samples (it produces

22 Paper 8 Photo Editing - Section 3

NaN, Not-a-Number, for any points that do not). This constraining of the end points is
equivalent to assuming that the rows and columns of edge pixels in the input image are
repeated (mirrored) just outside of the image boundaries so that the curves are flat here.

In the above statement, the calls to uint8() and double() are needed because interp2()

works only with real (double) matrices whereas xui and yui are both unsigned integer 3-D
arrays in order to save memory space (only 3 bytes per pel instead of 24 bytes per pel).
We add 0.5 to the interpolated colour slices before converting back to integers. Hence the
uint8() conversion rounds the results to the nearest integers, and it also limits them to the
range 0 to 255.

Since the calculations in interp2 can take several seconds for large images, we use a wait-bar
to indicate progress. It is intialised at the start of the function, incremented as each colour
slice is interpolated, and closed at the end.

When interpolation is used in this way, it can have a smoothing effect on the data. For
example, if the image size is halved, then each new pixel is the average of the four pixels in
the input image that it replaces. Conversely if the image size is doubled, then each new pixel
is offset by 0.25 of the input pixel spacing from its nearest neighbour in the input image and
the four weights used in equation (3.2) become some permutation of { 9

16

3

16

3

16

1

16
}. This

produces a smoothing effect that can be demonstrated by zooming in on an image that has
been resized to twice its original size.

(a)

Linear

0 2 4 6 8 10 12 14 16 18 20
−0.2

0

0.2

0.4

0.6

0.8

1

(b)

Cubic

0 2 4 6 8 10 12 14 16 18 20
−0.2

0

0.2

0.4

0.6

0.8

1

Fig. 3.3: (a) Linear and (b) Cubic interpolation on a 20-element row vector (red circles).
The solid lines (green) show the continuously interpolated function, and the crosses (blue)
show the values obtained when the vector size is doubled.

Paper 8 Photo Editing - Section 3 23

3.4 Bi-cubic interpolation

There is a more complicated option than bi-linear interpolation. It is bi-cubic interpolation,
and it tends to produce a little less smoothing of the pixels when the image size is doubled.
However it requires about four times the computational cost, and so is seldom used for large
images. In 1-D, cubic interpolation to a point p uses 4 consecutive samples (instead of 2)
located at {a, b, c, d}, such that b ≤ p ≤ c, to produce an interpolated point

xp = 1

2
[−u(1− u)2xa + (1− u)(2 + 2u− 3u2)xb + u(1 + 4u− 3u2)xc − u2(1− u)xd]

where u =
p− b

c− b
(3.3)

so that u = 0 when p is at b, and u = 1 when p is at c. The sampling points {a, b, c, d}
should be uniformly spaced. The results of this method are shown in fig. 3.3(b).

Comparing this with linear interpolation, if we used the same notation equation (3.1) would
become

xp = (1− u)xb + uxc (3.4)

The cubic expression in equation (3.3) is designed to pass through the points xb when u = 0
and xc when u = 1 (as linear interpolation does), but it also includes the constraints that
the gradient, dxp/du, of the cubic curve is

xc − xa

2
when u = 0 and

xd − xb

2
when u = 1

These values ensure continuity of gradient, as well as value, through each sample point
(or knot point) on the interpolated curve, and give maximum smoothness when the input
points lie on a straight line. Note how, in fig. 3.3(b), the new samples (crosses) in the high-
frequency part of the waveform (samples 8 to 11) are spaced further apart and represent a
significantly larger amplitude of oscillation than the equivalent samples do in fig. 3.3(a) with
linear interpolation. This demonstrates that higher frequencies in the signal are attenuated
less by cubic than by linear interpolation. The frequency responses of the two types of
interpolation may be obtained by taking the Fourier transform of their impulse responses,
shown in fig. 3.3 by the portions of the solid line between samples 1 and 6 in each case. These
are shown in fig. 3.4, and we can see that the frequency response of cubic interpolation gives
greater flatness at low frequencies and provides higher gain than linear interpolation up to
about 0.65 of the sampling frequency of the input data. The improved smoothness of cubic
interpolation is the reason for the much lower amplitude of its frequency response sidelobes
above the sampling frequency.

Bi-cubic interpolation in 2-D is obtained by applying equation (3.3) in both the vertical and
horizontal directions to the 4×4 neighbourhood of pixels around xp,q, as was done for the bi-
linear case using a 2×2 neighbourhood above. This option may be selected by changing the
final argument of interp2 to ‘cubic’. The algebraic expression for xp,q gets very complicated
so we do not give it here.

24 Paper 8 Photo Editing - Section 3

0 0.5 1 1.5 2 2.5 3

0

0.2

0.4

0.6

0.8

1

Linear

Cubic

frequency / (sampling frequency of input data)

Fig. 3.4: Frequency responses of linear and cubic interpolation processes, obtained by taking
the Fourier transforms of their impulse responses.

Paper 8 Photo Editing - Section 4 25

4 Rotating the image: ph rotate

The script ph_rotate is concerned with rotating the image. This can either be used to
correct for gross rotations of the camera (e.g. through±90◦) or for small errors which result in
sloping horizons or non-true verticals etc. In order to achieve this, we have written a function
im_rotate() which, like im_resize(), uses the 2-D interpolation function interp2(). First
we look at the script which implements the user interface.

4.1 The script ph rotate

This script adopts the same general form as ph_crop and ph_resize. It again comprises
five cases selected by mode, although one case, Rotate, uses a separate switch statement
at the end so that it can be executed after one of the other cases has been executed before
it. The cases are:

Init initialises the Rotate function. It opens a command window, figure(2), near the top
of the screen and initialises the rotation variable θ to zero. It sets up 4 control buttons
for selecting rotations of −90◦, 0◦, 90◦ or 180◦ and a text bar above them defining the
direction of positive rotation. Then it defines a slider bar and an edit box (with their
labels) for setting other rotation angles, and a Close button as usual. There is no
‘Rotate now’ button, because the Rotate case is executed whenever any of the other
buttons are used.

Slider is called when the slider is activated to select θ. It reads the slider value and converts
it to θ in the range−180◦ . . . 180◦. It then sets mode equal toRotate so that theBefore
image is rotated by θ.

Edit box is called when the edit box is used to define θ numerically. It sets θ to the value
in the edit box and sets mode equal to Rotate, as above.

Close is called when this button is pressed. It closes figure(2) and redisplays Before and
After in figure(1) to show the current and rotated images respectively.

Rotate is called whenever any of the other cases or buttons redefine mode to be Rotate.
It updates the slider position and the edit box to show the current value of θ and then
performs the required rotation of xui to give yui, by a call to im_rotate(). Finally
showimages displays the rotated image yui.

26 Paper 8 Photo Editing - Section 4

Command window, figure(2):

% ph_rotate.m

% Routine called by ’Rotate’ menu item in photo editor.

%

% Nick Kingsbury, Cambridge University, 2006.

switch mode

case ’Init’

% Set up figure window for Rotate commands

figure(2);

set(gcf,’position’,[400 624 300 100]);

set(gcf,’numbertitle’,’off’,’name’,’Rotate Image’);

% Initialise rotation angle theta if it does not exist.

if exist(’theta’) ~= 1, theta = 0; end

% Buttons for multiples of 90 deg.

label = {’-90 deg’,’ 0 deg ’,’ 90 deg’,’180 deg’};

for u = 1:4,

btn(u) = uicontrol(gcf,’str’,label{u},’pos’,[60*u-30 60 60 20]);

end

set(btn(1),’call’,’theta=-90; mode=’’Rotate’’; ph_rotate’);

set(btn(2),’call’,’theta=0; mode=’’Rotate’’; ph_rotate’);

set(btn(3),’call’,’theta=90; mode=’’Rotate’’; ph_rotate’);

set(btn(4),’call’,’theta=180; mode=’’Rotate’’; ph_rotate’);

uicontrol(gcf,’style’,’text’,’str’,...

’Positive Rotation = Anti-Clockwise’,’pos’,[30 80 240 16]);

% Other buttons: slider, edit box, and close box.

slide = uicontrol(gcf,’style’,’slider’,’value’,theta/360+0.5,...

’sliderstep’,[1 10]/360,’pos’,[10 10 120 20],...

’call’,’mode=’’Slider’’; ph_rotate’);

uicontrol(gcf,’style’,’text’,’str’,’Adjust Rotation’,...

’pos’,[10 30 120 16]);

edbox = uicontrol(gcf,’style’,’edit’,’string’,sprintf(’%.2f’,theta),...

’pos’,[150 10 60 20],’call’,’mode=’’Edit box’’; ph_rotate’);

uicontrol(gcf,’style’,’text’,’str’,’Rotation (deg)’,...

’pos’,[140 30 80 16]);

closebtn = uicontrol(gcf,’str’,’Close’,’pos’,[230 10 60 20],...

’call’,’mode=’’Close’’; ph_rotate’);

Fig. 4.1 continued overleaf.

Paper 8 Photo Editing - Section 4 27

case ’Slider’

theta = (get(slide,’value’)-0.5)*360;

mode = ’Rotate’;

case ’Edit box’

theta = sscanf(get(edbox,’string’),’%f’);

mode = ’Rotate’;

case ’Close’

close(2);

newbefore = 1;

showimages;

end

switch mode

case ’Rotate’

% Update slider position and edit box value.

set(slide,’value’,theta/360+0.5);

set(edbox,’string’,sprintf(’%.2f’,theta));

% Rotate the image and display it.

yui = im_rotate(xui,theta);

newbefore=0;

showimages

end

Fig. 4.1: Script to rotate image: ph_rotate.m

4.2 The function im rotate()

This function is similar to one called imrotate in the Matlab Image Processing toolbox.
Our function im_rotate is shown in fig. 4.2.

The initial if statement checks whether θ is 90◦,−90◦, 180◦ or 0◦, and, if so, it uses a combi-
nation of the transpose operator and reversal of row or column indices to achieve the desired
rotation. A for-loop is needed when transpose is used, because each colour slice must be
transposed separately as a 2-D matrix.

For all other rotation angles, the more complex function, listed under else, is used. Again a
wait-bar is employed here, as this operation can be a bit slow.

First a rotation matrix R is formed as

R =

[

cos θ sin θ
− sin θ cos θ

]

(4.1)

28 Paper 8 Photo Editing - Section 4

Then the required size of the output image y is calculated so that it will be big enough to
accomodate the whole of the rotated image. If the input image is of size U × V pels, then
the output image must be of size P ×Q pels, where

P = U | cos θ |+ V | sin θ | and Q = U | sin θ |+ V | cos θ | (4.2)

This is calculated and rounded up to the next larger integer by

sy = ceil(sx(1:2) * abs(R));

The rotation needs to be performed about the centre of the image y, so we first form p and
q, two vectors that give the distance of each row / column of y from the image centre.

We now need to calculate the location [u, v] in xui from which each pel at [p, q] in y needs
to come. If u, v, p, q are all measured from the centre (point of rotation) of their respective
images, then

[u, v] = [p, q] RT (4.3)

(Note that u, p represent row indices, measured downwards, and v, q represent column indices,
measured from left to right.)

The following code lines calculate u and v for every point in image y:

u = cs*p*ones(1,sy(2)) + sn*ones(sy(1),1)*q + (sx(1)+1)/2;

v = cs*ones(sy(1),1)*q - sn*p*ones(1,sy(2)) + (sx(2)+1)/2;

The coordinates of the centre of image xui are added at the end of these two statements
so that u and v now are measured from the top left corner of xui in the normal way for
matrices, and are in the correct form to be used by interp2().

Next, the for-loop calculates the rotated colour slices using interp2() in the same way as in
im_resize. We need to use interpolation because each location [u, v] will in general not be
located precisely at a pixel location of xui. Again, for speed, we use bi-linear interpolation,
rather than bi-cubic. The statement

y(find(isnan(y))) = 128;

finds all pels outside the rotated image (which are returned as NaN by interp2()) and
colours them mid-grey (R=G=B=128). Then y is converted back to uint8 format and saved
in yui.

Paper 8 Photo Editing - Section 4 29

function yui = im_rotate(xui,theta)

% function yui = im_rotate(xui,theta)

% Rotate xui by theta degrees.

%

% Nick Kingsbury, Cambridge University, 2006.

% Use quick rotations if theta is a multiple of 90 deg.

if theta == 90,

for k = 1:3, yui(:,:,k) = xui(:,end:-1:1,k)’; end

elseif theta == -90,

for k = 1:3, yui(:,:,k) = xui(end:-1:1,:,k)’; end

elseif abs(theta) == 180,

yui = xui(end:-1:1,end:-1:1,:);

elseif theta == 0,

yui = xui;

else % Slower function for any angle.

wh = waitbar(0,’Rotating image’);

thrad = theta * pi / 180; % theta in radians

cs = cos(thrad);

sn = sin(thrad);

R = [cs sn; -sn cs];

sx = size(xui);

sy = ceil(sx(1:2) * abs(R)); % Size for rotated image y

% p and q are vectors of distances of each row/column of y

% from its centre.

p = [1:sy(1)]’ - (sy(1)+1)/2;

q = [1:sy(2)] - (sy(2)+1)/2;

% u and v are the matrices of the row and column indices of the

% locations in xui from which each interpolated point in y is to come.

u = cs*p*ones(1,sy(2)) + sn*ones(sy(1),1)*q + (sx(1)+1)/2;

v = cs*ones(sy(1),1)*q - sn*p*ones(1,sy(2)) + (sx(2)+1)/2;

% Perform the rotation using interp2().

yui = uint8(zeros(sy(1),sy(2),3));

for k = 1:3,

y = interp2(double(xui(:,:,k)),v,u,’linear’);

% Replace all points coming from outside of xui by mid grey.

y(find(isnan(y))) = 128;

yui(:,:,k) = uint8(y); % Convert output image back to uint8.

waitbar(k/3);

end

close(wh) % Close wait bar

end

return

Fig. 4.2: Function to perform rotating of an image: im_rotate.m

30 Paper 8 Photo Editing - Section 4

Paper 8 Photo Editing - Section 5 31

5 Morphing the image: ph morph

The script ph_morph is concerned with morphing the image, which means distorting parts
of it spatially. Full morphing often means gradually converting one image into another (e.g.
one face to another) by a series of local translations and mixings of the two images. This
is rather complex to do (and beyond the scope of this course unfortunately), so we have
implemented just the local translation part and apply it to a single image. We can still get
some interesting / amusing effects however.

Again we use the 2-D interpolation function interp2() to achieve smooth translations by
non-integer numbers of pels. It has been quite difficult to devise a simple user interface for
this function, but below is my attempt at this!

5.1 The script ph morph

This script adopts the same general form as previous ones but is more complicated. It
comprises 11 cases selected by mode.

The morphing is defined by sets ofControl Points in a matrix cp. Each row of cp comprises
5 elements, which define the 2 coordinates of the morph start point, the 2 coordinates of the
morph end point, and the morph radius. These are normally selected by 3 mouse clicks on
the start point, the end point and a point at the desired radius from the start point (which
can often conveniently also be the end point). The morphing is designed to shift pels near
the start point c0 = [u, v] to being near the end point c1 = [p, q] instead. It is necessary to
define how large a region of the image around the start point will be shifted with it, and this
is the function of the radius parameter r. We use a Gaussian ‘blob’ g(s, t), centred on c1
with standard deviation r, to define a smoothly varying field of pixel shift vectors as follows:

xshift(s, t) = g(s, t)[u− p, v − q] where g(s, t) = exp

(

−(s− p)2 + (t− q)2

2r2

)

(5.1)

Hence the pixel at a given location [s, t] in the output image will be interpolated from location
[s, t] + xshift(s, t) in the input image. Fig. 5.1 shows the shape of g(s, t).

−4
−2

0
2

4

−4
−2

0
2

4
0

0.5

1

st

Fig. 5.1: 2-D Gaussian function (‘blob’), g(s, t), centred on [0,0] with r = 1.

32 Paper 8 Photo Editing - Section 5

In order that the ordering of pixels in the input image is retained in the output image, it
is necessary for the gradient of xshift(s, t) to be greater than −1 everywhere (because it is
added to a vector with gradient = +1, and the overall gradient must remain positive to
preserve the pixel ordering). Now, for Gaussian functions:

d

dx
e−x2/2r2 = − x

r2
e−x2/2r2 and

d2

dx2
e−x2/2r2 = − 1

r2

(

1− x2

r2

)

e−x2/2r2 (5.2)

Hence the steepest gradient occurs when x = ±r and is e−0.5/r = 0.6065/r in magnitude.
This gets scaled by the displacement vector [u − p, v − q], so in theory r must be greater
than 0.6065 times the magnitude of this vector in order to avoid a negative overall gradient.
In practice for acceptable-looking output images, we find that r must be at least 0.8 times

the magnitude of the displacement vector; i.e. r ≥ 0.8
√

(u− p)2 + (v − q)2. This limit is
applied by the program whenever the selected r is less than 0.8 of the distance from c0 to
c1.

The user interface is designed so that new control points can be added to those already
selected, and as each set of control points is completed, the After image is updated to show
their effect. Sets of control points may be deleted from the list in reverse order of entry.
When a suitable morph has been generated, the user can request a movie sequence of 10
frames which show a gradual transition from Before to After, by pressing the Play button.
Once generated, the sequence can be played alternately backwards and forwards using the
Play again control button in figure(1). The sets of control points stored in cp may be saved
in a .mat file, using the Save button, and may be reloaded from this file using the Load
button. The buttons, created when ph_morh is intialised, are shown at the top of fig. 5.2.

The 11 cases in the code for ph_morh are:

Init initialises the Morph function. It opens a command figure (2) near the top of the
screen. First it sets up the 6 control buttons on the top row, it initialises the control
point matrix cp to be empty, and it sets up a status display above the 6 buttons to
show how many sets of control points are in cp. Then it sets up a slider and edit-box
to allow selection of individual movie frames, and a Close button as usual.

The variable newsequence is used to indicate when cp has been changed, and hence
when the Play button should cause a new sequence of frames to be calculated if it is
pressed.

New is called when this button is pressed. It sets cp to empty, the matrix of shift vectors
xshift = 0 and newsequence = 1. It then sets mode to Get points so that new
control points can be entered using the mouse.

Add is called when this button is pressed. It is similar to New except that cp and xshift

are not reset.

Delete is called when this button is pressed. It removes the final row of control points from
cp (until it is empty) and recalculates the morphed image in yui using the remaining
entries from cp. It then updates After in the display.

Play is called when this button is pressed. If newsequence is true (non-zero), we calculate
a new sequence of 10 frames, using a scale-factor of k−1

9
on the xshift vector field before

Paper 8 Photo Editing - Section 5 33

each morphing operation, so that the field gradually increases from zero to its full value
as k = 1 to 10. The frames are stored in the 4-D array yu. Then the prompt and
control-button in figure(1) are redefined to do Play again, and the sequence from yu

is displayed smoothly frame-by-frame by setting the Cdata property of yhandle (the
handle to After). The direction of Play is controlled by dk, which is initialised to 1
when the sequence is first calculated and then negated after each play.

Load is called when this button is pressed. It loads the control points, cp, from a user-
selected file, and then displays the resulting morphed version of Before as After.

Save is called when this button is pressed. It saves cp in a user-selected file.

Select frame is called when the slider is moved. It displays the frame from yu that corre-
sponds to the slider position k = 1 to 10. It also updates the edit box with the value
of k.

Enter frame is called when the edit box is used to define the frame number k numerically.
It sets k to the value in the edit box and displays frame k from yu. It also updates the
slider position to the new k.

Get points is called whenever any of the other cases or buttons redefine mode to be Get
points. It sets the figure(1) control button to the Terminate morph function and
then enters a while-loop to allow enrty of each new set of control points. The loop
can only be exited by a call to break. I have modified the standard Matlab graphical
input function ginput() to allow the cursor to be defined by the second argument, and
called this version ginputnk(). Hence we use crosshair, cross and circle as cursors
when entering the coordinates for c0, c1 and c2 respectively. The Gaussian radius r is
then obtained as r = |c2−c0|. After each point is entered, it is plotted and the prompt
is updated to request the next point. When all three have been entered, the new shift
field and morphed image are calculated by

[yui,xshift] = im_morph(xui,xshift,cp(end,:));

Then the After image and the control-point status message are updated. The loop is
terminated by pressing the figure(1) control button or the Return key on the keyboard,
which then updates the full display and brings figure(2) into view.

Close is called when this button is pressed. It closes figure(2) and updates figure(1).

34 Paper 8 Photo Editing - Section 5

Command window, figure(2):

%% ph_morph.m

%

% Script called by ’Morph’ menu item in photo editor.

% mode defines which block of code is executed. Valid modes are:

% ’init’,’new’,’add’,’delete’,’play’,’load’,’save’,’close’

%

% Nick Kingsbury, Cambridge University, March 2006.

switch mode

case ’Init’

% Set up figure window for Morph commands

figure(2);

set(gcf,’position’,[400 624 320 100]);

set(gcf,’numbertitle’,’off’,’name’,’Morph Image’);

% Define buttons

label = {’New’,’Add’,’Delete’,’Play’,’Load’,’Save’,...

’Select frame’,’Enter frame’,’Close’};

for u = 1:6,

btn(u) = uicontrol(gcf,’str’,label{u},’pos’,[50*u-40 60 50 20],...

’call’,sprintf(’mode=label{%d}; ph_morph’,u));

end

if exist(’cp’)~=1, cp = []; end % Initialise control-point matrix.

cpstatus = uicontrol(gcf,’style’,’text’,’pos’,[10 80 300 16],...

’str’,sprintf(’%d Control Points in store.’,size(cp,1)));

% Other buttons: slider, edit box, and close.

nframes = 10;

slide = uicontrol(gcf,’style’,’slider’,’value’,1,’pos’,[10 10 120 20],...

’sliderstep’,[1 3]/(nframes-1),’call’,’mode=label{7}; ph_morph’);

uicontrol(gcf,’style’,’text’,’str’,label{7},’pos’,[10 30 120 16]);

% set(slide,’call’,[’theta=(get(slide,’’value’’)-0.5)*360;’]);

edbox = uicontrol(gcf,’style’,’edit’,’string’,nframes,...

’pos’,[150 10 60 20],’call’,’mode=label{8}; ph_morph’);

uicontrol(gcf,’style’,’text’,’str’,label{8},’pos’,[140 30 80 16]);

closebtn = uicontrol(gcf,’str’,’Close’,’pos’,[250 10 60 20],...

’call’,’mode=’’Close’’; ph_morph’);

newsequence = 1;

Fig. 5.2 continued overleaf.

Paper 8 Photo Editing - Section 5 35

case ’New’

cp = [];

xshift = 0;

newsequence = 1;

yui = xui;

update_y;

mode=’Get points’;

case ’Add’

newsequence = 1;

update_y;

mode=’Get points’;

case ’Delete’

newsequence = 1;

% Remove most recent row of control points from cp,

% recalculate result of morph, and display it.

if size(cp,1) > 1,

cp = cp(1:(end-1),:);

[yui,xshift] = im_morph(xui,0,cp);

else

cp = [];

xshift = 0;

yui = xui;

end

set(cpstatus,’str’,sprintf(’%d Control Points in store.’,size(cp,1)));

update_y;

figure(2);

case ’Play’

figure(1);

set(yhandle,’Erasemode’,’none’);

% If required, calculate new sequence of frames for movie.

if newsequence,

yu = uint8(zeros([size(yui) nframes]));

for k=1:nframes,

waitstr = sprintf(’Morphing frame %d of %d’,k,nframes);

yui = im_morph(xui,((k-1)/(nframes-1))*xshift,[],waitstr);

yu(:,:,:,k) = yui;

set(yhandle,’Cdata’,yui);

drawnow;

end;

newsequence = 0;

dk = 1; % direction = ’forward’

end

% Set up prompt and control button.

set(promptbox,’str’,’Click button to morph back and forth’);

set(contrbutton,’str’,’Play again’,’call’,’mode=’’Play’’; ph_morph’);

Fig. 5.2 continued overleaf.

36 Paper 8 Photo Editing - Section 5

% Play movie.

for k=1:nframes,

yui = yu(:,:,:,k*dk + (nframes+1)*(1-dk)/2);

set(yhandle,’Cdata’,yui);

pause(0.05);

end;

dk = -dk; % swap direction for next ’play’.

case ’Load’

[Filename,PathName] = uigetfile({’*.mat’,’Morph cp files (*.mat)’},...

’Open CP File’);

% Prompt user for a tif or jpeg filename.

load([PathName Filename],’cp’)

[yui,xshift] = im_morph(xui,0,cp);

update_y;

newsequence = 1;

figure(2);

case ’Save’

% Prompt user for an output filename.

if ~exist(’cpfile’), cpfile = ’morph_cp.mat’; end

[FileName,PathName] = uiputfile(cpfile,’Save CP File’);

% Write yui to the file if Filename is valid.

if FileName == 0,

disp(’Control-point image has not been saved.’);

else

save([PathName FileName],’cp’);

end

case ’Select frame’

k = round(get(slide,’value’)*(nframes-1)) + 1;

set(edbox,’string’,sprintf(’%d’,k));

yui = yu(:,:,:,k);

set(yhandle,’Cdata’,yui,’Erasemode’,’none’);

case ’Enter frame’

k = max(min(round(sscanf(get(edbox,’string’),’%f’)),nframes),1);

set(slide,’value’,(k-1)/(nframes-1));

yui = yu(:,:,:,k);

set(yhandle,’Cdata’,yui,’Erasemode’,’none’);

end

Fig. 5.2 continued overleaf.

Paper 8 Photo Editing - Section 5 37

% The following modes can be called after the first group.

switch mode

case ’Get points’

set(contrbutton,’str’,’Terminate morph’,’call’,’ ’);

while 1,

set(promptbox,’str’,’Place cross on morph start point’);

c0 = ginputnk(1,’crosshair’);

if isempty(c0) | any(c0<0), break; end;

hold on; plot(c0(1),c0(2),’c+’); hold off;

set(promptbox,’str’,’Place cross on morph end point’);

c1 = ginputnk(1,’cross’);

if isempty(c1) | any(c1<0), break; end;

hold on; plot(c1(1),c1(2),’cx’); hold off;

set(promptbox,’str’,’Place circle at radius from start point’);

c2 = ginputnk(1,’circle’);

if isempty(c2) | any(c2<0), break; end;

rad = sqrt(sum((c2-c0).^2));

cp = [cp; c0 c1 rad];

[yui,xshift] = im_morph(xui,xshift,cp(end,:));

update_y;

set(cpstatus,’str’,sprintf(’%d Control Points in store.’,size(cp,1)));

end;

newbefore=1;

showimages;

figure(2);

case ’Close’

close(2);

newbefore = 1;

showimages;

end

Fig. 5.2: Script to morph image: ph_morph.m

38 Paper 8 Photo Editing - Section 5

5.2 The function im morph()

This function calculates the shift vector field xshift and the morphed output image yui,
from the input image xui and the control-point matrix cp. To save computation time
whenever an extra row is added to cp, the previous xshift may be supplied as an input
together with only the new final row of cp. Alternatively if the whole of cp is supplied, the
input xshift should be zero. The optional fourth input argument of the function is a string
that is displayed on the wait-bar, so that this can show status information such as the frame
number when 10 frames are being morphed for the Play option.

First we set up the wait-bar and some vectors which depend on the image size. Then, if cp
is not empty, the for-loop in nc computes the Gaussian blob g(s, t), corresponding to each
set of control points cp(nc,:) as in equation (5.1), and adds g(s, t) times (c1 − c0) to the
old value of xshift to get its new value. For convenience, we represent the two components
of xshift as the real and imaginary parts of a complex matrix.

Once xshift has been accumulated across all rows of cp, matrices of row and column indices,
ri and ci, are calculated from xshift. These are then used by the interp2() function in
the final for-loop to achieve the desired shifts of pixels, in the same way as was done in
im_rotate() with matrices v and u.

The wait-bar is incremented after each colour slice is morphed and is closed when the function
is completed.

Paper 8 Photo Editing - Section 5 39

function [yui,xshift] = im_morph(xui,xshift,cp,waitstr)

% function [yui,xshift] = im_morph(xui,xshift,cp,waitstr)

%

% Morph xui, so that pixels near control points cp(:,1:2) are moved to cp(:,3:4).

% The region of influence is a set of Gaussian blobs whose std dev = cp(:,5).

% xshift is the shift matrix that accumulates the effects of each blob.

% Set xshift = 0 on the first call to im_morph.

% waitstr is the displayed title of the wait bar.

%

% Nick Kingsbury, Cambridge University, 2006.

if nargin < 4, waitstr = ’Morphing image’; end

wh = waitbar(0,waitstr);

sx = size(xui);

s = [1:sx(1)].’;

t = [1:sx(2)];

o1 = ones(sx(1),1);

o2 = ones(1,sx(2));

% If extra morph points are given, add their effects to xshift.

if (nargin > 2) & (~isempty(cp)),

sc = size(cp); % cp must be of width 5.

for nc = 1:sc(1), % Loop for each pair of points to be morphed.

% Ensure that ri and ci have all elements still in monotonically increasing

% order in each direction, by increasing rad(nc) if necessary.

rad = max(cp(nc,5),0.8*sqrt(sum((cp(nc,3:4)-cp(nc,1:2)).^2)));

% Generate the Gaussian blob, centred on c1(nc,1:2) and of radius rad(nc).

gblob = exp(-(0.5/rad.^2)*((s-cp(nc,4)).^2*o2 + o1*(t-cp(nc,3)).^2));

% Scale the blob by (c0(nc,:)-c1(nc,:)) and add it to xshift.

xshift = xshift + gblob*(cp(nc,1) - cp(nc,3) + j*(cp(nc,2)-cp(nc,4)));

end

end

% ri and ci are the matrices of the row and column indices of the

% locations in xui from which each interpolated point in yui is to come.

ri = max(min(s*o2 + imag(xshift),sx(1)),1);

ci = max(min(o1*t + real(xshift),sx(2)),1);

% Perform the morphing using interp2().

yui = uint8(zeros(sx(1),sx(2),3));

for k = 1:3,

yui(:,:,k) = uint8(interp2(double(xui(:,:,k)),ci,ri,’linear’) + 0.5);

waitbar(k/3);

end

close(wh) % Close wait bar

return

Fig. 5.3: Function to perform morphing of an image: im_morph.m

40 Paper 8 Photo Editing - Section 5

Paper 8 Photo Editing - Section 6 41

6 Colour conversions and colour correction:

ph colourshift

The script ph_colourshift is concerned with adjusting colours within the image. To do
this we have designed a rather general interface which allows each colour component of the
complete image to be scaled (multiplied) by a factor or shifted in level using addition of an
offset value. The range of options here can be increased by working in a variety of colour
representations (i.e. not just RGB – red, green and blue components).

First we shall discuss three of these representations and then describe the script file which
uses them.

6.1 Colour Representations: RGB, YUV and HSV

RGB means Red Green Blue and is the normal colour space used in most modern comput-
ers and their video display cards. The two other commonly-used colour spaces that we will
consider are YUV (Luminance, Chrominance) and HSV (Hue, Saturation, Value).

Some common colours and their RGB, YUV and HSV values are listed below in table 6.1.
We will consider each colour space in turn.

Colour R G B Y U V H S V

Black 0 0 0 0 0 0 - - 0
Mid-grey 0.5 0.5 0.5 0.5 0 0 - 0 0.5
White 1 1 1 1 0 0 - 0 1
Red 1 0 0 0.3 −0.15 0.4375 0 1 1

Yellow 1 1 0 0.9 −0.45 0.0625 0.167 1 1
Green 0 1 0 0.6 −0.3 −0.375 0.333 1 1
Cyan 0 1 1 0.7 0.15 −0.4375 0.5 1 1
Blue 0 0 1 0.1 0.45 −0.0625 0.667 1 1

Magenta 1 0 1 0.4 0.3 0.375 0.833 1 1
Pink 1 0.5 0.5 0.65 −0.0750 0.2188 0 0.5 1

Pale green 0.5 1 0.5 0.8 −0.15 −0.1875 0.333 0.5 1
Pale blue 0.5 0.5 1 0.55 0.225 −0.0313 0.667 0.5 1

Table 6.1: Common colours and their values in RGB, YUV and HSV spaces.

The RGB Colour Space

The R, G and B components of an RGB image, represent the amplitude of each colour
component (red, green and blue) over a perceptually uniform range from 0 to 1, when the
components are real values. If the components are unsigned single-byte integers (uint8),
then they are scaled up by 255 to cover the range 0 to 255. Display screens are usually
adjusted so that, for any shade of grey, R = G = B.

The main problem with the RGB space is that each colour affects the apparent brightness
(luminance) by different amounts, and the human eye is much more sensitive to changes in
luminance than it is to changes in colour (chrominance). Usually most of the information

42 Paper 8 Photo Editing - Section 6

about a scene is contained in its luminance rather than its colour (chrominance). This is
why black-and-white (monochrome) reproduction was acceptable for photography and TV
for many years until technology provided colour reproduction at a sufficiently cheap price to
make its modest advantages worth having.

The YUV Colour Space

To allow us to take advantage of the different ways that the human visual system responds to
luminance and chrominance components of an image, we can represent it in the YUV colour
space. Here Y is the luminance (brightness) component, and U and V are two colour-
difference or chrominance components, indicating how far away from grey the colour is, in
the blue and red directions respectively.

The luminance (Y) of a pel may be obtained from its RGB components as:

Y = 0.3R + 0.6G+ 0.1B (6.1)

These coefficients are only approximate, and in other places values of 0.3, 0.59 and 0.11
are used. They have been selected according to the amount of each pure colour (R, G or
B) which is needed to produce a given amount of apparent brightness to the human visual
system. Hence green produces approximately twice as much apparent brightness as red, and
six times as much as blue!

When R = G = B the pel is always some shade of grey, and if Y = R = G = B in these
cases, the 3 coefficients in equation (6.1) must sum to unity (which they do).

When Y defines the luminance of a pel, its chrominance is defined by U and V such that:

U = 0.5(B − Y) = − 0.15R− 0.3G+ 0.45B

V = 0.625(R− Y) = 0.4375R− 0.375G− 0.0625B (6.2)

Note that grey pels will always have U = V = 0. The scale factors of 0.5 and 0.625 are the
largest multiples of 1

8
which ensure that U and V remain within the range ±0.5 when R,G

and B vary independently from 0 to 1.

The transformation between RGB and YUV colour spaces is linear and may be achieved by
multiplication by a 3× 3 matrix C or its inverse.

Hence

Y
U
V

 = C

R
G
B

 where C =

0.3 0.6 0.1
−0.15 −0.3 0.45
0.4375 −0.375 −0.0625

 (6.3)

and

R
G
B

 = C−1

Y
U
V

 where C−1 =

1 0 1.6
1 −0.3333 −0.8
1 2 0

 (6.4)

Paper 8 Photo Editing - Section 6 43

10
-1

10
0

10
1

10
2

10
0

10
1

10
2

10
3

Luminance

Red-Green Chrominance

Blue-Yellow Chrominance

Spatial frequency (cycles/degree)

N
o.

 o
f p

er
ce

iv
ab

le
 le

ve
ls

Contrast Sensitivity of the Eye

Fig 6.1: Sensitivity of the eye to luminance and chrominance intensity changes.

Fig 6.1 shows the sensitivity of the eye to luminance (Y) and chrominance (U,V) components
of images. The horizontal scale is spatial frequency, and represents the frequency of an
alternating pattern of parallel stripes with sinusoidally varying intensity. The vertical scale
is the contrast sensitivity of human vision, which is the ratio of the maximum visible range
of intensities to the minimum discernable peak-to-peak intensity variation at the specified
frequency.

In fig 1.1 we see that:

• The maximum sensitivity to Y occurs for spatial frequencies around 5 cycles / degree,
which corresponds to striped patterns with a half-period (stripe width) of 1.8 mm at
a distance of 1 m (∼ arm’s length).

• The eye has very little response above 100 cycles / degree, which corresponds to a stripe
width of about 0.1 mm at 1 m. A standard 19-inch computer display has a diagonal
dimension of 19×25.4 ≃ 480mm. If it has an image size of 1280×1024 pixels, then the
pixel edge size is 480/

√
12802 + 10242 = 0.29mm; so these displays still fall somewhat

short of the ideal for people with good eyesight. Despite the fact that modern flat-
panel displays have resolutions that are slightly coarser than is possible with the older
CRT technology, in general they are more pleasing and less tiring to view because the
pixel edges are so sharp and there is no flicker.

• The sensitivity to luminance drops off at low spatial frequencies, showing that we are
not very good at estimating absolute luminance levels as long as they do not change
with time – the luminance sensitivity to temporal fluctuations (flicker) does not fall
off at low spatial frequencies.

44 Paper 8 Photo Editing - Section 6

• The maximum chrominance sensitivity is much lower than the maximum luminance
sensitivity, with blue-yellow (U) sensitivity being about half of red-green (V) sensitivity
and about 1

6
of the maximum luminance sensitivity.

• The chrominance sensitivities fall off above 1 cycle / degree, requiring a much lower
spatial bandwidth than luminance.

We can now see why it is better to convert to the YUV domain before attempting bandwidth
critical tasks such as image compression and transmission of analogue colour TV signals.
The U and V components may be sampled at a lower rate than Y (due to their narrower
bandwidth) and may be quantised more coarsely (due to their lower contrast sensitivity).
This is done in most JPEG-encoded images and MPEG-encoded video (e.g. digital TV and
DVDs).

By adjusting the gain applied to the U and V components we can easily alter the amount
(or saturation) of colour in an image, and by adding an offset to U and V we can adjust the
colour balance (or tint). The brightness and contrast level of the image may be altered by
adjusting the offset or gain applied to the Y component.

The HSV Colour Space

HSV stands for Hue, Saturation, Value. It is a non-linear version of some of the YUV
ideas, except that it codes the chrominance information using polar coordinates (H,S) in-
stead of cartesians (U, V), and is formed as follows:

The Value component, V , of HSV indicates the amplitude of the largest component out of
R, G and B. It represents the approximate intensity (luminance) of the pixel.

The Saturation component, S, is the difference between the value V and the smallest of R,
G and B. It represents how far the colour of the pixel is from some shade of grey.

Hence

V = max(R,G,B) and S =
V −min(R,G,B)

V
(6.5)

The Hue component, H, is a function of the colour of the largest component, adjusted by
the other components as follows:

H =

G−B
6SV

if V = R and G ≥ B

B−R
6SV

+ 1

3
if V = G

R−G
6SV

+ 2

3
if V = B

G−B
6SV

+ 1 if V = R and G < B

(6.6)

Hence the colours {red, yellow, green, cyan, blue, magenta, red} form a ‘circle’ of hues from
0 to 1 (see table 6.1). Note that pink, pale green and pale blue have the same hues as red,
green and blue, but have a saturation of 0.5 instead of 1.0, because the pale colours are the
averages of the saturated colours and white.

The hue and saturation components of an HSV colour are effectively a polar coordinate
representation of the chrominance withH being angle/2π and S being the radius (normalised
by the value V).

Paper 8 Photo Editing - Section 6 45

The advantage of an image being in HSV form, is that the apparent brightness can be
controlled by V , the strength of colour by S, and the colour tint by H . This independent
control of brightness, saturation and tint is not possible with either RGB or YUV, although
YUV does allow control of the brightness with just Y . The disadvantage of HSV is that it is
relatively costly to do the conversion back to RGB. YUV is much better from this viewpoint,
as it is a linear inverse transformation that can be performed very efficiently in Matlab.

6.2 The script ph colourshift

This script adopts the same general form as previous ones. In this case it comprises 7 cases
selected by mode. The cases are:

Init initialises the Colour shift function. It opens a command figure (2) near the top of
the screen which can take one of three forms, shown at the top of fig. 6.2, depending
on which colour space is selected. It initialises the colour gains to unity and colour
offsets to zero and defines labels for the three colour-space modes. Then it defines the
6 sliders and edit boxes for the 3 gains and 3 offsets, and their titles. It also defines the
Reset, Swap and Close buttons. Finally, if the colour mode cmode is either YUV or
HSV, it converts the Before image into YUV or HSV format as required. Then mode

is set to Colour so that the sliders and boxes and their labels are all updated and a
new colour-corrected image is generated.

Slider is called when any of the sliders are activated. It reads the slider values and converts
them to cgain(1:3) in the range 0 . . . 2 and cofst(1:3) in the range −0.5 . . . 0.5.
It then sets mode equal to Colour so that the edit boxes are updated and colour
correction is applied.

Edit box is called when any of the edit boxes are used to define cgain and cofst numer-
ically. It sets these variables to the values in the edit boxes and sets mode equal to
Colour, so that the sliders are updated and colour correction is applied.

Reset is called when this button is pressed. It resets all the cgain components to unity
and all the cofst components to zero. It then sets mode equal to Colour, so that the
sliders and edit boxes are updated and any previous colour correction is removed.

Swap is called when this button is pressed. This increments cmode modulo 3, so that it
toggles between RGB, YUV and HSV colour modes, corresponding to values of 0, 1
and 2 respectively. It recalculates the YUV or HSV version of xui whenever one of
these modes is entered. cgain and cofst are reset to their default values whenever
cmode is changed, and again mode is set to Colour.

Close is called when this button is pressed. It closes figure 2 and redisplays Before and
After in figure 1 to show the current and rotated images respectively.

46 Paper 8 Photo Editing - Section 6

Colour is the main colour-correction part of this script. It is called whenever any of the
other cases or buttons redefine mode to be Colour. It updates the slider positions
and the edit boxes to show the current values of cgain and cofst and then performs
the required colour correction of xui to give yui. The correction is performed in the
relevant colour mode, and if that is YUV or HSV, then the result is converted back to
RGB in yui, which is displayed by update_y.

In RGB mode, the gain and offset corrections are applied directly to each colour slice
of xui using:

yui(:,:,k) = uint8(cgain(k)*double(xui(:,:,k)) + cofst(k)*256);

Any out-of-range values are automatically limited to 0 or 255 by uint8().

In YUV mode, the corrections are applied to xyuv, with different upper and lower
limits for Y (k = 1) and for U, V :

if k==1, yyuv(:,:,k) = max(min(xyuv(:,:,k)*cgain(k)+cofst(k),1),0);

else yyuv(:,:,k) = max(min(xyuv(:,:,k)*cgain(k)+cofst(k),0.5),-0.5);

end

The same applies in HSV mode to xhsv, except that the H parameter (k = 1) is now
evaluated modulo 1, rather than being limited by max and min, as the hue is a cyclic
quantity over the range 0 . . . 1. The code is therefore:

if k==1, yhsv(:,:,k) = mod(xhsv(:,:,k)*cgain(k)+cofst(k),1);

else yhsv(:,:,k) = max(min(xhsv(:,:,k)*cgain(k)+cofst(k),1),0);

end

The functions for converting between RGB and YUV or HSV are given in figs. 6.3 to 6.6.
From the discussions of colour conversions in section 6.1, their contents should be reasonably
obvious so we will not discuss them further. The exception is hsv2rgb(), which is rather
obscure; but it is not necessary to understand this function for this course – the function
rgb2hsv() defines the mapping to HSV, which is all we need to be able to understand the
HSV colour space.

The two HSV functions are in fact simplified versions of those supplied as standard Matlab
functions. The many alternative options for different input and output data types have been
stripped out, so they only work with 3-D colour image arrays of type double. This makes
them a lot more human-readable. As long as our versions are in the current workspace, they
will be used in preference to the standard Matlab ones with the same names.

Paper 8 Photo Editing - Section 6 47

RGB Command
window:

YUV Command
window:

HSV Command
window:

% ph_colourshift.m

% Routine called by ’Colour shift’ menu item in photo editor.

%

% Nick Kingsbury, Cambridge University, March 2006.

switch mode

case ’Init’

% Set up figure window for Colour Shift commands

figure(2);

set(gcf,’position’,[400 624 420 100]);

set(gcf,’numbertitle’,’off’,’name’,’Colour Shift’);

% Initialise colour correction gains and cmode, if they have not

% been used already. cmode = 0 for RGB, 1 for YUV, 2 for HSV.

if exist(’cgain’) ~= 1, cgain = [1 1 1]’; end

if exist(’cofst’) ~= 1, cofst = [0 0 0]’; end

if exist(’cmode’) ~= 1, cmode = 0; end

% Buttons for colour selection.

labelrgb = {’Red:’,’Green:’,’Blue:’};

labelyuv = {’Y (lum):’,’U (B-Y):’,’V (R-Y):’};

labelhsv = {’Hue:’,’Sat.:’,’Value:’};

Fig. 6.2 continued overleaf.

48 Paper 8 Photo Editing - Section 6

for k = 1:3,

slide(k) = uicontrol(gcf,’style’,’slider’,’sliderstep’,[1 10]/100,...

’pos’,[50 70-20*k 100 20],’call’,’mode=’’Slider’’; ph_colourshift’);

lab(k) = uicontrol(gcf,’style’,’text’,’pos’,[10 70-20*k 40 20]);

edbox(k) = uicontrol(gcf,’style’,’edit’,’pos’,[150 70-20*k 40 20],...

’call’,’mode=’’Edit box’’; ph_colourshift’);

slide(k+3) = uicontrol(gcf,’style’,’slider’,’sliderstep’,[1 10]/100,...

’pos’,[200 70-20*k 100 20],’call’,’mode=’’Slider’’; ph_colourshift’);

edbox(k+3) = uicontrol(gcf,’style’,’edit’,’pos’,[300 70-20*k 40 20],...

’call’,’mode=’’Edit box’’; ph_colourshift’);

end

uicontrol(gcf,’style’,’text’,’str’,’Adjust Colour Gain’,...

’pos’,[60 70 120 16]);

uicontrol(gcf,’style’,’text’,’str’,’Adjust Colour Offset’,...

’pos’,[210 70 120 16]);

% Other buttons: reset, swap and close box.

resetbal = uicontrol(gcf,’str’,’Reset’,’pos’,[350 70 60 20],...

’call’,’mode=’’Reset’’; ph_colourshift’);

swap = uicontrol(gcf,’str’,’YUV/HSV’,’pos’,[350 40 60 20],...

’call’,’mode=’’Swap’’; ph_colourshift’);

closebtn = uicontrol(gcf,’str’,’Close’,’pos’,[350 10 60 20],...

’call’,’mode=’’Close’’; ph_colourshift’);

% If YUV or HSV mode, pre-calculate xyuv or xhsv.

if cmode == 1,

xyuv=rgb2yuv(double(xui)/255);

yyuv = xyuv;

elseif cmode == 2,

xhsv=rgb2hsv(double(xui)/255);

yhsv = xhsv;

end

mode = ’Colour’;

case ’Slider’

for k=1:3,

cgain(k) = 2*get(slide(k),’value’);

cofst(k) = get(slide(k+3),’value’) - 0.5;

end

mode = ’Colour’;

case ’Edit box’

for k=1:3,

cgain(k) = min(max(sscanf(get(edbox(k),’string’),’%f’),0),2);

cofst(k) = min(max(sscanf(get(edbox(k+3),’string’),’%f’),-0.5),0.5);

end

mode = ’Colour’;

Fig. 6.2 continued overleaf.

Paper 8 Photo Editing - Section 6 49

case ’Reset’

cgain = [1 1 1]’;

cofst = [0 0 0]’;

mode = ’Colour’;

case ’Swap’

cmode = mod(cmode+1,3);

if cmode == 1,

xyuv=rgb2yuv(double(xui)/255);

yyuv = xyuv;

elseif cmode == 2,

xhsv=rgb2hsv(double(xui)/255);

yhsv = xhsv;

end

cgain = [1 1 1]’;

cofst = [0 0 0]’;

mode = ’Colour’;

case ’Close’

close(2);

newbefore = 1;

showimages;

end

switch mode

case ’Colour’

for k=1:3,

set(slide(k),’value’,0.5*cgain(k));

set(edbox(k),’string’,sprintf(’%.2f’,cgain(k)));

set(slide(k+3),’value’,cofst(k)+0.5);

set(edbox(k+3),’string’,sprintf(’%.2f’,cofst(k)));

end

if cmode == 0, % RGB

set(swap,’str’,’YUV/HSV’);

for k=1:3,

set(lab(k),’str’,labelrgb{k});

yui(:,:,k) = uint8(cgain(k)*double(xui(:,:,k)) + cofst(k)*256);

end

Fig. 6.2 continued overleaf.

50 Paper 8 Photo Editing - Section 6

elseif cmode == 1, % YUV

set(swap,’str’,’HSV/RGB’);

for k=1:3,

set(lab(k),’str’,labelyuv{k});

if k==1, yyuv(:,:,k) = max(min(xyuv(:,:,k)*cgain(k)+cofst(k),1),0);

else yyuv(:,:,k) = max(min(xyuv(:,:,k)*cgain(k)+cofst(k),0.5),-0.5);

end

end

yui = uint8(255*yuv2rgb(yyuv));

else % HSV

set(swap,’str’,’RGB/YUV’);

for k=1:3,

set(lab(k),’str’,labelhsv{k});

if k==1, yhsv(:,:,k) = mod(xhsv(:,:,k)*cgain(k)+cofst(k),1);

else yhsv(:,:,k) = max(min(xhsv(:,:,k)*cgain(k)+cofst(k),1),0);

end

end

yui = uint8(255*hsv2rgbnk(yhsv));

end

update_y;

figure(2);

end

Fig. 6.2: Script to adjust colour: ph_colourshift.m

Paper 8 Photo Editing - Section 6 51

function y = rgb2yuv(x)

%

% function y = rgb2yuv(x)

%

% Convert a 3-layer RGB image x into a 3-layer YUV image y.

% The rules are:

% Y = 0.3*R + 0.6*G + 0.1*B

% U = 0.5*(B - Y) = 0.45*B - 0.15*R - 0.3*G

% V = 0.625*(R - Y) = 0.4375*R - 0.375*G - 0.0625*B

%

% Nick Kingsbury, Cambridge University, 2006.

% Set up conversion matrix.

C = [0.3 0.6 0.1; -0.15 -0.3 0.45; 0.4375 -0.375 -0.0625];

% Convert each image layer into a column vector and multiply the 3 vectors by C’.

sx = size(x);

y = reshape(x,sx(1)*sx(2),sx(3)) * C’;

y = reshape(y,sx); % Convert y back to the shape of x.

return

Fig. 6.3: Function to convert RGB to YUV: rgb2yuv()

function y = yuv2rgb(x)

%

% function y = yuv2rgb(x)

%

% Convert a 3-layer YUV image x into a 3-layer RGB image y.

% The rules are:

% Y = 0.3*R + 0.6*G + 0.1*B

% U = 0.5*(B - Y) = 0.45*B - 0.15*R - 0.3*G

% V = 0.625*(R - Y) = 0.4375*R - 0.375*G - 0.0625*B

%

% Nick Kingsbury, Cambridge University, 2006.

% Set up conversion matrix.

C = [0.3 0.6 0.1; -0.15 -0.3 0.45; 0.4375 -0.375 -0.0625];

Ci = inv(C); % Invert the matrix.

% Convert each image layer into a column vector and multiply the 3 vectors by C’.

sx = size(x);

y = reshape(x,sx(1)*sx(2),sx(3)) * Ci’;

y = reshape(y,sx); % Convert y back to the shape of x.

return

Fig. 6.4: Function to convert YUV to RGB: yuv2rgb()

52 Paper 8 Photo Editing - Section 6

function y = rgb2hsv(x)

%RGB2HSV Convert red-green-blue colors to hue-saturation-value.

% x and y must be 3-D colour image arrays, covering the range 0 to 1.

%

% Simplified from the standard matlab function by

% Nick Kingsbury, Cambridge University, 2006.

% Get colour slices

r = x(:,:,1); g = x(:,:,2); b = x(:,:,3);

siz = size(r);

r = r(:); g = g(:); b = b(:);

% Compute v and unnormalised s.

v = max(max(r,g),b);

s = zeros(size(v));

h = zeros(size(v));

s = (v - min(min(r,g),b));

% Compute h.

z = ~s; % z is used to set h=0 when s=0.

s = s + z;

k = find(r == v);

h(k) = (g(k) - b(k))./s(k);

k = find(g == v);

h(k) = 2 + (b(k) - r(k))./s(k);

k = find(b == v);

h(k) = 4 + (r(k) - g(k))./s(k);

h = h/6;

k = find(h < 0);

h(k) = h(k) + 1; % Adjust negative h to be between 0 and 1.

h=(~z).*h; % Set h=0 if s=0.

% Normalise s with v, unless v=0, when we make s=0 also.

k = find(v);

s(k) = (~z(k)).*s(k)./v(k);

k = find(~v);

s(k) = 0;

% Assemble h in correct 3D format.

h = reshape(h,siz);

s = reshape(s,siz);

v = reshape(v,siz);

y = cat(3,h,s,v);

return

Fig. 6.5: Function to convert RGB to HSV: rgb2hsv()

Paper 8 Photo Editing - Section 6 53

function y = hsv2rgb(x)

%HSV2RGB Convert hue-saturation-value colors to red-green-blue.

% x and y must be 3-D colour image arrays, covering the range 0 to 1.

%

% Simplified from the standard matlab function by

% Nick Kingsbury, Cambridge University, 2006.

% Get HSV slices.

h = x(:,:,1); s = x(:,:,2); v = x(:,:,3);

siz = size(h);

s = s(:); v = v(:);

h = 6*h(:); % Scale up hue to cover the range 0 to 6.

k = fix(h-6*eps); % Measure integer and fractional parts of hue.

f = h-k;

t = 1-s;

n = 1-s.*f;

p = 1-(s.*(1-f));

e = ones(size(h));

k0 = double(k==0); % These 6 lines increase speed over the Matlab hsv2rgb().

k1 = double(k==1);

k2 = double(k==2);

k3 = double(k==3);

k4 = double(k==4);

k5 = double(k==5);

% Compute r,g,b from h and s only.

r = k0.*e + k1.*n + k2.*t + k3.*t + k4.*p + k5.*e;

g = k0.*p + k1.*e + k2.*e + k3.*n + k4.*t + k5.*t;

b = k0.*t + k1.*t + k2.*p + k3.*1 + k4.*1 + k5.*n;

% Correct r,g,b for v component using f, and assemble y.

f = v./max([r(:);g(:);b(:)]);

y = zeros([siz,3]);

y(:,:,1) = reshape(f.*r,siz);

y(:,:,2) = reshape(f.*g,siz);

y(:,:,3) = reshape(f.*b,siz);

return

Fig. 6.6: Function to convert HSV to RGB: hsv2rgb()

54 Paper 8 Photo Editing - Section 6

Paper 8 Photo Editing - Section 7 55

7 Histograms and Lighting correction: ph lightshift

The script ph_lightshift allows us to correct for lighting and exposure problems in
images. It operates by adjusting the gain applied to all three components (R, G and B) of
each pixel. This avoids any change of colour (hue) without the complexity of working in a
non-RGB colour space. We generate a gain map, equal in size to the image, such that if a
pixel intensity needs to be increased then a gain of greater than unity is used, and if it needs
to be reduced we use a gain of less than unity.

7.1 Lighting correction methods

If we examine the histogram of a poorly lit image, we will usually find that some pixel
intensities are used much more frequently than others. The lighting problems may often be
significantly reduced if an intensity mapping process is employed that tends to make more
uniform use of all intensity levels. One way of achieving this is histogram equalisation.

It may be shown that, for a monochrome imaging system with intensity levels from 0 to
255, that the histogram will be approximately equalised if the following mapping of intensity
levels is used:

yk =
k
∑

i=0

255 ni

N
where N =

255
∑

i=0

ni (7.1)

and each pixel of level k is replaced by one of level yk, and ni is the number of pixels in the
image with level i (i.e. the set of ni, i = 0 . . . 255, forms the histogram of the image). Note
that in order to apply equalisation to colour images, we need to calculate the histogram of
the luminance image (using equation (6.1)) to obtain the values for ni and then scale the
R, G and B components of any given pixel by yk/k where k is the luminance value for that
pixel. This preserves the hue and saturation of the pixel while changing its luminance.

In our editor, equalisation is achieved by pressing the button Hist equal in the Lighting
Shift window.

While this technique can be very effective at bringing out detail in regions of the image
where there are many pixels of similar luminance levels (since ni is relatively large at these
luminance levels), it also tends to lose resolution at other levels where there are few pixels
and ni is small. In our Genoa image, this can be seen as a loss of contrast in areas such as
around the buildings near the sea. Hence we need something more natural looking.

Suppose we have an image with areas that are too dark. To enhance these regions we must
apply a gain greater than unity to them, but we must also avoid saturating the pixels in
bright areas. Gamma correction is one method of achieving this. It uses a non-linear
mapping of the form:

yk = 255 (k/255)1/γ (7.2)

If γ = 1, this gives yk = k (i.e. no correction), but if γ > 1 then low luminance pixels are
scaled up while those with higher intensities are left almost unchanged (since y255 = 255 for
any value of γ). Fig. 7.1a shows plots of yk against luminance k for γ = 0.5, 1, 1.2, 1.4, 1.6, 1.8
and 2. As before, in practice R, G and B are scaled by yk/k to preserve colours correctly.
The value of γ can be selected by the user (with the Gamma slider in figure(2)) so that

56 Paper 8 Photo Editing - Section 7

approximate histogram equalisation is achieved without the severe loss of contrast achieved
by the true histogram equalisation curve (shown as a thin line in fig. 7.1b).

Finally we consider a more flexible technique for lighting correction, which allows shadows,
mid-tones and highlights to be treated in different ways. The concept is similar to gamma
correction, except that a more flexible shape is achieved by specifying the locations of knot-
points on a piece-wise linear curve. Fig. 7.1b shows such a curve, with circles showing the
knot-points. The elements of the variable light define how far (as a proportion of 256)
each of the three knot-points at 64, 128 and 192 are raised or lowered. We see how the
true histogram equalisation curve can be approximated by the piece-wise linear one, while
avoiding the extreme reductions in gradient that caused the loss of contrast for mid-range
luminance levels.

One further trick to improve the appearance of the corrected image, is to base the correction
gain on values of k which correspond to the luminance of a blurred version of the input
image. This ensures that the gain only fluctuates smoothly over the image, and therefore
tends to preserve any local intensity variations of the input image, even when the correction
curve is operating in a fairly low-gradient region. The one disadvantage of this is that it can
produce a (slight) bright halo around dark objects. We find that a 2-D Gaussian blurring
filter (see section 8 of this course) with breadth parameter b (also known as standard deviation
or half-width) of between 2 and 5 pels gives good results. We have chosen a value of b = 4
pels for this parameter.

(a) Gamma Correction

0 50 100 150 200 250
0

50

100

150

200

250

1

gamma = 2

gamma = 0.5

k

yk

(b) Piecewise Linear Correction

0 50 100 150 200 250
0

50

100

150

200

250

light = [0.2 0.1 −0.05]

k

yk

Fig. 7.1: Gamma and piecewise linear correction methods, based on adjusting pixels with
luminance k to have luminance yk. The thin line in (b) is the histogram equalisation curve
for the Genoa image.

Paper 8 Photo Editing - Section 7 57

7.2 The script ph lightshift

This script adopts the same general form as the others. It comprises 7 cases selected by
mode, one of which, Lighting, uses a separate switch statement at the end so that it can
be executed after other cases have been executed before it. The cases are:

Init initialises the Lighting shift function. It opens a command figure (2) near the top of
the screen which takes the form shown at the top of fig. 7.2. It initialises the correction
offsets light to zero and cgamma to unity. It then sets up the four sliders and their
associated edit boxes and labels, followed by the buttons for Reset, Hist equal and
Close. Then mode is set to Lighting so that the sliders and boxes and their labels are
all updated and a new lighting-corrected image is generated.

Slider is called when any of the sliders are activated. It reads the slider values and converts
them to light(1:3) in the range −0.25 · · ·0.25 and cgamma in the range 0.1 · · ·2. It
then sets mode equal to Lighting so that the edit boxes are updated and lighting
correction is applied.

Edit box is called when any of the edit boxes are used to define light and cgamma numer-
ically. It sets these variables to the values in the edit boxes and sets mode equal to
Lighting.

Reset is called when this button is pressed. It resets light(1:3) to zero and cgamma to
unity. It then sets mode equal to Lighting so that the edit boxes are updated and yui

equals xui.

Hist equal is called when this button is pressed. It performs yui = im_histeq(xui); and
displays the result using update_y.

Close is called when this button is pressed. It closes figure 2 and redisplays Before and
After in figure 1 to show the current and corrected images respectively.

Lighting is called whenever any of the other cases or buttons redefine mode to be Lighting.
It updates the slider positions and the edit boxes to show the current values of light
and cgamma. It then performs the required lighting correction of xui to give yui, by a
call to im_lighting() and displays the result.

58 Paper 8 Photo Editing - Section 7

Command window
figure(2):

% ph_lightshift.m

% Routine called by ’Lighting shift’ menu item in photo editor.

%

% Nick Kingsbury, Cambridge University, 2006.

switch mode

case ’Init’

% Set up figure window for Rotate commands

figure;

set(gcf,’position’,[400 610 410 120]);

set(gcf,’numbertitle’,’off’,’name’,’Lighting Shift’);

% Initialise colour correction gains

if exist(’light’) ~= 1, light = [0;0;0]; end

if exist(’cgamma’) ~= 1, cgamma = 1; end

% Buttons for different lighting ranges.

label = {’Shadows:’,’Mid tones:’,’Highlights:’,’Gamma:’};

for k = 1:4,

if k < 4, ypos = 95 - 20*k; xpos = 40*k - 30;

else ypos = 10; xpos = 10;

end

slide(k) = uicontrol(gcf,’style’,’slider’,’sliderstep’,[1 10]/100,...

’pos’,[xpos+60 ypos 120 20],’call’,’mode=’’Slider’’; ph_lightshift’);

uicontrol(gcf,’style’,’text’,’str’,label{k},’pos’,[xpos ypos 60 20]);

edbox(k) = uicontrol(gcf,’style’,’edit’,’pos’,[xpos+180 ypos 60 20],...

’call’,’mode=’’Edit box’’; ph_lightshift’);

end

uicontrol(gcf,’style’,’text’,’str’,’Adjust Lighting Balance’,...

’pos’,[70 95 120 16]);

% Other buttons: reset and close box.

resetbtn = uicontrol(gcf,’str’,’Reset’,’pos’,[340 70 60 20],...

’call’,’mode=’’Reset’’; ph_lightshift’);

histequ = uicontrol(gcf,’str’,’Hist equal’,’pos’,[340 40 60 20],...

’call’,’mode=’’Hist equal’’; ph_lightshift’);

closebtn = uicontrol(gcf,’str’,’Close’,’pos’,[340 10 60 20],...

’call’,’mode=’’Close’’; ph_lightshift’);

mode = ’Lighting’;

Fig. 7.2 continued overleaf.

Paper 8 Photo Editing - Section 7 59

case ’Slider’

for k = 1:3,

light(k) = 0.5*(get(slide(k),’value’) - 0.5);

set(edbox(k),’string’,sprintf(’%.3f’,light(k)));

end

cgamma = max(2*get(slide(4),’value’),0.1);

set(edbox(4),’string’,sprintf(’%.2f’,cgamma));

mode = ’Lighting’;

case ’Edit box’

for k = 1:3,

light(k) = sscanf(get(edbox(k),’string’),’%f’);

set(slide(k),’value’,2*light(k) + 0.5);

end

cgamma = max(sscanf(get(edbox(4),’string’),’%f’),0.1);

set(slide(4),’value’,0.5*cgamma);

mode = ’Lighting’;

case ’Reset’

light = [0;0;0];

cgamma = 1;

mode=’Lighting’;

case ’Hist equal’

yui = im_histeq(xui);

update_y;

figure(2);

case ’Close’

close(2);

newbefore = 1;

showimages;

end

switch mode

case ’Lighting’

% Perform lighting correction.

if all(light == 0) & cgamma == 1, yui = xui;

else [yui,light] = im_lighting(xui,light,cgamma);

end

% Update sliders and edit boxes from light and replot yui data.

for k=1:3,

set(slide(k),’value’,2*light(k) + 0.5);

set(edbox(k),’string’,sprintf(’%.3f’,light(k)));

end;

set(slide(4),’value’,0.5*cgamma);

set(edbox(4),’string’,sprintf(’%.2f’,cgamma));

update_y;

figure(2);

end

Fig. 7.2: Script to perform lighting correction: ph_lightshift.m

60 Paper 8 Photo Editing - Section 7

7.3 The function im histeq()

This function performs histogram equalisation of a colour image and is shown in fig. 7.3. It is
similar in function to the Matlab function histeq(), which is part of the Image Processing
toolbox. However our function only deals with 3-D colour input and output data of type
uint8, and so is much simpler.

It calculates histL, the histogram of the luminance L of xui, which it then converts to yk

using equation (7.1). Then gain is calculated from yk/k at each pel and is applied to each
colour slice of xui to produce yui.

function yui = im_histeq(xui)

% function yui = im_histeq(xui)

%

% Perform histogram equalisation on xui.

%

% Nick Kingsbury, Cambridge University, 2006.

wh = waitbar(1/5,’Equalising histogram’);

% Calculate intensity image and its 256-bin histogam.

L = 0.3*double(xui(:,:,1)) + 0.6*double(xui(:,:,2)) + 0.1*double(xui(:,:,3)) + 1;

histL = hist(L(:),[1:256]);

waitbar(2/5);

% Uncomment the next line to reduce the severity of the equalisation

% by adding a constant to all histogram bins.

% histL = histL + size(xui,1)*size(xui,2)/256;

yk = cumsum(255*histL/sum(histL));

% save histeq yk histL

gain = yk(round(L)) ./ L;

yui = uint8(zeros(size(xui)));

for k = 1:3, % Apply gain matrix to each colour slice.

waitbar((k+2)/5);

yui(:,:,k) = uint8(gain .* double(xui(:,:,k)) + 0.5);

end

close(wh) % Close wait bar

return

Fig. 7.3: Function to perform histogram equalisation of an image: im_histeq.m

Paper 8 Photo Editing - Section 7 61

7.4 The function im lighting()

This function, shown in fig. 7.4, performs both gamma correction and piece-wise linear
correction of pixel intensities. The final gain applied to each pixel is the product of the gain
from gamma correction and the gain from piece-wise linear correction.

First the luminance image L1 is calculated, and then blurred by a 2-D Gaussian filter to
produce L. The blurring is achieved by applying a 1-D filter twice, first down the columns
of L1, and then down the columns of the transposed result. The column filtering function
colfilter is used for this and is discussed in the next section. The x and y coordinates
of the knot-points, tx and ty, are calculated from the 3 elements of the input parameter
light. They are adjusted so that the gradient of the correction curve is always positive. The
three sliders for shadows, mid-tones and highlights define light(1:3) and the adjustment
for positive gradient always ensures that the sliders (which are staggered) do not ‘overtake’
each other.

In order to calculate the gain functions from piece-wise linear law, we first calculate grad(1:4),
the gradient of the four segments of the piece-wise linear function. Then we find which pels
belong to each segment (sets s0 to s3), and calculate the values of gain for all pels within
each set using a linear interpolation based on the gradient and start knot-point of that
segment. The blurred luminance image L is used for this.

After this the gamma correction gain is combined with the previous gain matrix. For gamma
correction, we use the unblurred luminance image L1, because this gives less visible noise in
the enhanced dark regions of the image.

Finally in the for-loop, the gain matrix is applied to the 3 colour slices of xui to produce
the lighting-corrected image yui.

function [yui,light] = im_lighting(xui,light,cgamma)

% Adjust lighting of xui using light.

% The 3 elements of light define deviations of a piecewise-linear

% lighting correction function from unit gradient as follows:

% tx = [64 128 192]’; % Intensity points in xui.

% ty = tx + 256 * light; % Equivalent intensities in yui.

% cgamma defines gamma correction, and should be 1 for no effect.

%

% Nick Kingsbury, Cambridge University, 2006.

wh = waitbar(0,’Relighting image’);

sx = size(xui);

% Calculate luminance image.

L1 = 0.3*double(xui(:,:,1)) + 0.6*double(xui(:,:,2)) + 0.1*double(xui(:,:,3));

Fig. 7.4 continued overleaf.

62 Paper 8 Photo Editing - Section 7

% Blur the luminance image, so as to give a smooth segmentation of xui

% into shadows, mid-tones and highlights.

h = gaussian(4);

waitbar(1/5);

L = colfilter(colfilter(L1,h)’,h)’;

waitbar(2/5);

% figure(3);image(uint8(L));colormap(gray(256));pause(0.1)

% Define the correction function to give equivalent intensity points

% in xui and yui.

tx = [64 128 192]’; % Intensity points in xui.

ty = tx + 256 * light; % Equivalent intensities in yui.

ty(2) = max(ty(2),ty(1)+1); % Ensure gradient is always positive.

ty(3) = max(ty(3),ty(2)+1);

if ty(3)>254, error(’Inconsistent lighting vector’); end

light = (ty - tx)/256; % Recalculate light to allow for limiting.

% Calculate gradients of the 4 segments of the correction function.

grad = ([ty;255] - [0;ty])./([tx;255] - [0;tx]);

% Find pixels in each segment of the correction function.

s0 = find(L < tx(1));

s1 = find(L >= tx(1) & L < tx(2));

s2 = find(L >= tx(2) & L < tx(3));

s3 = find(L >= tx(3));

% Calculate gain to be applied to each pixel.

gain = ones(sx(1:2));

gain(s0) = grad(1);

gain(s1) = (ty(1) + (L(s1)-tx(1))*grad(2))./L(s1);

gain(s2) = (ty(2) + (L(s2)-tx(2))*grad(3))./L(s2);

gain(s3) = (ty(3) + (L(s3)-tx(3))*grad(4))./L(s3);

% Apply gamma correction to the gains, based on the luminance image L1.

gain = gain .* ((max(L1,1)/255).^(1/cgamma - 1));

% figure(4);image(uint8(gain*64));colormap(gray(256));pause(0.1)

% Perform the relighting using the matrix, gain.

yui = xui;

for k = 1:3,

waitbar((k+2)/5);

yui(:,:,k) = uint8(double(xui(:,:,k)) .* gain + 0.5);

end

close(wh) % Close wait bar

return

Fig. 7.4: Function to perform lighting correction of an image: im_lighting.m

Paper 8 Photo Editing - Section 8 63

8 Filtering the image: ph filter

The script ph_filter is concerned with filtering the image, using lowpass or highpass filters
or some combination of the two.

Before looking at the code of ph_filter, we shall look at some of the characteristics of the
two types of filter and some of the maths that governs this.

8.1 Lowpass Filtering with Gaussian filters

Lowpass filters tend to pass the lower frequency components of the image (smooth regions)
and reject the higher frequency components (fine details). Hence they smooth the image.
This has the beneficial effect of reducing any visible noise in the image, but unfortunately it
also tends to blur any sharp edges and fine textures.

We shall consider one particular type of lowpass filter in this application. It is the Gaussian
filter, which, in its unit-variance form in the time domain, has an impulse response:

g(t) =
1√
2π

exp

(

−t2

2

)

(8.1)

The Gaussian impulse response is unique, in that its frequency response is also a Gaussian-
shaped function, given by:

G(ω) =
∫

∞

−∞

g(t) exp(−jωt) dt = exp

(

−ω2

2

)

(8.2)

It is the only function which has the same shape in both the time and frequency domains.
Its other key property is that the area under g(t) integrates to unity, as long as the 1/

√
2π

scaling factor is present on the RHS of equ. (8.1). This can be shown by setting ω = 0 in
equ. (8.2). It gives the filter unit gain at lower frequencies, which is usually a necessary
pre-requisite for successful image display.

The above Fourier transform relation is a bit complicated to derive, so we have included its
full derivation in section 8.4 (effectively an appendix) for those who are interested.

The Gaussian filter can be seen to be a Lowpass filter, because G(ω) → 1 when ω → 0,
and G(ω) → 0 when |ω| → ∞. Hence low frequency components of the signal are passed
with almost unit gain, while high frequency components are rejected with approximately
zero gain.

2-D filtering

To create a lowpass filter for a 2-D signal such as an image, it is usual to apply a 1-D filter
first to the columns of the image and then to the rows (or vice-versa). If the image intensity
I(x, y) is a function of position (x, y), then the result of convolving the filter with the columns
of the image is a new image:

Ic(x, y) =
∫

I(x, y − v) gc(v) dv (8.3)

where gc(y) is the impulse response of the column filter and, from now on, all integrals are
assumed to be over infinite limits unless stated otherwise.

64 Paper 8 Photo Editing - Section 8

If we now convolve the rows of Ic(x, y) with the row filter, whose impulse response is gr(x),
we get:

Ir,c(x, y) =
∫

Ic(x− u, y) gr(u) du

=
∫
[
∫

I(x− u, y − v) gc(v) dv
]

gr(u) du

=
∫ ∫

I(x− u, y − v) gr(u) gc(v) du dv

=
∫ ∫

I(x− u, y − v) gr,c(u, v) du dv

where gr,c(u, v) = gr(u) gc(v) (8.4)

This is the expression for convolution in 2-D, using a filter with a 2-D impulse response (also
known as a point-spread function) given by gr,c(x, y) = gr(x) gc(y).

We shall use the Gaussian filter g(t) for gr(x) and gc(y) with a constant breadth scale factor
b, such that t is replaced by x/b and y/b. Hence:

gr(x) =
1

b
g
(

x

b

)

and gc(y) =
1

b
g
(

y

b

)

(8.5)

The extra factors of 1/b are needed above, in order to keep the important property of unit
gain at low frequencies, which ensures that the filtered image will occupy approximately the
same range of intensity levels as before for larger patches of similar colour. This can be seen
if we calculate the frequency response Gr(ω) for the filter gr(x):

Gr(ω) =
∫

gr(x) exp(−jωx) dx

=
∫ 1

b
g
(

x

b

)

exp(−jωx) dx

=
∫

g(t) exp(−jωbt) dt where t =
x

b
and dt =

dx

b

= G(ωb) = exp

(

−ω2b2

2

)

(8.6)

(a) Impulse response gr(x)

−8 −6 −4 −2 0 2 4 6 8
−0.2

0

0.2

0.4

0.6

0.8

b = 0.5

b = 1
b = 2

b = 4

(b) Frequency response Gr(ω)

−4 −3 −2 −1 0 1 2 3 4
−0.2

0

0.2

0.4

0.6

0.8

1

b = 0.5

1

2

4

Fig. 8.1: Impulse responses and frequency responses of 1-D Gaussian lowpass filters, gr(x),
when the breadth parameter b = 0.5, 1, 2, 4.

Paper 8 Photo Editing - Section 8 65

Hence Gr(0) = G(0) = 1, as required. The frequency response expression also shows us
that, as b is increased, the bandwidth of the filter reduces, and the filter will produce more
blurring of the image. For example, when ωb = 1, the gain of the filter will have reduced
from unity to exp(−0.5) = 1/

√
e = 0.6065, as shown for several values of b in fig. 8.1.

One of the main reasons why Gaussian filters are attractive for image processing is that they
are the only filter shape which produces a truly isotropic (omni-directional) 2-D impulse
response from separate row and column filtering stages. This can be seen if we calculate the
2-D impulse response gr,c(x, y) as follows:

gr,c(x, y) = gr(x) gc(y) =
1

b
g
(

x

b

)

1

b
g
(

y

b

)

=
1√
2π b

exp

(

−x2

2b2

)

1√
2π b

exp

(

−y2

2b2

)

=
1

2π b2
exp

(

−(x2 + y2)

2b2

)

(8.7)

If we convert (x, y) to polar coordinates (r, θ), then we find that

gr,c(r, θ) =
1

2π b2
exp

(

−r2

2b2

)

(8.8)

This is independent of θ, and so the 2-D impulse response is circularly symmetric and the
filter will have the same effect on the image in all directions – i.e. it will be isotropic. It is
shown in fig. 8.2, for the case when b = 1 (i.e. when the breadth of the response, between
opposite points where the amplitude is 1/

√
e of its peak value, is 2b = 2). The contour

plot is included to show the circular symmetry of the response, and the contour at 0.1 is
approximately the level at which the breadth is 2b (actually it is at 1/(2π

√
e) = 0.0965).

The frequency response of this filter is also isotropic – but we shall not prove this here.

−4
−2

0
2

4

−4
−2

0
2

4
0

0.05

0.1

0.15

0.2

xy
−4 −2 0 2 4

−4

−3

−2

−1

0

1

2

3

4

x

y

0.01

0.05
0.10
0.15

Fig. 8.2: Impulse response of a 2-D Gaussian lowpass filter, gr,c(x, y), when the breadth
parameter b = 1 in equ. (8.7). A mesh plot is on the left, and a contour plot is on the right
with the contour levels shown.

66 Paper 8 Photo Editing - Section 8

Computational issues of separable filters

It is worth noting here that isotropic (circularly symmetric) filters with arbitrary (non-
Gaussian) shapes may be created by a suitable choice of function for gr,c(x, y), but that such
functions cannot be factorised into the separable form gr(x)gc(y), unless they are Gaussian.
The main problem with this is that the convolution of an image directly with a 2-D function
is usually much more computationally expensive than two separate convolutions with 1-D
functions along the rows and the columns in turn.

For example, consider a 1-D Gaussian filter with breadth parameter b = 5. The length N of
the sampled impulse response of this filter needs to be 31 samples if all terms greater than 1%
of the peak amplitude are retained. To convolve this with the columns of an image, requires
N multiplications and additions per pel of the image. The same amount of computation is
required for convolving this filter with the rows of the image. Hence the total computation
needed is 2N multiplications and additions per pel. If instead the response was non-separable
and we had to convolve the N × N equivalent 2-D impulse response with each pel of the
image, this would require N2 multiplications and additions per pel of the image. If N = 31,
this would be N2/2N = N/2 = 15.5 times as much computation – a substantial increase if
the image size is large!

The Matlab function conv2(x,g), which is used in our function colfilter(), has a com-
putation time which is proportional to the product of the areas of the image x and the filter
g. Hence it exhibits exactly the behaviour described above, and it is much more efficient to
do two convolutions of x with 1-D filters of area N × 1 samples, than it is to do a single
convolution with a 2-D filter of area N ×N samples.

This is therefore a key reason why separable Gaussian filters are a preferred way of obtaining
isotropic 2-D filter responses.

Functions to implement the filters

Our function im_lowpass.m to perform 2-D lowpass filtering is shown in fig. 8.3. We pass
it the image to be filtered x and the standard deviation sigma of the Gaussian filter (this is
our breadth parameter b above). It calls the function gaussian() to calculate the impulse
response g and then performs the filtering on each colour slice by two calls to the column
filtering function colfilter(), using the transpose operator to swap rows and columns
between the two calls. These functions are listed in figs. 8.4 and 8.5.

gaussian(sigma,thresh) takes the value of sigma and creates a vector of samples of a
Gaussian pulse. The length of the vector is proportional to sigma, and is long enough to
include all samples of the Gaussian that are at least thresh times the peak value. The length
of the output vector is always odd, and its centre sample is the peak. The default value for
thresh is 0.01. The sum of the vector is normalised to unity (for unit gain of the filter at
zero frequency).

Paper 8 Photo Editing - Section 8 67

function y = im_lowpass(x,sigma);

% function y = im_lowpass(x,sigma);

%

% Perform 2-D Gaussian lowpass filtering on colour image x.

%

% Nick Kingsbury, Cambridge University, 2006.

wh = waitbar(0,’Filtering image’);

% Generate 1-D Gaussian impulse response.

g = gaussian(sigma);

% Filter each colour slice of x.

y = x;

for k=1:3,

waitbar(k/4);

y(:,:,k) = colfilter(colfilter(y(:,:,k),g).’,g).’;

end

waitbar(1);

y = max(min(y,255),0);

close(wh) % Close wait bar

return;

Fig. 8.3: Function to perform lowpass filtering of an image: im_lowpass()

function h = gaussian(sigma,thresh)

% function h = gaussian(sigma,thresh)

%

% Generate a gaussian vector / impulse response, h, with

% a standard deviation of sigma samples and a total value of unity.

% The length of h is odd and is truncated at the points where

% exp(-x^2/2) < thresh. By default, thresh = 0.01.

%

% Nick Kingsbury, Cambridge University, Nov 2005.

if nargin < 2, thresh = 0.01; end

% Solve for when exp(-x^2 / 2*sigma^2) = thresh

xmax = sigma * sqrt(max(-2*log(thresh),1e-6));

% Calculate h over the range when exp(-x^2/2) >= thresh.

n = floor(xmax);

x = [-n:n]’;

h = exp(x.*x/(-2*sigma*sigma));

h = h / sum(h); % Normalise h so it sums to unity.

return;

Fig. 8.4: Function to calculate the coefficients of a Gaussian lowpass filter: gaussian()

68 Paper 8 Photo Editing - Section 8

function Y = colfilter(X, h)

% function Y = colfilter(X, h)

% Filter the columns of image X using filter vector h, without decimation.

% If length(h) is odd, each output sample is aligned with each input sample

% and Y is the same size as X.

% If length(h) is even, each output sample is aligned with the mid point

% of each pair of input samples, and size(Y) = size(X) + [1 0];

%

% Cian Shaffrey, Nick Kingsbury, Cambridge University, August 2000

[r,c] = size(X);

m = length(h);

m2 = fix(m/2);

if any(X(:)) % Test for any non-zero samples in X.

% Symmetrically extend row indices with repeat of end samples.

xe = reflect([(1-m2):(r+m2)], 0.5, r+0.5);

% Perform filtering on the columns of the extended matrix X(xe,:), keeping

% only the ’valid’ output samples, so Y is the same size as X if m is odd.

Y = conv2(X(xe,:),h(:),’valid’);

else

Y = zeros(r+1-rem(m,2),c); % Short cut if X is all zeros.

end

return;

Fig. 8.5: Function to perform filtering down the columns of an image matrix: colfilter()

colfilter(X,h) filters the columns of matrix X using the efficient built-in Matlab function
conv2. The main complication concerns how we deal with filtering at the image boundaries.
For images, it is usually best if we assume that the image is mirrored at its boundaries.
Hence we create extended columns for X using an index vector xe which is of the form:

[m2, m2− 1 . . . 1, 1, 2 . . . r − 1, r, r . . . r −m2 + 1]

where r is the height of the columns of X and m2 is the half-length of the filter h. The matrix
X(xe,:) then has the symmetrically extended columns needed for correct filtering by conv2

in its valid mode, so as to generate a filtered image the same size as X.

Paper 8 Photo Editing - Section 8 69

function y = reflect(x,minx,maxx)

% function y = reflect(x,minx,maxx)

% Reflect the values in matrix x about the scalar values minx and maxx.

% Hence a vector x containing a long linearly increasing series

% is converted into a waveform which ramps linearly up and down

% between minx and maxx.

% If x contains integers and minx and maxx are (integers + 0.5),

% the ramps will have repeated max and min samples.

%

% Nick Kingsbury, Cambridge University, January 1999.

y = x;

% Reflect y in maxx.

t = find(y > maxx);

y(t) = 2*maxx - y(t);

% Reflect y in minx.

t1 = find(y < minx);

t2 = 0;

while ~isempty(t1) | ~isempty(t2), % Repeat until no more values out of range.

if ~isempty(t1), y(t1) = 2*minx - y(t1); end

t2 = find(y > maxx);

if ~isempty(t2), y(t2) = 2*maxx - y(t2); end

t1 = find(y < minx);

end

return;

Fig. 8.6: Function to reflect members of a sequence
about max and min boundary values: reflect()

The function y = reflect(x,minx,maxx), shown in fig. 8.6, is responsible for converting a
monotonically increasing vector

x = [−m2 + 1,−m2 + 2 . . . 0, 1, 2 . . . r − 1, r, r + 1 . . . r +m2− 1, r +m2]

into
y = [m2, m2− 1 . . . 1, 1, 2 . . . r − 1, r, r . . . r −m2 + 1]

which is the symmetrically reflected vector given on the earlier page. In this case, minx = 0.5

and maxx = r + 0.5. The code is a bit complicated because it is designed to correctly handle
the case when r < m2 and several reflections are needed at each boundary.

70 Paper 8 Photo Editing - Section 8

8.2 Highpass Filtering with Gaussian filters

Highpass filters are filters with greater gain at high frequencies than at low frequencies. They
are usually used for enhancing edges of objects, or for detecting them so as to control other
processing operations.

They may be generated by subtracting a lowpass filtered signal from the unfiltered signal,
with suitably chosen scale factors α and β. This can be illustrated for 1-D signals in the
frequency domain as follows:

Y (ω) = αX(ω)− β G(ω)X(ω) = X(ω)[α− β G(ω)] (8.9)

Hence the filter frequency response will be

H(ω) =
Y (ω)

X(ω)
= α− β G(ω) (8.10)

If G(ω) is lowpass with unit gain at low frequencies and zero gain at high frequencies, then
the gain of H(ω) will tend to (α − β) at low frequencies and α at high frequencies. Hence
we may create a 1-D highpass filter, with unit gain at low frequencies and a gain of say 2 at
high frequencies, by choosing (α− β) = 1 and α = 2 (hence β = 1).

The effect of this type of filter on a step edge is illustrated in fig. 8.7, by waveform (c), which
is α times waveform (a) minus β times waveform (b). This type of filter is appropriate for
enhancing the sharpness of edges in an image without losing the important low-frequency
content of the image.

If instead we choose (α − β) = 0, then we get zero gain at low frequencies and the effect
of this type of highpass filter on a step edge is shown in fig. 8.7(d). This type of filter is
suitable for detecting edges (using the absolute magnitude of the filter output) and ignoring
the smoothly varying parts of the signal.

−20 −10 0 10 20
−0.5

0

0.5

1

1.5
(a) Step function

−20 −10 0 10 20
−0.5

0

0.5

1

1.5
(c) Highpass filtered step, unit DC gain

−20 −10 0 10 20
−0.5

0

0.5

1

1.5
(b) Lowpass filtered step

−20 −10 0 10 20
−1

−0.5

0

0.5

1
(d) Highpass filtered step, zero DC gain

Fig. 8.7: (a) An input step function; (b) the step, filtered by a Gaussian lowpass filter
(breadth b = 5); (c) the result of subtracting (b) from twice (a) to obtain a highpass filter
with unit gain at low frequencies; (d) the result of subtracting (b) from (a) to obtain a
highpass filter with zero gain at low frequencies.

Paper 8 Photo Editing - Section 8 71

To obtain a 2-D highpass filter, we could simply perform a pair of 1-D highpass filtering
operations on the columns and then the rows of our image, as we did for the lowpass case.
However it is not possible to get an isotropic impulse response this way.

To get an isotropic highpass response, using separate 1-D row and column filtering for
efficiency, we must first create a Gaussian lowpass filtered version of our image and then
subtract it from the original image with suitable scaling factors α and β, as explained above
for 1-D filters. Since the lowpass filter is Gaussian and therefore isotropic, the resulting
highpass filter will also be isotropic.

Continuing the 2-D notation of equ. (8.4), we can now express the intensities of the pixels
in our highpass filtered image Ih(x, y) as follows:

Ih(x, y) = αI(x, y)− βIr,c(x, y) (8.11)

where Ir,c(x, y) is the Gaussian lowpass filtered version of the input image I(x, y).

We have chosen to give the user two parameters to control this highpass filter: the breadth b
of the lowpass Gaussian filters gx and gy; and the low-frequency (DC) gain G0 of the highpass
filter. We then fix the high-frequency gain of the filter at (1 +G0). Hence:

α = 1 +G0 and α− β = G0 , so β = 1 (8.12)

If G0 is near zero we find that the highpass filter removes most of the low-frequency com-
ponents of I, so that Ih no longer has pixel intensities that approximately cover the range 0
to 255. Instead they tend to be centred around zero and this leads to the displayed image
looking very dark. Ideally we want the pixel levels to remain centred approximately on 128.
We achieve this by adding an offset term to equ. (8.11), which is proportional to (1 − G0)
and equals 128 when G0 = 0.

Therefore the new expression for Ih, including this offset and the results of equ. (8.12),
becomes:

Ih(x, y) = (1 +G0)I(x, y)− Ir,c(x, y) + 128(1−G0) (8.13)

This is what we have implemented in our code.

Experimenting with the highpass filter on real images, shows that when we choose G0 = 1,
edges are enhanced, and further, that repeated use of the highpass filter can remove the
worst effects of blurring with a lowpass filter.

If we select G0 = 0 then we get an image that contains almost entirely edges (as long as b is
quite small). This demonstrates the edge detection properties of a highpass filter.

Other interesting effects can be obtained with intermediate values for G0 and b.

72 Paper 8 Photo Editing - Section 8

8.3 The script ph filter

This script, shown in fig. 8.8, adopts the same general form as previous ones. In this case it
comprises 7 cases selected by mode. The cases are:

Init initialises the Filter function. It opens a command figure (2) of the form shown at the
top of fig. 8.8. Then it defines the 3 sliders and edit boxes for the 3 filter parameters,
and their titles. It also defines the Lowpass filter, Highpass filter, Revert and
Close buttons. Finally, it initialises the filter parameters and writes them to the
sliders and edit boxes, and sets the After image equal to Before.

Slider is called when any of the 3 sliders are activated. It reads the slider values and converts
them to filter parameters (b for the lowpass filter, b and G0 for the highpass filter) using
elements of the vector sc(1:3) as scaling factors. It also writes the parameters to the
edit boxes.

Edit box is called when any of the 3 edit boxes are used to define any of the filter pa-
rameters. It reads the parameters and updates the sliders accordingly by dividing by
sc(1:3).

Lowpass is called when the Lowpass filter button is pressed. It updates the lowpass
iteration counter and shows it on the button label. It then performs one iteration of
lowpass filtering using im_lowpass(), and updates the output image.

Highpass is called when the Highpass filter button is pressed. It operates similarly to
the lowpass button. The filtering is now implemented by equ. (8.13) and also calls
im_lowpass().

Revert is called when this button is pressed. It causes the output image to revert to being
the input image and resets the iteration counters and their displayed values to zero.

Close is called when this button is pressed. It closes figure 2 and redisplays Before and
After in figure 1 to show the input and filtered images respectively.

Paper 8 Photo Editing - Section 8 73

Command window
figure(2):

% ph_filter.m

% Routine called by ’Filter’ menu item in photo editor.

% Applies lowpass and higpass filters to an image.

%

% Nick Kingsbury, Cambridge University, 2006.

switch mode

case ’Init’

% Set up figure window for commands

figure(2);

set(gcf,’position’,[400 624 450 100]);

set(gcf,’numbertitle’,’off’,’name’,’Filter Image’);

% Initialise filter parameters for breadths and G0.

sc = [10 10 1]; % Scale factors for breadths and G0.

if exist(’filpar’)~=1, filpar = [2 2 1]’; end

% Buttons for different filter parameters.

label = {’Lowpass breadth:’,’Highpass breadth:’,’Highpass DC gain:’};

for k = 1:3,

ypos = 70 - 20*k; xpos = 10;

slide(k) = uicontrol(gcf,’style’,’slider’,’sliderstep’,[1 10]/100,...

’pos’,[xpos+100 ypos 120 20],’call’,’mode=’’Slider’’; ph_filter’);

uicontrol(gcf,’style’,’text’,’str’,label{k},’pos’,[xpos ypos 100 20]);

edbox(k) = uicontrol(gcf,’style’,’edit’,’pos’,[xpos+220 ypos 60 20],...

’call’,’mode=’’Edit box’’; ph_filter’);

end

uicontrol(gcf,’style’,’text’,’str’,’Adjust Filters’,’pos’,[100 70 120 16]);

% Other buttons: Denoise, Enhance, Revert and Close.

lowpass = uicontrol(gcf,’pos’,[310 70 130 20],...

’call’,’mode=’’Lowpass’’; ph_filter’);

highpass = uicontrol(gcf,’pos’,[310 40 130 20],...

’call’,’mode=’’Highpass’’; ph_filter’);

revert = uicontrol(gcf,’str’,’Revert’,’pos’,[310 10 60 20],...

’call’,’mode=’’Revert’’; ph_filter’);

closebtn = uicontrol(gcf,’str’,’Close’,’pos’,[380 10 60 20],...

’call’,’mode=’’Close’’; ph_filter’);

Fig. 8.8 continued overleaf.

74 Paper 8 Photo Editing - Section 8

% Initialise variables and set yui = xui.

y = double(xui);

iter_Lo = 0;

iter_Hi = 0;

set(lowpass,’str’,sprintf(’Lowpass filter, iter %d’,iter_Lo));

set(highpass,’str’,sprintf(’Highpass filter, iter %d’,iter_Hi));

for k=1:3,

set(slide(k),’value’,filpar(k)/sc(k));

set(edbox(k),’string’,sprintf(’%.2f’,filpar(k)));

end;

yui = uint8(y + 0.5);

update_y;

figure(2);

case ’Slider’

for k=1:3,

filpar(k) = sc(k)*get(slide(k),’value’);

set(edbox(k),’string’,sprintf(’%.2f’,filpar(k)));

end;

case ’Edit box’

for k=1:3,

filpar(k) = sscanf(get(edbox(k),’string’),’%f’);

set(slide(k),’value’,filpar(k)/sc(k));

set(edbox(k),’string’,sprintf(’%.2f’,filpar(k)));

end;

case ’Lowpass’

iter_Lo = iter_Lo + 1;

set(lowpass,’str’,sprintf(’Lowpass filter, iter %d’,iter_Lo));

y = im_lowpass(y,filpar(1));

yui=uint8(y+0.5);

update_y;

figure(2);

case ’Highpass’

iter_Hi = iter_Hi + 1;

set(highpass,’str’,sprintf(’Highpass filter, iter %d’,iter_Hi));

G0 = filpar(3);

y = (1+G0)*y - im_lowpass(y,filpar(2)) + (1-G0)*128;

yui=uint8(y+0.5);

update_y;

figure(2);

Fig. 8.8 continued overleaf.

Paper 8 Photo Editing - Section 8 75

case ’Revert’

y = double(xui);

yui=uint8(y);

iter_Lo = 0;

iter_Hi = 0;

update_y;

figure(2);

set(lowpass,’str’,sprintf(’Lowpass filter, iter %d’,iter_Lo));

set(highpass,’str’,sprintf(’Highpass filter, iter %d’,iter_Hi));

case ’Close’

close(2);

newbefore = 1;

showimages;

end

Fig. 8.8: Script to filter an image: ph_filter.m

8.4 Fourier transform of a Gaussian pulse

Here we derive result that the Fourier transform of a Gaussian pulse in the time domain is
a Gaussian-shaped function in the frequency domain.

Let the pulse be

g(t) =
1√
2π

exp

(

−t2

2

)

(8.14)

Then its Fourier transform is

G(ω) =
∫

∞

−∞

g(t) exp(−jωt) dt =
1√
2π

∫

∞

−∞

exp

(

−t2

2

)

exp(−jωt) dt (8.15)

Now we do a trick known as ‘completing the square of the exponent’, so that we can do this
integral. This relies on the relation:

exp

(

−t2

2

)

exp(−jωt) = exp

(

−(t2 + 2jωt)

2

)

= exp

(

−(t + jω)2

2

)

exp

(

−ω2

2

)

(8.16)

We put this expression in the integral of (8.15) and make the substitution τ = t + jω, to
obtain:

G(ω) =
1√
2π

∫

∞

−∞

exp

(

−(t+ jω)2

2

)

exp

(

−ω2

2

)

dt

= exp

(

−ω2

2

)

1√
2π

∫

∞

−∞

exp

(

−τ 2

2

)

dτ

= exp

(

−ω2

2

)

G(0) (from equ. (8.15) with ω = 0) (8.17)

76 Paper 8 Photo Editing - Section 8

This gives us the shape of G(ω), but with an unknown constant scale factor G(0). The
integral to obtain G(0) can be evaluated analytically, and it turns out that the result is
G(0) = 1, because

∫

∞

−∞

exp

(

−τ 2

2

)

dτ =
√
2π (8.18)

However it requires another trick to show this! The problem is that exp(−τ 2/2) cannot be
integrated analytically. The trick is to calculate the square of this definite integral and then
to change the variables to τ = x and τ = y in the two separate integrals to obtain:

I2 =

(

∫

∞

−∞

exp

(

−τ 2

2

)

dτ

)2

=
∫

∞

−∞

exp

(

−x2

2

)

dx
∫

∞

−∞

exp

(

−y2

2

)

dy

=
∫

∞

−∞

∫

∞

−∞

exp

(

−(x2 + y2)

2

)

dx dy (8.19)

This is now a 2-D integral over the whole infinite plane, which is still difficult in cartesian
coordinates, but which can be done more easily if we change to polar coordinates. This is
because the exponential is then only a function of r2 and an extra factor of r appears in the
integral that makes it ‘do-able’. If we let x = r cos θ and y = r sin θ, then the elemental area
changes from dx dy to r dθ dr and the double integral becomes:

I2 =
∫

∞

0

∫ π

−π
exp

(

−r2

2

)

r dθ dr =
∫

∞

0

∫ π

−π
dθ r exp

(

−r2

2

)

dr

= 2π

[

− exp

(

−r2

2

)]

∞

0

= 2π[0 + 1] = 2π (8.20)

Therefore

I =
∫

∞

−∞

exp

(

−τ 2

2

)

dτ =
√
2π (8.21)

and so, as required,

G(0) =
I√
2π

= 1 (8.22)

Substituting this result into equ. (8.17) gives the Fourier transform relation we have been
looking for:

g(t) =
1√
2π

exp

(

−t2

2

)

⇀↽ G(ω) = exp

(

−ω2

2

)

(8.23)

Paper 8 Photo Editing - Section 9 77

9 Enhancing the image: ph enhance

The script ph_enhance extends the capabilities of the lowpass and highpass filters of section
8 so that they can reduce noise in smoother areas of the image and at the same time sharpen
edges in other places.

Before looking at the code of ph_enhance, we shall look at how vertical and horizontal edges
can be reliably detected, and how this edge information can spatially adapt the filtering that
we apply to our image.

9.1 Detecting horizontal and vertical edges

Since, for efficiency reasons, we will be performing our adaptive filtering separately on the
rows and columns of the image, it is desirable to detect horizontal edges separately from
vertical ones. This will allow us, for example, to smooth in a direction parallel to an edge
and to sharpen in a direction normal to the edge – thus achieving a measure of denoising and
sharpening at the same time. Edges are detected by the function im_edges(xui,thresh),
where xui is the input image and thresh is a vector of two thresholds that determine whether
an edge is significant for (a) denoising or (b) edge sharpening. This function is shown in
fig. 9.1.

To detect horizontal (or near-horizontal) edges, we need to measure vertical gradients in the
image. For simplicity we perform this on the luminance image L1, which is calculated first.
In a sampled system like a digital image, this can be done by taking the difference between
vertically adjacent pairs of pixels. However this tends to be rather sensitive to any noise in
the image, so we first apply a small amount of Gaussian smoothing down the columns of the
image before taking the differences. We use Gaussian filters with breadth b = 0.8 pel for this
to get a good compromise between edge sensitivity and noise sensitivity. This is performed
by the code

edv = diff(colfilter(L1,gaussian(0.8)));

To calculate the horizontal gradients we use similar code, but with L1 transposed:

edh = diff(colfilter(L1.’,gaussian(0.8))).’;

The Matlab function diff() takes differences between adjacent pairs of elements down the
columns of a matrix and reduces the height of the matrix by one row, since, if there are V
elements in each column, there are only V − 1 adjacent pairs. Hence for an input image of
size V ×U pels, the matrices edv and edh are of size (V −1)×U and V ×(U−1) respectively.

In the loop that follows, two pairs of output matrices, gainv and gainh, are calculated from
edv and edh. The lower slice of gainv represents the amount of lowpass filtering to be
applied in the vertical direction when we do denoising, and likewise the lower slice of gainh
represents the amount in the horizontal direction. The upper slices of gainv and gainh

control the highpass filtering for sharpening in a similar (but opposite) way.

78 Paper 8 Photo Editing - Section 9

These gain matrices have elements between 0 and 1, calculated according to the rule:

gaink =
1

1 + (ed/threshk)2
(9.1)

where ed is an edge gradient calculated above in edv or edh, and threshk is the chosen
threshold for denoising (k = 1) or sharpening (k = 2). This is a soft thresholding rule,
which gives an output that tends to unity if the edge gradient is much smaller than the
threshold, tends to zero if it is much larger, and equals 0.5 if they are the same. Hard
thresholding would produce an abrupt change from unit gain to zero gain as the gradient
becomes greater than the threshold, and would tend to introduce more noticeable artifacts
into the processed image.

The above calculation is performed for a whole gain matrix by the lines of code

c = 1 / thresh(k).^2;

gainv(:,:,k) = ones(size(edv)) ./ (1 + c*edv.*edv);

and similar code for gainh.

Within this loop, we also show the gain matrices as images, such that black represents a gain
of zero and white is a gain of unity. Figure(3) shows the two gain matrices for denoising,
while figure(4) shows the two for sharpening. These images tend to show the detected edges
as black (gaink = 0) and the smoother regions as white (gaink = 1), as shown for figure(3)
in fig. 9.2. This is good for controlling the denoising filters, but for the sharpening filters
we need to use the complement of these gains so that maximum sharpening is done around
the edges and no sharpening is done in smooth regions. This is achieved by subtracting the
relevant gain matrices from unity; and we shall see later that this is done when im_enhance()

is called from within the Sharpen part of the code in the script ph_enhance.

function [gainh,gainv] = im_edges(xui,thresh)

% function [gainh,gainv] = im_edges(xui,thresh)

%

% Calculate gain matrices corresponding to the edges of image xui.

% gainh contains gains which depend on the horizontal gradients of xui

% and tends to zero where the gradients are << thresh and to one where

% the gradients are >> thresh.

% Similarly for gainv and vertical gradients.

% If thresh is a vector, then separate planes of gainh and gainv are

% created for each threshold element.

%

% Nick Kingsbury, Cambridge University, 2006.

% Calculate luminance image.

L1 = 0.3*double(xui(:,:,1)) + 0.6*double(xui(:,:,2)) + 0.1*double(xui(:,:,3));

Fig. 9.1 continued overleaf.

Paper 8 Photo Editing - Section 9 79

% Calculate edges.

edv = diff(colfilter(L1,gaussian(0.8)));

edh = diff(colfilter(L1.’,gaussian(0.8))).’;

% Calculate vertical and horizontal gain matrices for each threshold.

K = length(thresh);

gainv = zeros([size(edv) K]);

gainh = zeros([size(edh) K]);

for k = 1:K, % Loop for each threshold k (K should equal 2).

% Calculate the gain matrices for threshold(k).

c = 1 / thresh(k).^2;

gainv(:,:,k) = ones(size(edv)) ./ (1 + c*edv.*edv);

gainh(:,:,k) = ones(size(edh)) ./ (1 + c*edh.*edh);

% Plot the gain matrices as greyscale images.

figure(k+2);

set(gcf,’position’,[100 30+(2-k)*100 910 470]);

set(gcf,’numbertitle’,’off’,’name’,’Edge gains’);

subplot(’Position’,[0.03 0.05 0.45 0.9]);

image(gainv(:,:,k)*255 + 1); colormap(gray(256));

axis image; axis ij;

if k==1, title(’Vertical Edge Gain - Denoising (white areas)’,...

’FontSize’,14);

else title(’Vertical Edge Gain - Sharpening (black areas)’,...

’FontSize’,14);

end

subplot(’Position’,[0.53 0.05 0.45 0.9]);

image(gainh(:,:,k)*255 + 1); colormap(gray(256));

axis image; axis ij;

if k==1, title(’Horizontal Edge Gain - Denoising (white areas)’,...

’FontSize’,14);

else title(’Horizontal Edge Gain - Sharpening (black areas)’,...

’FontSize’,14);

end

drawnow

end

figure(2);

return

Fig. 9.1: Function to detect horizontal and vertical edges of an image: im_edges.m

80 Paper 8 Photo Editing - Section 9

Vertical Edge Gain − Denoising (white areas)

50 100 150 200 250 300 350

50

100

150

200

250

300

350

Horizontal Edge Gain − Denoising (white areas)

50 100 150 200 250 300 350

50

100

150

200

250

300

350

Fig. 9.2: Vertical and horizontal gain images for adaptive denoising.

9.2 Adaptive filters for denoising

To achieve adaptive filtering, we can no longer use the function colfilter() and the Matlab
function conv2() which it calls. This is because conv2() assumes that the same filter is
being used over the whole of the image. Hence we must go into more detail as to how filters
for sampled signals work so we can write our own code to do the adaptive filtering.

A filter for continuous signals is defined by its impulse response g(t) and the convolution
integral as:

y(t) =
∫

∞

−∞

x(t− τ) g(τ) dτ (9.2)

In sampled (discrete) form the equivalent expression becomes:

yn =
M
∑

k=−M

xn−k gk (9.3)

where xn and yn are the samples of the input and output signals at location (time) n, and
the filter response gn is assumed to be non-zero only between the finite limits −M ≤ n ≤ M .
Hence this is known as a finite-impulse-response (FIR) discrete (or digital) filter with 2M+1
samples (or taps). The filters we have been using on this course have all been of this form.

For example, the command g = gaussian(1) produces the following 7-sample filter with
breadth b = 1:

g = [g−3 . . . g3]
T = [0.0044 0.0540 0.2420 0.3991 0.2420 0.0540 0.0044]T (9.4)

For smaller values of b the filter gets shorter. With b = 0.6, the command g = gaussian(0.6)

produces a filter with only 3 significant samples:

g = [g−1 g0 g1]
T = [0.1664 0.6672 0.1664]T (9.5)

Paper 8 Photo Editing - Section 9 81

The Central Limit Theorem of statistics shows that if many uncorrelated signals with
similar pdfs (probability density functions) are added together, then the pdf of the result
will be approximately a normal (Gaussian) distribution. In this situation the pdfs are all
convolved together. Hence this also shows that the result of cascading many similar lowpass
filters together will produce a filter whose impulse response is approximately Gaussian. (The
only condition here is that the filter coefficients should all be non-negative – like a pdf.)

If the original impulse responses are Gaussian then the result is exact and the variance of
the output Gaussian response will be the sum of the variances of the individual responses.
The variance of a Gaussian response of breadth b is just b2. Hence for N cascaded filters:

b2out = N b2in or bout =
√
N bin (9.6)

Hence we may use several iterations of a short lowpass filter to be equivalent to a longer filter
with approximately Gaussian shape. We will now concentrate on making a short (3-sample)
filter with an adaptive breadth, that we can then use iteratively on our image to reach any
desired strength of adaptive smoothing.

We can make a 3-sample lowpass filter with varying strength with respect to samples on each
side of the mid point using the following impulse response:

g = [α1 (1− α1 − α2) α2]
T (9.7)

where α1 controls the smoothing applied to one side of the mid-point, while α2 controls
smoothing to the other side. The central term ensures that the sum of the 3 terms is unity
and hence that the low-frequency gain of the filter is unity for any choice of α1, α2.

The maximum useful level of smoothing with this filter occurs when α1 = α2 = 1

4
and g

becomes [1
4

1

2

1

4
]T . Selecting lower values of α than this produces less smoothing of the

signal. Hence we can make an edge-adaptive filter by using gainh to control the value of α1

and α2 on either side of every pixel when we filter across the rows, and similarly use gainv

to control α1 and α2 above and below every pixel when we filter down the columns.

The discrete convolution of the above g with an input signal xn is given by:

yn =
1
∑

k=−1

xn−k gk

= α1 xn+1 + (1− α1 − α2)xn + α2 xn−1

= α1(xn+1 − xn) + xn − α2(xn − xn−1) (9.8)

By grouping the α1 and α2 terms together we get a simpler implementation as (xn+1 − xn)
for one sample at n is the same as (xn − xn−1) for the next sample at n+ 1 and hence only
needs to be calculated once, as shown below.

Fig. 9.3 lists the function im_enhance() which implements the above adaptive filtering. To
denoise the image, it is called from within the Denoise case of the script ph_enhance by
the following command:

cg = thresh(3)/400;

y = im_enhance(y,cg*gainh(:,:,1),cg*gainv(:,:,1));

82 Paper 8 Photo Editing - Section 9

This applies one iteration of the adaptive filter to the real version of the image y. The
second and third arguments become alphah and alphav in im_enhance() and are directly
proportional to the matrices gainh and gainv, which were calculated by im_edges() using
the denoising threshold. The constant of proportionality cg is set by the user with the
Strength slider to be between 0 and 0.25. When 100% strength is selected (thresh(3)=100),
the α values are 0.25 in smooth areas of the image and reduce to zero near edges.

Within im_enhance(), the filtering is performed inside the for-loop for each colour slice.
First the input slice is copied to xk. Then the vertical filtering, as in equ. (9.8), is applied
to the columns of the whole xk matrix by

xd = diff(xk) .* alphav;

xk = xk - [zr; xd] + [xd; zr]; % Apply vertical filtering

where xd is a matrix of pixel differences of the form (xn+1 − xn), scaled by the vertical α
values in alphav. The second line implements equ. (9.8) as follows: xk represents the xn

and yn terms; [zr; xd] represents the α2(xn − xn−1) term; and [xd; zr] represents the
α1(xn+1 − xn) term. The row of zeros, zr, is used to pad out the (V − 1) × U matrix xd

to size V × U , either at the top or at the bottom, depending on whether we are generating
α2(xn − xn−1) or α1(xn+1 − xn) for each pixel. We are again assuming symmetric extension
(mirroring) of the image at its boundaries, so the pixel differences across the boundary are
zero.

Adaptive filtering across the rows of the image is achieved by the next two lines of code in
the for-loop

xd = diff(xk.’).’ .* alphah;

y(:,:,k) = xk - [zc xd] + [xd zc]; % Apply horizontal filtering

which operates in a similar way, except that the differences are calculated on the transpose
of xk, and xd is now padded with a column of zeros zc at either its left or right end. The
result is placed in colour slice k of y.

Thus we see how a single iteration of the adaptive filter is performed. If stronger filtering is
needed to achieve greater denoising, then we simply pass the resulting image back through
the filter one or more additional times. The edge adaptation ensures that smoothing is not
applied across detected edges, and so very little blurring is introduced by this denoising
process (unlike the non-adaptive lowpass filter of section 8).

Paper 8 Photo Editing - Section 9 83

function y = im_enhance(x,alphah,alphav)

% function y = im_enhance(x,alphah,alphav)

%

% Enhance the image x using lowpass filtering with edge inhibition.

% alphah and alphav specify the horizontal and vertical coefficients

% for the enhancement process.

% If alpha is positive (and <= 0.25) then the image is denoised by

% lowpass filtering in proportion to the alpha at each location.

% If alpha is negative (and >= -0.25) then the image edges are enhanced

% by highpass filtering in proportion to -alpha at each location.

% The magnitude of the alphas should not exceed 0.25 for proper operation

% of the filters.

%

% Nick Kingsbury, Cambridge University, 2006.

sx = size(x);

y = x;

if sum(alphav(:)) >0, wh = waitbar(0,’Denoising image’);

else wh = waitbar(0,’Sharpening image’);

end

% Zero row and column for padding out and offsetting the difference images

% at the image edges.

zr = zeros(1,sx(2));

zc = zeros(sx(1),1);

% Apply adaptive filtering, controlled by alphav and alphah, to each colour

% layer.

for k = 1:3,

waitbar(k/4);

xk = x(:,:,k);

xd = diff(xk) .* alphav;

xk = xk - [zr; xd] + [xd; zr]; % Apply vertical filtering

xd = diff(xk.’).’ .* alphah;

y(:,:,k) = xk - [zc xd] + [xd zc]; % Apply horizontal filtering

end

close(wh) % Close wait bar

return

Fig. 9.3: Function to perform adaptive denoising and sharpening of an image: im_enhance()

84 Paper 8 Photo Editing - Section 9

9.3 Adaptive filters for edge sharpening

As we saw in section 8.2, a highpass filter, which amplifies the higher frequency components
in a signal and sharpens edges, can be created from a lowpass filter by simple weighted
subtraction. If we apply this idea to equ. (9.8) with weights of 2 and 1 so as to keep unit
gain at low frequencies, then we get a highpass adaptive filter:

yn = 2xn −
1
∑

k=−1

xn−k gk

= −α1 xn+1 + (2− 1 + α1 + α2)xn − α2 xn−1

= −α1(xn+1 − xn) + xn + α2(xn − xn−1) (9.9)

This is identical to the result of equ. (9.8), except that α1 and α2 have been negated.

Hence we can still use our function im_enhance(), as long as we pass it negative values in its
arguments alphah and alphav. Since we want to apply edge enhancement only in areas of
the image that are close to detected edges, we also have to complement the soft gain values
from im_edges(), as discussed in section 9.1. Both of these tasks are accomplished in the
following two lines of code, from the Sharpen case of ph_enhance:

cg = thresh(3)/400;

y = im_enhance(y,cg*(gainh(:,:,2)-1),cg*(gainv(:,:,2)-1));

By subtracting 1 from gainh and gainv, we make them negative and complement the gain
law at the same time.

This adaptive sharpening filter can be applied iteratively to increase the amount of sharp-
ening to blurred images, just as we did with the denoising filter to reduce the noise further.
However we have to be careful to avoid introducing excessive high frequency gain by many
iterations which can produce undesirable artifacts at some edges in the output image.

The key here is that the adaptive filter only applies high frequency enhancement in the close
vicinity of detected edges, and only in a direction that is approximately normal to each edge.
This avoids amplifying noise in other areas of the image.

Paper 8 Photo Editing - Section 9 85

9.4 The script ph enhance

This script, shown in fig. 9.4, adopts the same general form as previous ones and is very
similar to the previous script ph_filter. It again comprises 7 cases selected by mode. The
cases are:

Init initialises theEnhance function. It is virtually identical to the same case in ph_filter,
except that the Lowpass and Highpass buttons are replaced by Reduce noise and
Sharpen edges buttons.

Slider is called when any of the 3 sliders are activated. It is the same as in ph_filter,
except that it also calls the function im_edges() to generate the four gain matrices
gainh(:,:,1:2) and gainv(:,:,1:2), as described in section 9.1.

Edit box is called when any of the 3 edit boxes are used to define any of the filter pa-
rameters. It is the same as in ph_filter, except that again it also calls the function
im_edges().

Denoise is called when the Reduce noise button is pressed. It updates the denoising
iteration counter and shows it on the button label. It then performs one iteration of
adaptive denoising using im_enhance() with positive values for the filter coefficients
(the gain matrices, scaled to the range 0 . . . 0.25 by the Strength percentage in
thresh(3)) and updates the output image.

Sharpen is called when the Sharpen edges button is pressed. It operates similarly to
the Denoise case, except that 1 is subtracted from the gain matrices, so that the filter
coefficients are now scaled to the range −0.25 . . . 0 and the adaptive filters perform
highpass filtering close to the detected edges in the image, instead of lowpass filtering
in the smoother regions, as discussed in section 9.3.

Revert is called when this button is pressed. It causes the output image to revert to being
the input image and resets the iteration counters and their displayed values to zero.

Close is called when this button is pressed. It closes figure 2 and redisplays Before and
After in figure 1 to show the input and filtered images respectively.

This completes the description of our Photo Editor. Feel free to use it and extend as you
wish. If you develop any good new functions or scripts, do please let me know!

Nick Kingsbury.
April 9, 2016

86 Paper 8 Photo Editing - Section 9

Command window
figure(2):

% ph_enhance.m

% Routine called by ’Enhance’ menu item in photo editor.

%

% Nick Kingsbury, Cambridge University, 2006.

switch mode

case ’Init’

% Set up figure window for commands

figure(2);

set(gcf,’position’,[400 624 450 100]);

set(gcf,’numbertitle’,’off’,’name’,’Enhance Image’);

% Initialise denoising and sharpening edge detection thresholds.

sc = 100;

if exist(’thresh’) ~= 1, thresh = sc*[0.05 0.1 1.0]’; end

% Buttons for different thresholds and filter strength.

label = {’Denoise thr:’,’Sharpen thr:’,’Strength(%):’};

for k = 1:3,

ypos = 70 - 20*k; xpos = 10;

slide(k) = uicontrol(gcf,’style’,’slider’,’sliderstep’,[1 5]/100,...

’pos’,[xpos+70 ypos 120 20],’call’,’mode=’’Slider’’; ph_enhance’);

uicontrol(gcf,’style’,’text’,’str’,label{k},’pos’,[xpos ypos 70 20]);

edbox(k) = uicontrol(gcf,’style’,’edit’,’pos’,[xpos+190 ypos 60 20],...

’call’,’mode=’’Edit box’’; ph_enhance’);

end

uicontrol(gcf,’style’,’text’,’str’,’Adjust Thresholds’,...

’pos’,[70 70 120 16]);

% Other buttons: Denoise, Enhance, Revert and Close.

denoise = uicontrol(gcf,’pos’,[310 70 130 20],...

’call’,’mode=’’Denoise’’; ph_enhance’);

sharpen = uicontrol(gcf,’pos’,[310 40 130 20],...

’call’,’mode=’’Sharpen’’; ph_enhance’);

revert = uicontrol(gcf,’str’,’Revert’,’pos’,[310 10 60 20],...

’call’,’mode=’’Revert’’; ph_enhance’);

closebtn = uicontrol(gcf,’str’,’Close’,’pos’,[380 10 60 20],...

’call’,’mode=’’Close’’; ph_enhance’);

Fig. 9.4 continued overleaf.

Paper 8 Photo Editing - Section 9 87

% Initialise variables and set yui = xui.

y = double(xui) + 0.5;

iter_n = 0;

iter_s = 0;

set(denoise,’str’,sprintf(’Reduce noise, iter %d’,iter_n));

set(sharpen,’str’,sprintf(’Sharpen edges, iter %d’,iter_s));

for k=1:3,

set(slide(k),’value’,thresh(k)/sc);

set(edbox(k),’string’,sprintf(’%.2f’,thresh(k)));

end;

yui=uint8(y);

% Calculate edge maps for both thresholds.

[gainh,gainv] = im_edges(xui,thresh(1:2));

update_y;

figure(2);

case ’Slider’

for k=1:3,

thresh(k) = sc*get(slide(k),’value’);

set(edbox(k),’string’,sprintf(’%.2f’,thresh(k)));

end;

[gainh,gainv] = im_edges(xui,thresh(1:2));

case ’Edit box’

for k=1:3,

thresh(k) = sscanf(get(edbox(k),’string’),’%f’);

set(slide(k),’value’,thresh(k)/sc);

set(edbox(k),’string’,sprintf(’%.2f’,thresh(k)));

end;

[gainh,gainv] = im_edges(xui,thresh(1:2));

case ’Denoise’

iter_n = iter_n + 1;

set(denoise,’str’,sprintf(’Reduce noise, iter %d’,iter_n));

cg = thresh(3)/400;

y = im_enhance(y,cg*gainh(:,:,1),cg*gainv(:,:,1));

yui=uint8(y);

update_y;

figure(2);

case ’Sharpen’

iter_s = iter_s + 1;

set(sharpen,’str’,sprintf(’Sharpen edges, iter %d’,iter_s));

cg = thresh(3)/400;

y = im_enhance(y,cg*(gainh(:,:,2)-1),cg*(gainv(:,:,2)-1));

yui=uint8(y);

update_y;

figure(2);

Fig. 9.4 continued overleaf.

88 Paper 8 Photo Editing - Section 9

case ’Revert’

y = double(xui)+0.5;

yui=uint8(y);

iter_n = 0;

iter_s = 0;

update_y;

figure(2);

set(denoise,’str’,sprintf(’Reduce noise, iter %d’,iter_n));

set(sharpen,’str’,sprintf(’Sharpen edges, iter %d’,iter_s));

case ’Close’

close(2);

newbefore = 1;

showimages;

end

Fig. 9.4: Script to enhance an image: ph_enhance.m

