
Optimization of LDPC Codes
for Receiver Frontends

Gottfried Lechner, Jossy Sayir
Telecommunications Research Center Vienna (ftw.)

Donaucitystr. 1/3
1220 Vienna, Austria
{lechner|sayir}@ftw.at

Ingmar Land
Department of Communication Technology

Aalborg University, Fredrik Bajers Vej 7, A3
9220 Aalborg, Denmark

il@kom.aau.dk

Abstract— The degree distribution of low-density parity-check
(LDPC) codes is optimized for systems that iterate over the
receiver frontend, e.g., soft detector, demodulator, equalizer,
etc., and the LDPC decoder. The overall extrinsic information
transfer (EXIT) function of an iterative LDPC decoder is
computed, based on the code’s own EXIT chart, under the
Gaussian assumption. While the optimization of the variable
node distribution is a nonlinear problem, the optimization of the
check node distribution is shown to be a linear problem. This
fact is exploited to design codes where both the variable and the
check node distributions are optimized, resulting in more robust
constructions. The technique presented requires only knowledge
of the measured EXIT function of the receiver frontend.

I. INTRODUCTION

Low-Density Parity-Check (LDPC) codes [1], [2] achieve
rates close to channel capacity for a wide range of channels.
The performance of these codes is optimized in function of
the degree distributions of the bipartite graph associated with
the LDPC code. This optimization can be performed exactly
by using density evolution [3] (without assuming specific
distributions for the messages) or approximately by using
extrinsic information transfer (EXIT) charts [4] assuming that
the messages have a Gaussian distribution. When using EXIT
charts, the code design reduces to a curve fitting problem1.

If we aim to iterate over a receiver frontend (e.g. a soft
demapper for a specific modulation format or an equalizer for a
channel with intersymbol-interference) and an error correcting
code, we have to optimize the overall EXIT function of the
code to match the EXIT function of the receiver frontend.
The overall extrinsic information transfer function of a code
optimized for the Gaussian memoryless channel is a step func-
tion [5]. This is consistent with the curve fitting approach of
EXIT charts, since the extrinsic information transfer function
of a memoryless Gaussian channel is constant and therefore,
the best fit is achieved using a step function. On the other
hand, for most other channels, e.g., channels with memory or
non-binary channels, the EXIT function of the channel is not
constant. Therefore, the frontend of the receiver can make use
of a-priori information.

1This is motivated by the area property of the EXIT chart [4] which is only
correct for the binary erasure channel (BEC) but results in good codes also
for other channels.

When designing LDPC codes, it is common practice to fix
the degree of the check nodes (i.e. use check-regular codes)
and optimize the variable node distribution. One approach
for matching the LDPC code to the frontend is to combine
the variable nodes with the frontend as shown in [6]. This
requires an analytical expression for the EXIT function of the
frontend, which is provided in [6] by taking a polynomial
approximation of the measured EXIT function. We follow a
different approach, by matching the overall EXIT function of
the LDPC decoder to the frontend. This only requires the
measured EXIT function of the frontend and eliminates the
need for an analytical approximation.

Designing the degree distributions of an LDPC code to
match a given frontend is a nontrivial task, since the op-
timization problem is nonlinear, and therefore, search algo-
rithms have to be employed to find good codes, as shown
in [7]. In this paper, we optimize both the variable and the
check node distributions. Ideally, one would like to optimize
both distributions jointly, but this is usually not feasible.
Therefore, we optimize them alternately. It can be shown
that optimization of the check node distribution for a fixed
variable node distribution is a linear problem that can be
solved efficiently using linear programming. By optimizing
the check node degree distribution for a fixed variable node
degree distribution, the search for a good variable node degree
distribution is far less complex, since the EXIT function of the
LDPC code is less sensitive to the choice of the variable node
distribution.

We introduce the system model used in this work in Sec-
tion II. In Section III, we derive the EXIT function of an LDPC
code and show its dependency on the degree distributions.
These results are used in Section IV to design the LDPC code
to match a given target function. Finally, Section V applies
the code design method to turbo-demapping as an example.

II. SYSTEM MODEL

We consider a system as shown in Figure 1. The transmitter
encodes a binary vector u to a binary vector x. This block is
interleaved, mapped to a vector t of complex transmit symbols,
and transmitted over the channel. For the moment, we do
not make any assumptions about the channel. The receiver
processes the received vector y in a frontend and iterates

Binary
Source

Channel
Encoder

Bit-
Interl.

Mapper
u x t

Channel
y

Frontend
Bit-

Deinterl.
Channel
Decoder

Hard
Decision

Sink
y

Bit-
Interl.

Fig. 1. System Model

between the (iterative) channel decoder and this frontend for
a given number of iterations, before making a hard decision
on the information vector. In this double iterative system, we
perform iterations inside the LDPC decoder until it reaches a
steady state (i.e., until the decoder converges to a codeword, or
gets stuck at a point where the EXIT functions of variable and
check nodes intersect) before returning to the outer iteration
between the LDPC decoder and the demapper.

In order to optimize iterative processing between the fron-
tend and the decoder, we aim to match the overall EXIT
function of the code to the EXIT function of the frontend.
Since, in our general model, we allow the frontend to perform
several possible tasks, we do not make any assumptions about
the transfer function of this component and regard it as given
(obtained either analytically or via simulation) denoted by

IE,frontend = T (IA). (1)

III. EXIT FUNCTION OF LDPC CODES

In this section, we first will derive the EXIT function of
an LDPC decoder and show how this function depends on
the variable node degree distribution λ and the check node
degree distribution ρ as defined in [8]. Since we are iterating
between the frontend of the receiver and the channel decoder,
which is an iterative system in itself, we have to assume some
scheduling. Our analysis relies on asymptotic long blocks
resulting in a graph for which the probability of cycles tends
to zero and therefore, we are free to choose an arbitrary
scheduling. Our assumption is that the decoder continues
iterating until it reaches a steady state, before performing an
outer iteration between the decoder and the frontend.

An EXIT chart of the LDPC decoder is shown in Figure 2.
Quantities from variable to check nodes are denoted with the
subscript VC and quantities from check to variable nodes with
CV. When we allow the decoder to perform as many iterations
as needed to converge to a steady state, the decoder will always
get stuck in the smallest intersection between the variable and
check node transfer curves denoted with I∗

V C and I∗CV .
In order to get simple expressions for I∗

V C and I∗CV , we
use the duality property [4], which is an approximation for

Fig. 2. EXIT chart of LDPC code

channels other than the BEC. Furthermore, we will use the
function [4]

J(σ) = 1 −
∫

∞

−∞

e
−

(θ−σ2/2)2

2σ2

√
2πσ

log
2

(

1 + e−θ
)

dθ. (2)

Using this, we can write the variable and check node transfer
functions as

IV C =
∑

i

λi ·J
(

√

(i − 1)J−1(ICV)2 + J−1(IA,LDPC)2
)

,

(3)

ICV = 1 −
∑

j

ρj · J
(

√

j − 1J−1(1 − IV C)
)

. (4)

The intersection point can thus be found by solving Equa-
tion 5, and this quantity is used to compute the extrinsic mutual
information of the LDPC decoder as

IE,LDPC =
∑

i

λ̄i · J
(√

iJ−1(I∗CV)
)

, (6)

where λ̄ is the node perspective of the variable node degree
distribution.

IV. LDPC CODE DESIGN

Using Equations 5 and 6, we are now able to state our
design problem. We aim to maximize the design rate Rd of

I∗CV = 1−
∑

j

ρj · J
(

√

j − 1J−1

(

1 −
∑

i

λi · J
(

√

(i − 1)J−1(I∗CV)2 + J−1(IA,LDPC)2
)

))

(5)

the code defined as

Rd = 1 −
∑ ρi

i
∑

λi

i

(7)

under the constraint that the transfer function of the LDPC
decoder is larger than a target function at every point

IE,LDPC(IA) ≥ IE,target(IA). (8)

This target function is given by the inverse transfer function
of the frontend

IE,target(IA) = T−1(IA). (9)

Looking at Equations 5, 6, and 7, one can observe that the
maximization is nonlinear in λ given ρ, but linear in ρ given
λ. Therefore, the optimization of ρ is much simpler than the
optimization of λ. We will show in an example in Section V
that the transfer function of the LDPC decoder is less sensitive
to the choice of λ when ρ is optimized for each λ, than when
an optimal λ is sought for a fixed ρ. Therefore, we can reduce
the search space for λ significantly, which allows us to perform
an exhaustive search.

Stability Condition

In order to design codes with no inherent error floor, the
degree distributions have to satisfy the stability condition
[3]. For the Gaussian channel with variance σ2, the stability
condition can be written as

∑

i

ρi · (i − 1) <
e

1

2σ2

λ2

. (10)

Note that the stability condition is a requirement for suc-
cessful decoding of the LDPC code, that can be derived
from properties of its EXIT chart in the top right corner.
Therefore, in our double iterative setup, the stability condition
is only relevant in the last overall iteration, when the LDPC
decoder is expected to decode successfully, and its component
EXIT curves do not intersect. If we assume that the messages
between the frontend and the LDPC decoder are Gaussian
distributed, the condition has thus to be satisfied for

σ =
2

J−1(IE,Demapper,max)
, (11)

where IE,Demapper,max is the maximum of the EXIT function
of the receiver frontend. This additional constraint is also
linear in ρ and can therefore directly be included in the linear
optimization problem.

V. EXAMPLE: TURBO DEMAPPING

As an example, we will apply the method described in the
previous sections to iterative demapping and decoding (turbo-
demapping [9]). Consider a system where the transmitter
maps the encoded and interleaved data to a 16 QAM signal
constellation. Depending on the applied mapping, the soft
demapper in the receiver frontend has a certain information
transfer function. For Gray mapping, this transfer function is
approximately constant, meaning that turbo-demapping does

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Q
ua

dr
at

ur
e

In−Phase

 0000 0001

 0010 0011

 0100 0101

 0110 0111

 1000 1001

 1010 1011

 1100 1101

 1110 1111

Fig. 3. 16 QAM constellation and set-partitioning mapping.

not lead to a significant performance improvement. However,
for other mappings, like set-partitioning or non-unique symbol
mappings [10], the transfer function of the demapper is not
constant, which makes them a good candidate for turbo-
demapping.

Fig. 4. EXIT function of the demapper

We will consider a 16 QAM signal constellation and set-
partitioning mapping, transmitted over a memoryless additive
white Gaussian noise (AWGN) channel with variance σ2

ch.
The constellation and the mapping are shown in Figure 3. We
perform no constellation shaping, i.e. every constellation point
is transmitted with the same probability. The transfer function
of the soft demapper at σ2

ch = 0.28 is shown in Figure 4.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0

0.2

0.4

0.6

0.8

1

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

λ
3

λ
2

ra
te

Fig. 5. Code search for fixed ρ

Obviously, an LDPC decoder with a step-like transfer function
can not achieve capacity for this system.

To demonstrate the advantage of optimizing both the vari-
able and check node distribution, we compare two strategies.
For both approaches, we restrict λ to have only three nonzero
elements, namely for variable node degrees of two, three and
ten. This restriction leads to only two degrees of freedom for
the variable node degree distribution, making it easy to apply
an exhaustive search over the complete search space.

First, the check node distribution is kept constant and
regular with a check node degree of 4, which was found
to deliver the highest rates, following the approach in [7].
The result of the exhaustive search is shown in Figure 5.
It can be observed that the rate achieved is sensitive to the
choice of λ. Furthermore, it can be seen that the fixed check
degree distribution limits the maximum value of λ2, due to the
stability condition. We found a maximum rate of Rd = 0.46.

The second approach is to search for the best λ over the
same search space, but to optimize ρ for every λ. The result of
this search for a maximum check node degree of 30 is shown
in Figure 6. Using the optimization of ρ, a maximum rate
of Rd = 0.51 was found, and the rate is less sensitive to the
choice of λ. Even when setting all the variable nodes to degree
two or three, the rates found were Rd = 0.48 and Rd = 0.49
respectively, still outperforming the best rate obtained using
the first approach with a non-optimized check node degree
distribution.

The EXIT function of the code with the optimized check
node distribution matching the demapper function is shown in
Figure 7 and the results are verified by bit error rate simula-
tions with a codeword length of N = 105. For comparison,
we also simulated the system with a rate 0.5 LDPC code
optimized for an AWGN channel with BPSK mapping (having
approximately a step function as transfer characteristic). From
the results in Figure 8 it can be seen that the gain due to the
code optimization is approximately 3.0dB.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0

0.2

0.4

0.6

0.8

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

λ
3

λ
2

ra
te

Fig. 6. Code search for optimized ρ

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

I
A,Demapper

 I
E,LDPC

I E
,D

em
ap

pe
r

I A
,L

D
P

C

LDPC
Demapper

Fig. 7. EXIT chart of optimized LDPC code and demapper

2

Cap

2.5 3 3.5 4 4.5 5 5.5 6 6.5
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

E
b
/N

0
 [dB]

B
E

R

code optimized for demapper
code optimized for AWGN

Fig. 8. Bit error rate simulations

VI. CONCLUSION

We showed how the overall EXIT function of an LDPC de-
coder can be derived from its own EXIT chart using a Gaussian
approximation. Optimizing this function, i.e. maximizing the
rate of the code with constraints on its EXIT function, turned
out to be a nonlinear problem for the optimization of the vari-
able degree distribution, but is linear in the check node degree
distribution. In contrast to conventional code design, where
only the variable node distribution is optimized, we proposed
to also optimize the check node distribution, resulting in a less
complex code search and offering more degrees of freedom
for the choice of the variable node distribution. This code
optimization technique was applied to turbo-demapping as an
example, and the results were verified by bit error rate simu-
lations, demonstrating the importance of code optimization in
iterative receivers.

ACKNOWLEDGMENTS

This work was partly supported by the European network
of excellence NEWCOM. ftw. is a research institution within
the Austrian competence center funding program Kplus.

REFERENCES

[1] R.G. Gallager, Low Density Parity Check Codes, Number 21 in Research
monograph series. MIT Press, Cambridge, Mass., 1963.

[2] D. J. C. MacKay, “Good error-correcting codes based on very sparse
matrices,” IEEE Transactions on Information Theory, vol. 45, no. 2, pp.
399–431, 1999.

[3] T. Richardson, A. Shokrollahi, and R. Urbanke, “Design of capacity-
approaching irregular low-density parity-check codes,” IEEE Transac-
tions on Information Theory, vol. 47, pp. 619–637, Feb 2001.

[4] A. Ashikhmin, G. Kramer, and S. ten Brink, “Extrinsic information
transfer functions: model and erasure channel properties,” IEEE Trans-
actions on Information Theory, vol. 50, no. 11, pp. 2657–2673, 2004.

[5] M. Peleg, A. Sanderovich, and S. Shamai, “On extrinsic information of
good codes operating over discrete memoryless channels,” available at
http://arxiv.org/pdf/cs.IT/0504028.

[6] S. ten Brink, G. Kramer, and A. Ashikhmin, “Design of low-density
parity-check codes for modulation and detection,” IEEE Transactions
on Communications, vol. 52, no. 4, pp. 670–678, April 2004.

[7] A. Sanderovich, M. Peleg, and S. Shamai, “LDPC coded MIMO multiple
access with iterative joint decoding,” IEEE Transactions on Information
Theory, vol. 51, no. 4, pp. 1437–1450, April 2005.

[8] T. Richardson and R. Urbanke, “The capacity of low-density parity-
check codes under message-passing decoding,” IEEE Transactions on
Information Theory, vol. 47, pp. 599 – 618, 2001.

[9] F. Schreckenbach and G. Bauch, “EXIT charts for iteratively decoded
multilevel modulation,” in Proc. 12th European Signal Processing
Conference (EUSIPCO), Vienna, Austria, September 2004, 2004.

[10] F. Schreckenbach and P. Henkel, “Signal shaping using non-unique
symbol mappings,” in Proc. 43rd Annual Allerton Conference on
Communication, Control, and Computing, Monticello, USA, September
2005.

