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Iterative Decoding

How does the mutual information evolve in an iterative 
decoding algorithm?

We have learned that it is possible to optimize LDPC 
codes so as to maximize their threshold

We will see that we can design capacity-achieving, 
iteratively decodable families of LDPC codes!!
(i.e., threshold capacity)

What is the implication in terms of mutual information?
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Mutual Information Trajectory
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Mutual Information Trajectory

The L-values calculated in the tree are optimal in the 
sense of a MAP-calculator, i.e., L(Xi|Y[it]) is a 
sufficient statistic for Y[it]:

I(Xi ; L(Xi|Y[it])) = I(Xi ; Y[it])

We can also draw the trajectory at half-iterations
(after variable nodes & after check nodes)

But: the output messages of variable nodes and check 
nodes are extrinsic L-values, whereas the mutual 
information trajectory we consider now is for           
a-posteriori L-values
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Message Passing
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Tracking of Messages
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This assumes that
the decoder depends

only on mutual
information!

Problem:
How to compute the
“transfer functions“

f1 and f2?
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Tracking of Messages
Tracking of messages would mean tracking of pdfs

( Density Evolution)

Instead of tracking the pdfs we reduce the problem 
to tracking of mutual information between the 
messages and the codeword which are scalar 
quantities

IA, IE ..... average symbolwise mutual information
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Extrinsic Channel Model
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A-priori messages are modeled as independent noisy 
observations of the encoded source.

Assumptions:

- independent observations

- model for extrinsic channel
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with equality if the 
decoder is optimal
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Transfer Functions
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Assuming a model for the extrinsic channel we can vary 
IA by varying the channel parameter.

At the output of the decoder we can 
measure/calculate IE ⇒ IE = f(IA)

x
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u

This is only exact if the model of the extrinsic 
channel is correct! 
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Extrinsic Information
Transfer Charts (Stephan ten Brink)

Stephan did his
PhD at the U of
Stuttgart, then
worked for Bell
Labs in the U.K.,
then in New
Jersey. He is 
currently with 
RealTek. He is a 
regular visitor 
of ftw. and TU 
Wien.

Photo by Jossy
Sayir

(Stephan is the guy on the right, not the clown on the left)
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Tracking of Messages

Tracking of messages would mean tracking of pdfs.

Instead of tracking the pdfs we reduce the problem 
to tracking of mutual information between the 
messages and the codeword which are scalar 
quantities.

IA, IE ..... average symbolwise mutual information
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Extrinsic Channel Model
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A-priori messages are modeled as independent noisy 
observations of the encoded source.
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- independent observations

- model for extrinsic channel
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Transfer Functions
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Assuming a model for the extrinsic channel we can vary 
IA by varying the channel parameter.

At the output of the decoder we can 
measure/calculate IE ⇒ IE = f(IA)
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This is only exact if the model of the extrinsic 
channel is correct! 
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Variable Nodes and BEC
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Check Nodes and BEC
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Other Channels

Modeling the extrinsic channel as a BEC is exact if the 
communication channel is a BEC.

For other communication channels, the assumption of 
the extrinsic channel is in general an approximation.

If the communication channel is an AWGN channel, we 
model the extrinsic channel also as an AWGN, but this 
is only an approximation!
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AWGN Channel
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Convolutional Codes

Stephan ten Brink, “Convergence Behavior of Iteratively Decoded Parallel
Concatenated Codes”, IEEE Trans. Comm. October 2001
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Serial / Parallel Concatenation
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Serial concatenation:
e = app - a
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e = app - a – y
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Information Combining BEC

What is the effect on mutual information when we 
add L-values?

SRC BEC1

BEC2

LLR

LLR
+

δ1

δ2

L1

L2

x

I1 = I(X;L1) = 1 - δ1

I2 = I(X;L2) = 1 - δ2

I(X;L1L2) = 1 - δ1δ2

= 1 – (1-I1)(1-I2)
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Information Combining AWGN
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Information Combining AWGN
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BER from EXIT Chart (AWGN)
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Independent Observations

Messages received 
from the extrinsic 
channel are 
independent 
observations, which is 
only fulfilled if N → ∞
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Statistics

We use 
statistical 
quantities, which 
are only correct 
if N → ∞

threshold Eb/N0

Pb
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Summary of Assumptions

- Messages received from the extrinsic channel 
are independent observations, which is only 
fulfilled if N → ∞

- We use statistical quantities, which are only 
correct if N → ∞

- We model extrinsic messages with an extrinsic 
channel. This can only be done exact for the BEC. 
The Gaussian assumption is an approximation.
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Area Property
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Derivation of Area Property 1
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Derivation of Area Property 2
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Derivation of H(V|Y)
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Variable Nodes
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Check Nodes
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Area of LDPC Component Codes

IA

IE IA

IE

Necessary condition for successful decoding:
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Consequences of Area Property

“Surprising” result:

The area property tells us that the decoder can 
only converge if the rate is smaller than capacity!
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More Consequences...

Suppose the condition for convergence is fulfilled

0 · γ < 1

What is the result of this inequality?
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Area and Rate Loss

If γ → 1 we can transmit at rates that approach capacity.
If γ < 1 we are bounded from capacity.

γ → 1 means that 1 - Av = Ac

Furthermore, the curves must not intersect.

⇒ The curves have to be matched.

Code design reduces to curve fitting!
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Curve Fitting – Code Mixture

We only considered regular codes, where every symbol
has the same properties. Therefore, averaging over all
symbols is equivalent to the mutual information of an

arbitrarily symbol.

The resulting EXIT function is the weighted average 
of the EXIT functions of the groups.

If we partition m into nu groups j=1...nu each with length lj,
we can write IE as
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Example – Variable Mixture
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70% of the variable nodes have dv=2
30% of the variable nodes have dv=5

This is a polynomial in p
Note that ∑ γj = 1
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Example – Variable Mixture
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Curve Fitting

Lets fix the EXIT function of the check node decoder.

For curve fitting, we can exchange the following quantities

Therefore, we can write the EXIT function of the variable
node decoder as the inverse EXIT function of the check

node decoder.
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Taylor Series Expansion

Assuming for example dc=5 we can expand IEv
as a Taylor series

Truncating the Taylor series and normalizing the
coefficients to 1 results in

Compare this with the transfer function of the 
mixture of variable nodes...
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Curve Fitting
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Even more Consequences...

Using the same model as for the variable and check node
decoder, it can be shown that the areas for a serial

concatenated code with an outer code Rout=kout/nout and
an inner code Rin=kin/nin are given by

The same necessary condition 1-Aout < Ain leads to

If the inner code has rate < 1, i.e. I(X;Y)/nin <C then we 
can not achieve capacity with serial concatenated codes!


