Diss. ETH No. 13099

On Coding by Probability
Transformation

A dissertation submitted to the
SWISS FEDERAL INSTITUTE OF TECHNOLOGY
ZURICH

for the degree of
Doctor of Technical Sciences

presented by
JOSSY SAYIR
dipl. El.-Ing. ETH
born 8 June 1968
citizen of Ziirich ZH

accepted on the recommendation of
Prof. Dr. James L. Massey, examiner
Prof. Dr. Frans M. J. Willems, co-examiner
Prof. Dr. Fritz Eggimann, co-examiner

1999






Acknowledgements

It is not simple to express the extent of my gratitude for Jim Massey. His
original and playful attitude towards teaching, research and learning has
been an inspiration and an example which I strive to reflect. I place the
moments 1 spent with Jim among my dearest memories and wish that
there will be more such moments after the completion of my doctorate. I
also thank Lis Massey for her warm hospitality and continued concern for
the well-being of Jim’s students.

I profited from many enriching discussions with Frans Willems before
and after he agreed to be the co-referee of my thesis and I would like to
thank him on this account. Many thanks are also due to Prof. Eggimann
for accepting the task of second co-referee in the last minute and fulfilling
this task so gracefully.

Many people at IST and ETH contributed to the outstanding environ-
ment I enjoyed during my period here. Among them, I want to mention
Zsolt Kukorelly who shared my office in spite of my awkward reputation
and has become a close friend, Gerhard Kramer with whom I had uncount-
able discussions and whose interest was a constant source of motivation,
Beat Keusch and Richi de Moliner with whom I shared many pizzas and
late night conversations. At various stages of my thesis, I was lucky and
grateful to collaborate with Thomas Ernst and with Claudio Weidmann.
I would like to extend my deep thanks to all the students who trusted me
to supervise their research projects.

The members of the jazz band “Who Cares?”, Richi Hunziker, Stefan
Oberle, Reto Béttig and Igor Ugolini were instrumental in making my
stay at ETH unforgettable. Special thanks to Markus Schenkel, my co-
saxophonist and sailing partner, who stirred my enthusiasm for my work
during many fruitful discussions.

Finally, I would like to express my warmest gratitude to my family
and friends for supporting and encouraging me at all times. Especially,
I want to mention my friend Laurent who delivered food to the ETH at

iii



iv Acknowledgements

ungodly hours in times of emergency, and my dearest friend Keren, who
constantly reminded me that there are far more important things in life
than entropy and capacity by elegantly changing the subject each time I
started to talk about my work. My last and greatest thank you goes to
my parents Edna and Mahir for putting up with me when I was grumpy
and for all the rest.



Abstract

An introduction to arithmetic source coding is given, showing how this
technique transforms the output probability distribution of the source into
an almost uniform probability distribution. A similar approach is inves-
tigated for block coding for noisy channels, leading to the definition of
the (N, K) block coding capacity of a discrete memoryless channel. Arith-
metic coding is modified for data transmission over noisy channels and
a metric is developed for a sequential decoder to be used in conjunction
with an arithmetic encoder.

Universal arithmetic source coding is investigated for a class of sources
whose output distributions lie within a polytope of probability distribu-
tions. The properties of the optimal coding distribution over a polytope
of distributions are derived. Gallager’s redundancy-capacity theorem is
presented. An iterated version of the Arimoto-Blahut algorithm is fomu-
lated to compute the optimal coding distribution for a polytope with many
vertices, or, alternatively, to compute the capacity of a discrete memory-
less channel with a large input alphabet. The optimal coding distribution
is computed for the polytope of all monotone non-increasing probability
distributions with a given expected value.

Universal source coding with a source transformation is described. Two
source transformers are investigated: the recency-rank calculator (also
called the move-to-front list) and the competitive list transformer. It is
shown that the steady-state output distribution of these transformers is
monotone non-increasing when the transformers are applied to the output
of a discrete memoryless source. A context-tree algorithm is formulated
which uses competitive list transformers followed by a universal arithmetic
source encoder. The performance of this algorithm is compared to the
performance of other universal source coding algorithms.






Zusammenfassung

Nach einer Einfiihrung in die arithmetische Quellenkodierung wird er-
lautert, dass diese Methode die Wahrscheinlichkeitsverteilung am Ausgang
einer Quelle in eine angendherte Gleichverteilung umwandelt. Eine dhn-
liche Uberlegung fiir die Blockkodierung fiir verrauschte Kanile fiihrt zur
Definition der (IV, K') Blockkodierungskapazitét eines diskreten gedéchtnis-
freien Kanals. Die Funktionsweise eines arithmetischen Kodierers wird
angepasst an die Ubertragung von Daten {iber verrauschte Kanile. Eine
Metrik wird erldutert fiir einen sequentiellen Dekodierer, der gemeinsam
mit einem arithmetischen Kodierer beniitzt wird.

Universelle arithmetische Quellenkodierung wird fiir eine Klasse von
Quellen erforscht, deren Ausgangsverteilungen in einem Polytop von Wahr-
scheinlichkeitsverteilungen liegt. Die Eigenschaften der optimalen Kodier-
verteilung fiir einen Polytop von Verteilungen werden erldutert. Das
Redundanz-Kapazititstheorem von Gallager wird erklirt. Eine iterierte
Version des Arimoto-Blahut Algorithmus wird formuliert, um die optimale
Kodierverteilung fiir einen Polytop mit vielen Ecken oder um die Kapazi-
tat eines diskreten gedichtnisfreien Kanals mit einem grossen Eingangs-
alphabet zu berechnen. Die optimale Kodierverteilung fiir den Polytop
aller monoton abnehmenden Wahrscheinlichkeitsverteilungen mit einem
vorgegebenen Erwartungswert wird hergeleitet.

Universelle Quellenkodierung mit einer Quellentransformation wird be-
schrieben. Zwei Quellentransformatoren werden erforscht: der Neuheits-
rangberechner (auch “move-to-front” Liste genannt) und der Transformator
mit einer kompetitiven Liste. Es wird gezeigt, dass die Ausgangsver-
teilungen dieser Transformatoren im stationfdren Zustand monoton ab-
nehmen, wenn die Transformatoren auf den Ausgang einer diskreten ge-
déchtnisfreien Quelle angewendet werden. Ein Kontext-Baum Algorith-
mus wird formuliert, der Transformatoren mit kompetitiven Listen gefolgt
von einem universellen arithmetischen Quellenkodierer einsetzt. Dieser
wird mit anderen universellen Quellenkodieralgorithmen verglichen.

vii






Contents

Introduction

1 Arithmetic Coding for Noisy Channels
1.1  An Introduction to Arithmetic Coding . . . . . .. ... ..
1.2 The History of Arithmetic Coding . . . .. ... ... ...
1.3 Arithmetic Coding with Gaps . . . . . . . ... ... ....
1.4 A Metric for Sequential Decoding . . . . . . .. ... ....
1.5 Implementation and Results . . . . . . ... .. ... ....
1.6 Discussion and Open Problems . . .. ... .........
Appendix: Conversion Rules between € and E, /Ny . . . . . . ..

2 Universal Arithmetic Coding
2.1 On Universal Coding . . . . ... ... ... .........
2.2 Polytopes and Discrete Probability Distributions . . . . . .
2.3 Optimal Universal Coding for a Polytope . .. .. ... ..
2.4 The Redundancy-Capacity Theorem . . .. .. .. ... ..
2.5 An Iterated Arimoto-Blahut Algorithm . . . . . .. . .. ..
2.6 Coding Techniques . . . . . . . .. .. ... ... ......
Appendix: Proof of Lemma 2.3 . . . .. .. ... ... ......

3 Coding by Source Transformation
3.1 Source Estimation and Source Transformation. . . . . . ..
3.2 Recency Ranking and Competitive Lists . . . . ... .. ..
3.3 Conditional Competitive Lists . . . . . . . . ... ... ...
3.4 Results and Discussion . . . . . . ... ... ...
Appendix: An Alternative Formulation of Proposition 3.2 . . .

Conclusion
Bibliography

Curriculum Vitae

ix

15
20
34
40
o0
93

55
o6
62
71
82
86
95
97

99
100
105
122
131

. 139

141
143
147



Contents




Introduction

At the International Symposium held on the occasion of the fiftieth an-
niversary of Shannon’s 1948 paper [1], the “fathers” of Information Theory
turned a satisfied eye on half a century of sensational accomplishments
and gave an optimistic outlook for the future of the field. Having survived
decades of skepticism, first by mathematicians, then by engineers refusing
to give up their unfounded beliefs, Information Theory has finally gained
widespread acceptance. Its precepts have silently conquered many fields of
engineering, spanning applications as varied as mobile telephony, the Inter-
net and medical research. Nonetheless, the technical sessions at this and
other symposia and conferences can produce a very different impression in
the enthusiastic mind of a student of Information Theory: though it has
survived many onslaughts from outside the field in the past, Information
Theory is about to be devoured by its own children.

Source coding, more commonly known by its non-information-theoretic
name of “data compression”, has drifted far into the field of complexity the-
ory. The latest successes in the field have little to do with the probabilistic
model underlying Shannon’s Theory!. Channel coding has undergone a
meiotic division to become a branch of algebra on the one hand, and a part
of modulation and communication engineering on the other hand. Cryp-
tology, which owes part of its rebirth to Information Theory, has become
a field of its own whose portion of public attention rivals the fame of Infor-
mation Theory in its heyday. Meanwhile, Information Theory has retired
to the sidelines, becoming a mere spectator while its brilliant descendants
strive to fulfill its promises. Remembering the old division between the
“coders” and the “bounders”, today the “bounders” have dwindled and re-
mained within the field, while the “coders” have prospered by digging roots
into more fertile soil.

Far from decrying this fruitful division of labor, the present disserta-

1T was very much taken aback at a conference on data compression when I mentioned
the name of Claude Shannon and received the answer “Claude who?”



2 Introduction

tion will take a nostalgic stand by attempting to develop coding methods
based on purely probabilistic and information-theoretic premises. While
the promises of Information Theory rest upon probabilistic measures such
as the entropy of a source and the capacity of a channel, coding algorithms
designed to fulfill those promises are commonly tailored for non-probabilis-
tic measures such as the compression rate achieved for a set of sequences
and the distance properties of a channel code. In this dissertation, we will
take the inverse approach of designing coding algorithms based on the
entropy, the capacity and the probability distributions associated with
them. We will view source and channel encoders as devices whose aim
is to transform the probability distribution of a source into a probability
distribution required by a channel or by a universal source encoder. In
order to assess the success of this approach, we will evaluate the coding
algorithms developed in terms of the non-information-theoretic measures
of coding theory.

This dissertation contains three chapters. We give an outline of each
chapter.

e After giving an introduction to arithmetic coding in Chapter 1, we
explain why this well-known source coding algorithm falls into the
framework of coding by probability transformation. Building on
this insight, we show how an arithmetic encoder can be modified to
function as an encoder for noisy channels. We derive a metric for
a sequential decoder to be used in conjunction with an arithmetic
channel encoder, and evaluate the performance of the encoder in
a simulation involving a binary memoryless source, an arithmetic
encoder, a binary memoryless channel and a sequential decoder.

e In Chapter 2, we consider the use of an arithmetic source encoder for
universal coding. After providing some reflections on the meaning of
the term “universal”, we specify the problem of finding the optimal
arithmetic encoder for a class of sources. We concentrate on the class
of all N-ary stationary sources whose marginal probability distribu-
tions lie in a convex set known as a polytope and derive the properties
of an optimal arithmetic encoder for any polytope of probability dis-
tributions. A polytope is of practical interest because it includes the
set of all monotonely decreasing distributions as a special case. We
then present Gallager’s much simpler approach to finding the opti-
mal encoder for a class of sources, which reduces the problem to the
equivalent problem of computing the capacity of a channel. Based
on Gallager’s result and on the insight we gained in our derivation,
we formulate an iterated variation of the Arimoto-Blahut algorithm,



Introduction 3

which can be used to determine the optimal arithmetic encoder for
a polytope, or, alternatively, to compute the capacity of a channel
whose input alphabet is very large.

e In Chapter 3, the concept of source transformation for universal
arithmetic coding is introduced. We present a context-tree source
coding algorithm which uses source transformers and the optimal
arithmetic encoders of Chapter 2. The performance of this algorithm
is evaluated when the algorithm is used to compress a few standard
collections of files.

The three chapters of this dissertation are mostly independent, but
they share the view of source and channel encoders as devices performing
a probability transformation. Each of the three chapters draws its inspira-
tion from a different aspect of the work of Peter Elias, so this dissertation
can be viewed as an attempt to pursue and extend some of Elias’ ideas.






Chapter 1

Arithmetic Coding for
Noisy Channels

It has been said that one cannot truly understand an idea in science until
one has tracked down the idea to its origin, found out how the idea was
generated and how it rose to maturity. In information theory, the origin
of all things is Claude Shannon’s 1948 paper “A Mathematical Theory
of Communication” [1]. This is particularly true of arithmetic coding.
The purpose of this chapter is first to trace the elements of this coding
technique back to Shannon and beyond. Following this, we will modify
arithmetic coding so it can be applied to channel coding.

We begin with a tutorial on arithmetic coding that takes us from the
fundamentals to the practical aspects of implementing an encoder and a
decoder. Following this, we will drop our engineering spectacles and take a
historian’s look at arithmetic coding. We will show how the algorithm was
born by linking a method described in Shannon’s original paper to an idea
commonly attributed to Peter Elias, and we will venture a guess as to how
Shannon came up with this particular method. We will then attempt to
transfer Shannon’s perspective on source coding to channel coding. This
will lead us to arithmetic coding with gaps. Although this will seem like
an eccentric coding method at first glance, we will demonstrate how every
block code and convolutional encoder can be implemented as an arithmetic
encoder. As an example, we will show the performance of a simple arith-
metic encoder used in conjunction with a sequential decoder, which will
require the development of a metric for arithmetic coding similar to Fano’s
metric for sequential decoding. We will conclude with some remarks on
the implications and possible improvements of the method described.



6 Chapter 1. Arithmetic Coding for Noisy Channels

1.1 An Introduction to Arithmetic Coding

An arithmetic encoder is a simple source-coding procedure whose descrip-
tion in any reasonable programming language will typically require only a
page. The decoder is equally simple and almost identical to the encoder.
Although the implementation of the arithmetic coding algorithm is sim-
ple, it relies on three of fundamental ideas which we will describe in this
section. Following these explanations, we outline a simple program of the
encoder in pseudo-code.

Codewords locate the cumulative probability of the in-
put.

Consider all blocks of L symbols from the alphabet of an information
source. The probability of a block is the probability that the source
emits this block. The cumulative probability of a block is the sum of
the probabilities of all blocks lexicographically prior to that block. Let
f be the cumulative probability of a given block and p be its probabil-
ity. We call the semi-open interval [f, f + p) the source interval of the
given block. We want to assign a D-ary codeword to each block. A
D-ary sequence by,...,b, of length w will be thought of as a base D
rational number 0.b1by...b, = > b;D". We call the semi-open in-
terval [0.by ...by,0.b1...by + DY) the sequence interval for the D-ary
sequence by ...b,. The interval of a sequence that is the prefix of another
sequence contains the interval of this other sequence. Therefore, a code is
prefix-free just when the sequence intervals of its codewords are pairwise
disjoint. This can be ensured by demanding that the sequence interval
of each codeword lie inside the source interval of the block to which it is
assigned. The following rule accomplishes this:

For each block, choose the codeword interval to be (one of) the

longest sequence interval(s) that fits inside the source interval
for this block.

Example: Consider a binary memoryless source whose symbol probabil-
ities are pp = .25 and p; = .75. We will design a 10-ary code, i.e. D = 10,
for blocks of L = 2 source symbols. We set up a table of block probabilities
and cumulative probabilities, choose codeword intervals and obtain code-
words, as indicated in Table 1.1. The choice of the codeword interval for
the second and for the third block is unique. However, there are six pos-
sible choices for the codeword interval for the first block, viz. [.00,.01),
[.01,.02), [.02,.03), [.03,.04), [.04,.05) and [.05,.06), and five possible



1.1. An Introduction to Arithmetic Coding 7

Block P f Source Codeword | Codeword
interval interval
00 .0625 0 [0, .0625) [.00, .01) 00

01 | .1875 | .0625 | [.0625, .25) | [.1,.2)
10 | .1875 | .25 | [.25,.4375) | [.3, .4)
11 | .5625 | .4375 | [.4375, 1) [.5, .6)

ot W =

Table 1.1: Encoding blocks of 2 symbols using a 10-ary code.

Block P f Source Codeword Codeword
interval interval
00 .0001 0 [0, .0001) | [.0000, .0001) 0000
01 .0011 | .0001 | [.0001, .01) | [.001, .010) 001
10 .0011 | .01 | [.01,.0111) | [.010,.011) 010
11 | .1001 | .0111 | [.0111, 1.0) [.1, 1.0) 1

Table 1.2: Encoding blocks of 2 symbols using a binary code.

choices for the codeword interval for the last block, viz. [.5,.6), [.6,.7),
[.7,.8), [.8,.9) and [.9,1.0). A more practical example for the same source
might use a binary code, i.e., D = 2. This requires us to rewrite our table
in base 2, as indicated in Table 1.2. For this binary case, the choice of
each of the four codeword intervals happens to be unique.

Since the length of a source interval is equal to the probability p of a
block, a sequence interval of length D~[~1°8p?1 will always be shorter
than or equal to the length p of the source interval and any smaller power
of D~! will be greater than this length. However, since sequence inter-
vals of length D~" must begin at multiples of D~%, an interval of this
largest possible length will not always fit inside a source interval. This
Diophantine problem is illustrated for the binary case in Figure 1.1. A
sequence interval of length 2~ [~ 1°82P1 fits inside the source interval on the
left, but no sequence interval of this length fits inside the source interval
on the right. There will always be at least D — 1 sequence intervals of
length D——198p P1-1 ingide any source interval of length p. Thus, we can
be sure that

—logpp<w< —logpp+2



8 Chapter 1. Arithmetic Coding for Noisy Channels

Source Intervals
P

'Y

I I I
=2_ —log, p] Sequence Intervals

Figure 1.1: Choosing the longest sequence interval

where w is the length of the codeword assigned to the block. Averaging
over all blocks, we obtain

H(X;...X
log, D

H(X:...X1)

2 < BlWs] < log, D

+ 2,

where E[Wg] is the expected codeword length when encoding the source
sequence X7 ... X and where H(.) denotes the entropy of a random vari-
able in bits. Using the notation

1
Hi(x) ¥ FH(Xi...Xp),

we obtain

Hp(X) Hp(X) 2
<E 2 11
g, D ~ W< e DI (1.1)

for this coding method, where E[W] is the average expected codeword
length per source symbol.

Now that we have seen how blocks are encoded in arithmetic coding,
we are ready to discuss the next fundamental constituent of this coding
method.

The cumulative probability can be computed recur-
sively.

Note that each codeword depends only on the cumulative probability of
the source block to which it is assigned and on the probability of that
block. Therefore, there is no need to compute the complete table of all
block probabilities, as we did in the example, when we are interested
in determining only the codeword for a particular source sequence. For
any discrete stationary source, the required block probabilities can be



1.1. An Introduction to Arithmetic Coding 9

computed recursively from the symbol probabilities. The recursion rules
for a discrete memoryless source are:

P(zy...xrxp41) = P(xy...x0)P(xnyr)
F(zy...xpxp41) = F(rp...2p)+P(zy...20)F(zp41), (1.3)

where P(.) denotes the probability of the indicated block and F'(.) denotes
its cumulative probability. For discrete stationary sources with memory,
the marginal probabilities and cumulative probabilities in (1.2) and (1.3)
have to replaced by the appropriate conditional probabilities and cumula-
tive probabilities. In both cases, the recursion starts with the probability
and the cumulative probability of the empty sequence, whose values by
way of convention are 1 and 0, respectively.

Ezxample: Returning to the binary memoryless source with probabilities
po = .25 and p; = .75 of our previous example, we suppose that we wish
to find the 10-ary codeword for the length L. = 5 source block 10011. The

1.0 1.0 4375 296875 .296875 296875
’17 71’ 717 ’1’ 717

70\ 907 . ,0’ . 70\ ’0\

0.0 25 - .25 "~ .25 26171875 270507813

Figure 1.2: Computing a source interval

process of narrowing down the source intervals recursively by multiplying
their length by the probability of the next source symbol is represented in
Figure 1.2. The codeword obtained is ‘28’. Note that the first code digit
‘2’ is already determined after the third step because the first digit of the
decimal expansion of both endpoints of the codeword interval has there
been determined to be a ‘2’. When the source interval is narrowed so that
its interior contains no multiple of D!, the encoder can output the first
code symbol and can then re-scale the source interval by dropping the first
digit followed by a multiplication by D. In this example, the encoder could
have proceeded after the third step with the interval [.5,.96875) rather
than [.25,.296875). Thus, the encoding becomes a recursive process and
we do not need to wait until the end of a source block before outputting
digits of the codeword.

This process is even simpler in the practical binary case, where a code
digit is determined whenever 1/2 is not an interior point of the source



10 Chapter 1. Arithmetic Coding for Noisy Channels

interval. The rescaling operation when the source interval lies below 1/2
simply multiplies the interval endpoints by 2. Rescaling a source interval
which lies above 1/2 is equivalent to multiplying the endpoints of the
interval by two, then subtracting one. This allows us to implement the
rescaling operation in any radix arithmetic that we choose. To illustrate
this, we now determine the binary codeword for the same source block
10011, but using decimal arithmetic. The recursive process is represented
in Table 1.3. We must add code digits to specify a longest sequence interval

Input Interval Operation | Output
[0, 1) get input
1 [.25, 1) get input
0 .25, .4375) X2 0
[.5, .875) x2—1 1
[0, .75) get input
0 [0, .1875) X 2 0
[0, .375) X2 0
[0, .75) get input
1 [.1875, .75) get input
1| [.328125,.75)

Table 1.3: Binary encoding of the source sequence 10011

inside the source interval remaining at the end of the recursive process. In
this case, the code digits "10’ specify the sequence interval [.5,.75) which
lies inside [.328125,.75). The codeword obtained is thus *010010’.

The decoder performs almost the same operations as the encoder. At
every step, it computes the source intervals for all possible single-digit
extensions of the current source block using (1.2) and (1.3), then decides
which symbol was actually encoded based on which of these source inter-
vals contains the sequence interval of the received codeword.

We are ready to proceed to the third and last component of our prac-
tical implementation of an arithmetic encoder.

Implementation with finite-precision arithmetic.

Practical implementations of source coding techniques must use finite-pre-
cision arithmetic. Although the rescaling introduced above slows down the
increase in required precision somewhat, the number of digits required to
specify interval endpoints will still increase steadily in the coding method



1.1. An Introduction to Arithmetic Coding 11

just described. The algorithm can be approximated using integer arith-
metic, where the interval endpoints are rounded inwards to the nearest
integers. The endpoints must be rounded inwards to ensure that the
intervals will never overlap, which in turn guarantees prefix-freeness as
discussed earlier. The upper bound in (1.1) assumes infinite-precision
arithmetic. Suppose however that the smallest interval that can be rep-
resented with finite precision is of size €, ¢ > 0. For example, if 32-bit
integers are used to represent the interval endpoints, then € = 2732,

If we assume that 0 < € < p;/2 for all 4, we can write a new upper
bound for the expected average codeword length per source digit when
encoding a very long block from a discrete memoryless source with prob-
abilities p1,... ,pny as

N
. EW
lim % < —;pilogD(pi—Ze),

because the rounding error which can occur on each endpoint of the source
interval is at most € and hence the actual multiplier for the interval length,
which ideally would be p;, is at least p; — 2e. We note that

Di — 26]

—logp(pi —2¢) = —logp lpz' s

Di
pi — 2€

Y2

= —logppi+logp

< —logppi+ [

— ] S —
OgDP+n

where we have used the inequality logr < (r — 1)loge which holds for
r > 0 with equality if and only if » = 1. Thus, we see that

N
E[W] 1 2 L=
1m < H( )+lnD;ppz’—26_ ( )+1nmein_2€

L—oo L
(1.4)

where pnin = min; p;. If 2€ << pin, the last term in (1.4) is negligible and
the average expected length per source symbol approaches the source en-
tropy. A similar upper bound holds for stationary non-memoryless sources,
replacing probabilities by the appropriate conditional probabilities.

If 2¢ > pmin, the length of a codeword becomes infinite when the
source sequence is such that rounding causes the source interval to vanish.



12 Chapter 1. Arithmetic Coding for Noisy Channels

When the length of the source interval is zero, the corresponding codeword
interval also has length zero which, by our definition of sequence intervals,
implies that the length of the codeword is infinite. It follows that when
Pmin > 2€, there can be no finite upper bound for the average codeword
length.

Apart from rounding, there is an additional effect that may cause us
to lose precision when using integer arithmetic. This effect will be called
“straddling”. It occurs when the source interval contains the same multiple
of D! for several steps. During these steps, no rescaling is performed
and no output is generated as the encoder waits to find out whether the
source interval will eventually lie above or below this multiple of D1,
This causes a loss of precision as the size of the source interval decreases
steadily. To avoid this loss of precision, a new procedure can be introduced.
Whenever the interior of the source interval contains a multiple of D!
but no other multiple of D=2, the encoder knows that it will need to
perform an additional rescaling operation as soon as straddling is resolved.
Instead of waiting for straddling to be resolved, the encoder can perform
this additional rescaling operation immediately by simply dropping the
digit corresponding to D~? in the radix-D representations of the interval
endpoints. When straddling is finally resolved, i.e., when the interior of the
source interval has gravitated so as to lie completely above or completely
below the multiple of D!, a’0’ code digit must be inserted or a "D-1’ code
digit must be inserted, respectively, after the digit just now determined.

Example: In a decimal encoder, suppose that the current source interval
is [.1932,.2046). This interval straddles .2 within D~ = .01 on each side.
Thus, the interval is rescaled to give [.132,.246). Suppose that the next
source digit causes the interval to be [.132,.189). Straddling has been
resolved and the encoder outputs the digit ’1’ and rescales the interval
to [.32,.89). Before continuing, the encoder must output a ’9’ because
the interval [.132,.189) lies below the point .2 that was straddled. This
rescaling may be repeated several times before straddling is resolved and
the appropriate digit will then be inserted as many times as the rescaling
was performed.

It is important to notice that this procedure only modifies the order
in which operations are performed by the encoder, but the encoder will
eventually compute the same source interval with this new procedure as
it would have computed without it. Therefore, no loss of precision results
from this procedure' .

In practice, the counter used to count the number of straddling operations per-
formed can only count up to a finite number. The maximal value of this counter also



1.1. An Introduction to Arithmetic Coding 13

In the binary case, straddling occurs when the source interval includes
1/2. The rescaling is performed when straddling occurs and the interior
of the source interval lies entirely between 1/4 and 3/4. The operation of
dropping the digit corresponding to 272 from the endpoints of the interval
is equivalent to multiplying these endpoints by 2 and subtracting 1/2.

Example: Consider a ternary memoryless source with alphabet {a,b,c}
and probabilities p, = .2, p, = .5 and p. = .3. Using 4-bit integer arith-
metic, we would like to determine the binary codeword for the source
sequence a,b,b,a,c,b,c. To implement the encoder using 4-bit integers,
i.e., the integers 0 to 15, we let the non-zero integers represent the frac-
tional numbers 1/16 to 15/16. Both the real numbers 0.0 and 1.0 will
be represented by the integer 0, which causes no ambiguity because 0.0
can occur only as the lower endpoint and 1.0 can occur only as the up-
per endpoint of an interval?. The points 1/4 = 4/16, 1/2 = 8/16 and
3/4 = 12/16 are represented by the integers 4, 8 and 12 respectively. The
resulting encoding is shown in Table 1.4, where, for clarity, we have shown
upper endpoints of 1.0 by ’16’ rather than by ’0’ as would actually be used
in the implementation. To terminate the encoding of the source block, we
need to fit a longest sequence interval within the resulting source interval
[4, 16). This is achieved by adding a code digit ’1’, which restricts the
sequence interval to [8, 16). The resulting codeword is 0001100011.

We now give the pseudo-code of an algorithm implementing a finite-
precision binary arithmetic encoder for a discrete memoryless source:

1) high := one ; low := zero ; S :=0

2) input x ; range := high - low
high := floor[ low + range * (F(x) + P(x)) 1]
low ceiling[ low + range * F(x) ]

3) if ( (high > 3quarters AND low < half) OR
(low < lquarter AND high > half) ) goto (2)

determines the greatest number of code digits which can be generated in one coding
operation. Thus, this value has implications on the size of the input and output buffer
which are implemented in the encoder and on the maximal decoding delay of the de-
coder. When the straddling counter reaches its maximal value, the encoder intervenes
by shifting one of the interval endpoints inwards to enforce a resolution. Since this
is a very unlikely event, its influence on the expected codeword length can safely be
neglected.

21t is also possible to represent the source intervals by storing their left endpoint
and their integer width minus one.



14 Chapter 1. Arithmetic Coding for Noisy Channels
Input Interval Straddle | Operation | Output
Counter
[0, 16) 0 get input
a [0, 3.2) 0 round
[0, 3) 0 X2 0
[0, 6) 0 X2 0
[0, 12) 0 get input
b [2.4, 8.4) 0 round
3, 8) 0 X2 0
[6, 16) 0 get input
b [8.4, 14.4) 0 round
9, 14) 0 x2 — 16 1
2, 12) 0 get input
a [4.0, 9.0) 0 round
[4, 9) 0 X2 —8
[0, 10) 1 get input
¢ [7.0, 10.0) 1 round
[7, 10) 1 X2 — 8§
[6, 12) 2 x2 — 8
[4, 16) 3 get input
b [6.4, 12.4) 3 round
7, 12) 3 X2 — 8
[6, 16) 3 get input
c [13.0, 16.0) 3 round
13, 16) 3 x2-16 | 1,0,0,0
[10, 16) 0 x2 — 16 1
[4, 16) 0
Table 1.4:  Finite-precision binary encoding of the source sequence

a,b,b,a,c,b,c




1.2. The History of Arithmetic Coding 15

4) if (high <= half) high := 2xhigh
low := 2xlow
output ‘0’
repeat S times [output ’17]
S :=0 ; goto (3)

5) if (low >= half) high := 2xhigh - one
low := 2*low - one
output ’1°
repeat S times [output ’07]
S := 0 ; goto (3)

6) high := 2xhigh - half ; low := 2%low - half
S := S+1 ; goto (3)

In the program, the words ‘zero’, ‘lquarter’, ‘half’, ‘3quarters’ and ‘one’
stand for the integers representing 0.0, 1/4, 1/2, 3/4 and 1.0, respectively.
This algorithm does not include the termination to find the last digits of
the codeword: when step (2) is reached and no further input is available
from the source, the algorithm stops and the codeword must be completed.

1.2 The History of Arithmetic Coding

We have seen that arithmetic coding relies on three ideas:

1. codewords serve to identify the cumulative probability of a source
block,

2. the cumulative probability of a block can be computed recursively,
and

3. the algorithm can be implemented approximately using finite-preci-
sion arithmetic.

We now seek the origin of each of these ideas.

Who invented the three ideas?

Of these three ideas, the first is the most subtle. We usually think of an
encoder as a function that assigns codewords to source blocks. We draw
trees to represent a code and judge the performance of an encoder by
the expected path length in the tree. Instead, we are now told to use the
D-ary representation of the cumulative probability of a block as a basis for



16 Chapter 1. Arithmetic Coding for Noisy Channels

its codeword. This seems very different from the “mainstream” of coding
and information theory. However, this idea comes right out of Shannon’s
1948 paper [1], Section 8. Shannon proposes to use the binary expression
for the cumulative probability truncated to [— logp]| positions, as a code-
word, where p is the probability of the block. In Shannon’s method, the
blocks must be ordered in order of decreasing probabilities rather than lex-
icographically to compute the cumulative probabilities. This guarantees
that there will always be a codeword interval of size 2~ [—1°8271 ayail-
able. Therefore, Shannon’s method achieves an upper-bound on E[W] of
Hp(X)+1/L, which is better than the bound (1.1) for arithmetic coding.

According to Shannon, the code obtained by his method is essentially
equivalent to the code obtained by Fano’s construction [11]|. For this rea-
son, both methods have become better known as “Shannon-Fano coding”.
In his comparison of the two methods, Shannon calls his method an “arith-
metic process”’, which is the origin of the name we use today. However,
Fano’s construction requires a list of all the block probabilities in order to
generate a codeword. Huffman’s algorithm, which generates the optimal
code for a given probability distribution, also requires a list of all the prob-
abilities. Forming blocks of source symbols enables one to approach the
entropy of a discrete stationary source as closely as desired using any of
the methods named. However, there is a practical limitation to the block
length for any of the constructive algorithms since the number of possi-
ble blocks increases exponentially in the block length. Shannon’s original
method also requires the computation of all the block probabilities so that
they can be ordered for the cumulative distribution. The use of only one
extra code digit per source block allows the blocks to be ordered lexico-
graphically, thereby opening the way for a recursive computation of the
cumulative probability. In this way, large block lengths become practical
as we must compute only the cumulative probability of the actual source
output block and need not worry about other potential output blocks.
Arithmetic coding is used and implemented in practice for block sizes of
several megabytes.

The idea to modify Shannon’s original code in such a way as to compute
the cumulative probability recursively is commonly attributed to Elias.
Elias indeed mentioned the idea to Norman Abramson, who included it
as a note in his book [26]. This is the earliest written reference to the
approach. However, Elias denies having invented the method, although
he was working on it at the time and was aware of its consequences.
Gallager became aware of the idea at about the same time as Elias®.

31 spoke with Peter Elias and Robert Gallager at M.I.T. on April 6, 1998, and
discussed the origin of arithmetic coding with them.



1.2. The History of Arithmetic Coding 17

In Gallager’s words, “this idea was in the air at M.I.T. at the time and
many people were working on it”. Gallager believes that the idea was
originally presented by Shannon as part of one of his lectures at M.I.T.
Whether Shannon, Elias or Gallager invented arithmetic coding, one thing
is clear: contrary to an impression shared by many today, this coding
technique is not a new development. Indeed, it can be seen as a great
classic of information theory since so many great names in the field have
contributed to it. Perhaps calling it “Shannon-Fano-Elias-Gallager coding”
or “Recursive Shannon-Fano Coding” would have done it a better service.

However, it was not until the early 1980s that arithmetic coding came
into widespread use. The third idea we discussed, the realization using
finite-precision arithmetic, was introduced in 1976 by Pasco [16] and by
Rissanen [18]. This explains the relatively small impact of arithmetic cod-
ing prior to their work. With all their elegance, the first two ideas would
not be of much use if the coding method they imply required infinite-pre-
cision arithmetic. Thus, in a certain way, arithmetic coding is indeed a
relatively recent development.

Why did Shannon come up with the cumulative prob-
ability?

We have done our best to give a detailed description of arithmetic coding
and its underlying principles. Still, though we have tried to explain the
“How?” and the “How good?”, we have not touched on the “Why?”. In our
view, no treatment of arithmetic coding would be complete without an
answer to the question: “Why did Shannon think of using the cumulative
probability as a codeword?”. Though it is not possible to give a definitive
answer, we will venture a guess®.

Shannon stood before a problem which can be stated as follows: find a
variable-length, prefix-free set of codewords to represent the output blocks
of a source so as to yield a small expected codeword length. Huffman’s
algorithm is the direct, optimal solution to this problem. Though Shannon
guessed there would be such a constructive solution, he never found it
himself. His approach was founded on the realization that the output of an
ideal source encoder should be a sequence of independent and uniformly
distributed random variables. At first glance, this seems to be only a

4To my knowledge, there is no previous written report of this guess. However,
I do not claim credit for it: this explanation was given to me by Léon Bottou of
AT&T-Labs in the late hours of the night after consuming a considerable quantity
of alcoholic beverage during a conference in Snowbird, Utah in March, 1998. I am
indebted to Léon for having provided an explanation of what I always considered to be
the unsolvable mystery of arithmetic coding.



18 Chapter 1. Arithmetic Coding for Noisy Channels

side-effect of compression. On the other hand, Shannon realized that,
while he could not find an ideal compression scheme, he knew how to
design a device that would transform any random variable into a uniformly
distributed random variable.

For continuous random variables, the cumulative density function can
be used to produce a uniform random variable. Let X be a continuous
random variable whose cumulative density function is fx(.), and let Y =

fx(X). We can write

fr(y) = Prob[fx(X) <y]
= Prob[X < fx'(y)]

= fx(Ux' W)=y,

where the second inequality holds only if fx (.) is strictly monotone, which
is the case when the probability density function px(.) is non-zero over the
range Dx of X. In this case, Y is uniformly distributed over the interval
[0,1]. This explains why the cumulative probability appears in our source
coding problem. The basic idea of arithmetic coding has less to do with a
coding technique than with “probability equalization”®. When fx(.) is not
strictly monotone over Dx, as is the case for discrete random variables,
Y has an “approximately uniform distribution” over the set fx(Dx).

The invention of Shannon’s probability-based coding versus Huffman’s
optimal constructive algorithm is a perfect example of what could be called
Shannon’s method of “bypassing the difficulty” to solve engineering prob-
lems. Prompted by his mentor Fano, Huffman took a direct approach to
the problem of coding a random variable and found the optimal solution
by devising a new algorithmic technique. Shannon reduced the task to
a problem of probabilities and discovered a solution which, while not op-
timal, can be applied recursively with the known advantages. There are
many examples of such bypasses of difficulty in Shannon’s work. One ob-
vious bypass was his invention of typical sequences and random coding,
which bypassed the still unsolved problem of giving a constructive proof
of the noisy coding theorem. Another bypass, which comes closest to our
example, is Bode and Shannon’s trick for constructing the causal linear
minimum-mean-squared-error filter versus Norbert Wiener’s direct solu-
tion of the problem. In his lecture at the ETH Ziirich, Massey illustrates
the discovery of the Bode-Shannon trick with a small tale recounting how
the idea may have occurred to the two scientists:

Claude Shannon and his colleague Hendrik Bode were sitting
in the cafeteria at Bell Labs, lamenting over the difficulty of un-

5This name was suggested by Claudio Weidmann of the EPF Lausanne.



1.2. The History of Arithmetic Coding 19

derstanding Wiener’s proof, nicknamed the “yellow peril” due
to its yellow cover®. Shannon remarked that there was a sim-
ple solution when the observation signal happened to be white
noise. Whereupon Bode retorted that he knew how to trans-
form any observed signal into white noise by applying a filter
to it. Thus the Bode-Shannon trick was born, achieving the
same effect as Wiener’s complicated proof in a much simpler
fashion.

Again, Shannon’s contribution to this bypass was to demand a probabilis-
tic transformation of the signal.

In a final attempt to illustrate Shannon’s bypass technique, we tell a
short tale of our own invention. Imagine two translators who are each
given a text to translate into a foreign language of which they have only
a moderate knowledge. Both translators have a fair notion of the gram-
mar of this foreign language, but their vocabulary is restricted. The first
translator grabs a dictionary and sets out to translate his text. Fach time
he stumbles across a word that he does not know the translation for, he
looks it up in the dictionary and uses the optimal translation for the word.
This first translator uses the “direct approach”. He achieves the most ac-
curate translation of the original. To a native speaker of the language, his
translation will sound correct, but slightly unnatural. The second transla-
tor refuses the dictionary she is offered and sets out to translate the text
using only the vocabulary she already knows. Each time she encounters
a word that she does not know a translation for, she finds a description
in her own words. Her translation will be less accurate and, to a pedantic
native speaker, may sound a little too simple. But her translation catches
the flavor of the foreign language. The first translator uses the methods of
Huffman or Wiener. The second translator uses Shannon’s bypass method.
She does not find the optimal solution to each problem, but her solution
catches the real nature of the problem.

Following this excursion into the history and motivation of arithmetic
coding, we will try to remain true to the tradition of Shannon bypasses of
difficulty as we attempt to use arithmetic coding for noisy channels in the
following sections.”

6this was the time of World War 11, when the term “yellow peril” was more commonly
used to refer to the Japanese enemy forces.

"When I first heard the story of Huffman’s invention of the Huffman algorithm, my
reaction was to think “How could Shannon not have thought of this simple algorithm
himself?”. Huffman’s algorithm has found its way into the basics of information theory
to such a wide extent that it seems almost a trivial idea seen by students like myself.
I was sure that Shannon must have been very angry at himself when Fano told him of
Huffman’s discovery. After writing this chapter, I realize that Shannon was probably



20 Chapter 1. Arithmetic Coding for Noisy Channels

1.3 Arithmetic Coding with Gaps

The field of channel coding has inspired considerably more research than
has source coding. Codes have been developed for every conceivable chan-
nel, relying on mathematical subtleties well beyond the worst nightmares
of any source-coding researcher. For such a researcher to venture into the
field of channel coding is like an English chef trying to open a cooking
school in France.

Nevertheless, we will attempt to construct a Shannon bypass for chan-
nel coding based on the approach to source coding that we assume gave
birth to arithmetic coding. This will lead us to a modified arithmetic
encoder for channels. Although this arithmetic encoder will seem funda-
mentally different from traditional block codes or convolutional codes, will
will show that both of these coding techniques can be viewed as special
cases of our arithmetic encoder.

A Shannon bypass for channel coding

In order to find our Shannon bypass, we need to define the channel coding
problem and describe what its direct solution would be. We consider
the situation when the output sequence of a discrete stationary source
(DSS) must be transmitted over a discrete memoryless channel (DMC)
without feedback. An encoder may be interposed between the output of
the source and the input of the channel, and a decoder will provide the
maximum a-posteriori (MAP) source sequence based on the output of the
channel. The situation is illustrated in Figure 1.3. The channel input
and output random variables are denoted as X and Y, respectively. The
discrete memoryless channel is fully described by its transition probability
distributions Py x (.|z) for all z. The capacity of the discrete memoryless
channel can be computed as

C =maxI(X;Y)
Px

and depends only on those conditional distributions. The channel coding
problem appears in response to the promise made in the channel coding
theorem. We state the theorem when the source encoded is a binary sym-
metric source. In this case, every source sequence is equally likely and
the maximum a-posteriori decoder is equivalent to a maximum likelihood
decoder. If the actual source to be transmitted is a discrete stationary

not angry at all, because he knew that he would never have found Huffman’s solution
as it is just not the type of solution he would have bothered to look for. This of course
is pure speculation.



1.3. Arithmetic Coding with Gaps 21

DSS » Encoder
X A
DMC
Y
) ~ MAP
Sink = Decoder |

Figure 1.3: Situation Considered for Channel Coding

source, then source coding can be used to transform its output into essen-
tially the output of a binary symmetric source.

Theorem 1.1 (The Channel Coding Theorem) Given a discrete
memoryless channel with capacity C, for every R < C and every € > 0,
there exists an encoder of rate at least R and sufficiently large output
block length N for the output of a binary symmetric source such that the
maximum likelihood decoder will achieve a block error rate Pp satisfying

Pp < e.

The channel coding theorem gives rise to the following channel coding
problem.

Given € and a discrete memoryless channel with capacity C,
find an encoder whose rate R satisfies R < C for the output of
a binary symmetric source such that the block error probability
of the maximum likelihood decoder is smaller than «.

The following more specific statement of this channel coding problem for
block coding could serve as a blueprint for its direct solution:

Given a discrete memoryless channel with capacity C' and given
K and N such that K/N = R < C, find a mapping of K bits
into N code digits such that the block error probability of the
maximum likelihood decoder is small.



22 Chapter 1. Arithmetic Coding for Noisy Channels

The solution of this problem is an encoder which fulfills the promise of the
channel coding theorem. The “optimal” solution to this problem would be
an encoder whose intricate structure ensures that the block error proba-
bility is minimized. However, no practical method to construct optimal
codes is known. Moreover, an optimal code would not be of practical
interest unless it also happened to be easy to encode and to decode.

We have stated the channel coding problem in a way similar to our
statement of the source coding problem in the previous section. The
Shannon bypass for source coding was based on the realization that the
output of a perfect source encoder would be a sequence of independent and
uniformly distributed random variables. A device that transforms the out-
put of any source into such a sequence could also be expected to encode
sources efficiently. Thinking along the same lines, we notice that, apart
from the task of providing proper error protection, a channel encoder must
also transform the output of the source into a sequence whose probabil-
ity distribution corresponds to the capacity-achieving distribution of the
channel. Pursuing this analogy, we could consider a Shannon bypass in
which we design a channel encoder as a device to transform the probabil-
ity distribution of the source into the capacity-achieving distribution, and
hope that the error protection properties would follow automatically.

Example: The capacity-achieving distribution of the following binary
symmetric channel with crossover probability ¢ = .1

is the uniform distribution Px(0) = Px (1) = 1/2, as it is for every binary
symmetric channel. If the source to be encoded is a binary symmetric
source, there is no need for an encoder since the source distribution is
already the same as the capacity-achieving distribution.

Obviously, there is an important element missing in our Shannon by-
pass, since the bit error rate in our example will be 0.1 if we use no
encoder. It is not enough to transform the probability distribution of the
source into the capacity-achieving distribution. We have to modify our
Shannon bypass to include the requirement to “dilute” the source output
in order to achieve an information rate below the capacity of the channel.

Example: The capacity of the binary symmetric channel with crossover
probability e = 0.1 is C. = 0.531. Therefore, a code of rate R = 1/2
satisfies the requirement of the coding theorem that R < C'. To encode



1.3. Arithmetic Coding with Gaps 23

the output of a binary symmetric source, a (2,1) repeat code

0 — 00
1 — 11

fulfills our design criteria: its rate is below capacity and the probability
distribution for a single code digit is the uniform distribution.

Again, we find that our Shannon bypass is incomplete. The rate re-
quirement and the probability transformation are both accomplished, but
the code described in the example has no error-correction capability and
the bit error rate remains 0.1. The problem is that, while the distribution
for each code digit is indeed uniform, the code digits are not independent.
Our block encoder has produced a code sequence whose letters are inde-
pendent only when blocks of two code digits are considered as one letter.
This suggests that we consider an “extension channel” which describes two
consecutive uses of the binary symmetric channel.

Example: The extension channel resulting from two consecutive uses
(i.e., the second-order extension channel) of the binary symmetric channel
with crossover probability € = 0.1 is the following discrete memoryless
channel:

11 11
10 10
X e(1—¢) Y
01 01
e(l —¢)

&OO

Its capacity is C = 2(C. and its capacity-achieving distribution is the
uniform distribution over the four possible two-digit input blocks.

00

In terms of the extension channel, we can state our Shannon bypass as
follows:

Construct an encoder which encodes K source bits into N
code digits such that the probability distribution of the code
sequence corresponds to the capacity-achieving distribution of
its IN-th order extension channel.



24 Chapter 1. Arithmetic Coding for Noisy Channels

This problem has no solution for most channels and the reason is obvious
from the nature of a block code. For example, when encoding the output
of a binary symmetric source for a binary symmetric channel using a block
code, the encoder is a function from {0, 1}¥ to {0,1}". Thus, the encoder
cannot possibly achieve a uniform distribution over the input space of the
channel. Therefore, we must be satisfied with a weaker statement of the
Shannon bypass we are aiming for:

Construct an encoder which encodes K source bits into N code
digits such that the resulting probability distribution of the
code sequence considered as an input distribution for the N-th
order extension channel yields a mutual information between
the channel input and the output that is maximum over all
input probability distributions with 2% non-zero terms.

This statement of the Shannon bypass suggests a definition which relates
the capacity of a discrete memoryless channel to the dimensions of the
block code used.

Definition 1.1 The M-input-constrained capacity Cps of a discrete me-
moryless channel described by its transition probabilities Py x (.|z) for all
x 18 defined as

Oy & max 1(X;Y), (1.5)
#(suppPx) = M

where #(A) denotes the cardinality of the set A and suppPx denotes the
support® of Px. The (N, K) block-coding capacity C(n,k) of a discrete
memoryless channel is defined as the 2% -input-constrained capacity Cox
of its N-th order extension channel.

The capacity C of a discrete memoryless channel gives an upper bound
on the rate at which reliable communication is possible but gives no in-
dication as to how an encoder is to be designed for the channel. The
block coding capacity C(ny k) gives no such upper bound, because it is
specific to the rate K/N. However, the block coding capacity is the true
capacity of the channel induced by the block encoder, which is the N-th
order extension channel where only 2¥ input values are being used. In
addition, the corresponding capacity-achieving distribution yields a list
of the codewords which must be used by the block encoder and a list of
codeword probabilities. In this respect, the task of the encoder reduces to

8For a real-valued function f(.), the support of f is defined as the subset of its
domain where f takes on non-zero values.



1.3. Arithmetic Coding with Gaps 25

N | K | Cn,k)/N | Codewords Block Error Probability
2 1 371 00 Pg = ¢
11 = .1
3 |1 287 000 Pg = 3¢?-2¢°
111 = .028
3 | 2 465 000 Pg = 2e—¢°
011 = .19
110
101
4 | 2 .389 0000 Pg = 1-(1+2)(1-¢)°
0011 = .1252
1101
1110
5| 2 339 00000 Pg = 1-(1-¢)3
00111 (14 3¢ — 2¢?%)
11001 = .0669
11110

Table 1.5: The (N, K) block coding capacities of a few extension chan-
nels of the binary symmetric channel and associated codes.

the task of transforming the probability distribution of the source into the
codeword probabilities associated with the (N, K) block coding capacity
of the channel. If the block coding capacity is achieved by more than one
distribution, then either set of codewords and corresponding probabilities
can be used.

Example: The (N, K) block coding capacities of a few extension chan-
nels of the binary symmetric channel with crossover probability e = .1
and the associated codes are represented in Table 1.5. In all the cases
represented, the distribution associated with the (IV, K) block coding ca-
pacity is the uniform distribution over the codewords listed. Furthermore,
this distribution is not unique and the uniform distribution over any es-
sentially equivalent code (codes which can be obtained by permutation
and complementation of the codes listed) also achieves the block-coding
capacity.

It is computationally infeasible to compute the (IV, K) block coding
capacity of a discrete memoryless channel based on the direct approach
used in the example for much larger values of N and K. In order to
construct a practical channel coding method, we will take a step back in



26 Chapter 1. Arithmetic Coding for Noisy Channels

the construction of the Shannon bypass which preceded Definition 1.1.

Hereafter in this chapter, we will restrict our attention to channels
whose capacity-achieving distribution is the uniform distribution. As we
have presented it, arithmetic coding is a method which transforms the
output of any discrete stationary source into a sequence of essentially in-
dependent and uniformly distributed random variables. Therefore, the
rate of the output sequence of an arithmetic encoder is close to 1. If the
output sequence of an arithmetic encoder is to be transmitted over a noisy
channel, we must enable the encoder to achieve a rate which is acceptable
to the channel, i.e., a rate which is sufficiently below the capacity of the
channel. Our hope is that, after modifying our arithmetic encoder to
achieve the desired rate, the encoder will still provide an output distrib-
ution which is sufficiently close to the capacity-achieving distribution of
the channel to ensure a small block error probability.

Shrinking the source intervals.

In an arithmetic source encoder, the length of the codeword obtained
after processing L source digits and computing the corresponding source
interval is the negative logarithm of the length of the largest sequence
interval which fits inside the source interval. In order to modify arithmetic
coding for noisy channels, we need to increase the length of each codeword
so as to achieve the code rate required. This is equivalent to reducing the
size of the codeword intervals. There are two ways that this could be
realized:

1. After the source interval is determined in the usual manner, we can
require the encoder to select a smaller sequence interval inside the
source interval than it normally would. Using this approach, the first
digits of the codeword for a given source sequence are the digits of the
codeword which would have been generated by an arithmetic source
encoder for the same sequence. Following these digits, the channel
encoder adds a number of code digits by shrinking the codeword
interval. This method can be seen to realize a type of systematic
encoding.

2. Alternatively, we could shrink, or rescale the single-letter source in-
tervals used at every recursion of the arithmetic encoder to compute
the source interval corresponding to the source sequence. In this ap-
proach, we abide by the convention of choosing the largest sequence
interval which fits inside the resulting source interval, but the size
of that source interval is reduced because the single-letter source
intervals that were used to compute it have been rescaled.



1.3. Arithmetic Coding with Gaps 27

In practice, we will use a combination of the two approaches. We rely
mostly on the second approach in the design of our channel encoder. We
use the first approach to complete the codeword when a codeword length
is specified but the second method has yielded an insufficient number of
code digits. We now concentrate on analyzing the second approach stated.

The lengths of the single-letter source intervals in an arithmetic source
encoder are equal to the probabilities of the source if the source is a dis-
crete memoryless source, or to its conditional probabilities if the source
is a discrete stationary source. In both cases, the picture of the single-
letter source intervals covering the unit interval [0, 1) is a graphic repre-
sentation of a probability distribution. If we now shrink the single-letter
source intervals as described, the resulting interval lengths do not form a
probability distribution since their sum is not equal to one: gaps appear
between the rescaled source intervals. Figure 1.4 shows an example of

0.0 I I I3 1.0
| ] | ] 1 J |

Figure 1.4: The rescaled source intervals for a ternary source

the rescaled source intervals and the corresponding gaps for a ternary me-
moryless source. The presence of gaps accounts for the name “arithmetic
coding with gaps” which we use to describe this method®.

To remedy the situation where the lengths of the single-letter source
intervals do not form a probability distribution, we could think of the
gaps as being the source intervals corresponding to dummy symbols which
never appear in the source output. The lengths of the rescaled source in-
tervals and the lengths of the gaps now form the probability distribution
Pg(.) which is used by the arithmetic encoder to encode a source whose
true probability distribution is Px(.). Therefore, we will speak of “cod-
ing probabilities” to describe the probabilities Pg (z) which correspond
to rescaled source intervals and to gaps, while keeping in mind that the
coding probabilities of the gaps will never be used in the actual encoding.

Example: For a binary memoryless source whose alphabet consists of
the letters {x1,z2} with probabilities Px (z1) = 0.6 and Px (z2) = 0.4, we
write a table for the true probability distribution Px(.) and for the coding
probability distribution Pg(.) of the source symbols and of the dummy
symbols when the source intervals are rescaled by a factor of v = 1/2:

9The idea to introduce wide gaps between source intervals occurred to me while
eating a piece of Emmentaler cheese, a swiss cheese in which large holes are formed
naturally during the fermentation process.



28 Chapter 1. Arithmetic Coding for Noisy Channels

r | Px(z) | Pg(x)
dy 0 0.2
ds 0 0.3

For a discrete memoryless source, if every interval is rescaled by a factor
of v, then the information rate of the code, i.e., the entropy of a source
letter divided by the average number of code digits per source letter, is

H(X)

— >, pilogp (vps)
H(X)

H(X) —logy vy

R

log, D [bits/use]. (1.6)

When coding the output of a binary symmetric source, this equation re-
duces to

1 :
R > [bits/use]. (1.7)

- 1 —logp

An interesting property of this coding method follows immediately from
(1.6):

This coding method can achieve any rational or irrational rate
R directly, without puncturing, by appropriate choice of the
rescaling parameter -y.

Example: The arithmetic source encoder for a binary symmetric source
with output alphabet 0, 1 is the identity encoder, which uses the source
sequence as its code sequence. The parameters of the identity encoder
are the source probabilities Px(0) = Px (1) = 1/2 and the cumulative
probabilities F'x(0) = 0 and Fx(1) = 1/2. Without changing the cu-
mulative probabilities, we replace the source probabilities by the coding
probabilities Pg(0) = P%(1) = 277. The scaling factor is v = 2!~™ and
we compute the rate of the encoder based on (1.7) to be R =1/7.

In the example and in the derivation preceding it, we have silently
assumed that the cumulative single-letter probabilities used by the source
encoder would remain unchanged for the channel encoder. However, now
that the single-letter source intervals have been rescaled, we are free to
choose the cumulative probabilities by placing the rescaled intervals on
the unit interval while making sure that they do not overlap. How do we



1.3. Arithmetic Coding with Gaps 29

place the intervals to optimize the performance of the channel encoder?
This is one question we will not find a satisfactory answer for, although
it is certainly a central problem. Later in this chapter, we will investigate
the effect of placing the intervals in the simulation of a simple encoder,
but the last word is far from spoken on this matter.

We have obtained this method by constructing a Shannon bypass con-
sidering the channel coding problem from a purely probabilistic point of
view and neglecting the aspect of error protection. However, we will try
to give an intuitive explanation of how this method handles errors. This
will allow us to obtain a notion of how these codes can be decoded.

The key to understanding how errors are handled by this encoder is
to consider what happens when two identical encoders are fed with the
same semi-infinite input sequence differing in only one symbol that occurs
at the k-th step. As they reach the k-th step, both encoders will have
computed the same source interval. In other words, the encoders will be
in the same state. At the k-th step, the two encoders will select different
sub-intervals of this source interval. If the encoders were using infinite-
precision arithmetic and random irrational numbers had been chosen for
all the cumulative probabilities, the probability that the two encoders
would ever converge to the same state in subsequent rescaling operations
is zero. Thus, this method is fundamentally a tree coding algorithm. It
bears similarity to the error-free codes described by Elias in [2] in that
the encoder must be an infinite-state machine. If the source sequence is
never terminated to form a block, the inherent K and IV of the encoder as
stipulated by the coding theorem both become infinite. Nothing prevents
such a code from achieving a zero probability of error, albeit with infinite
decoding delay and infinite decoding complexity.

In practice, we must realize our encoder as a finite-state machine, even
if the number of states is very large when double-precision integers are
used. To understand how the precision of the arithmetic affects the Ham-
ming distance between code sequences, consider the situation of our twin
encoders. Let [f1, fi + p1) be the source interval processed by our first
encoder and [f2, fo + p2) be the source interval of our second encoder fol-
lowing the k-th step. Now suppose that the semi-infinite input sequence
of our first encoder following the k-th step will be such that its source
interval will always include the point f; 4+ 0p; for some 6 € [0,1). Such
a 0 always exists. Since the two encoders process the same information
sequence following step k, the source interval for our second encoder will
always include the point fs +8p,. The semi-infinite code sequences gener-
ated by our twin encoders are the radix-D representations of the numbers
f1 + 6p1 and fo + Opo, where D is the size of the code alphabet. The



30 Chapter 1. Arithmetic Coding for Noisy Channels

numbers f1,p1, fo and ps must be expressed with finite precision. There-
fore, their radix-D representations have a finite number of non-zero digits.
However, 6 is determined with infinite precision because of the recursive
nature of the process. Thus, the radix-D representation of # may have an
infinity of non-zero digits. We leave it as an open question whether with
finite precision € can be an irrational number or whether it must be a
rational number. Now if the paths of the twin encoders were to converge
eventually, their semi-infinite code sequences would coincide from that
moment onwards. Therefore, the radix-D representation of the number

6= (f1 +0p1) — (fa +0p2) = (f1 — f2) +8(p1 — p2)

would have a finite number of non-zero digits. We see that this is neces-
sarily the case when p; = ps. The radix-D representation of the number
f1— f2 has at most as many non-zero digits as those of the numbers f; and
f2, which are given with finite precision. Thus, when the coding probabil-
ities used are all equal, the Hamming distance between code sequences is
upper bounded by the maximum number of non-zero digits of the radix-D
representations of the cumulative probabilities used. However, when the
probabilities are all different, the radix-D representation of 6 may have as
many non-zero digits as that of #, which is determined with infinite preci-
sion. A very small difference between the coding probabilities is enough
to engender this effect. It will be a good strategy in practice to introduce
small differences between the coding probabilities even when the corre-
sponding probabilities of the source encoded are equal, if the Hamming
distance between code sequences is to be maximized.

We have seen that this coding algorithm is a kind of tree coding algo-
rithm. Therefore, it seems natural to decode the output of the channel
using a sequential decoder. In fact, the arithmetic decoder used for source
coding can be viewed as a stack algorithm (see [32]) where the stack size
is 1, as the decoder can always opt for the correct path at each step in the
noiseless case. The next section will be devoted to deriving a metric for
sequential decoding of an arithmetic channel encoder. This metric will be
slightly different from the metric used for convolutional codes to reflect the
fact that, because of the straddling effect discussed earlier, the arithmetic
encoder may produce any number of code digits at each step.

Unfortunately, a sequential decoder is known to be computationally
practical only for rates on the order of the cutoff rate of the channel or
less (see [13]). We have attempted to modify the arithmetic decoder used
in source coding to decode the output of a noisy channel, but this has
led nowhere so far. A Viterbi decoder could be adapted to decode for
the arithmetic encoder but would generally be impractical because of the



1.3. Arithmetic Coding with Gaps 31

large number of states. We could reduce the number of states by reducing
the precision of the arithmetic, but of course the performance of the codes
would then degrade. Is it an eternal dilemma of channel coding that
whenever a good code is really needed, it will be almost impossible to
decode it, so that a weaker code must be chosen?

One important property of this encoder, both in its ideal infinite-state
version and in its real finite-precision implementation, is its causality. Any
error protection for a given information symbol can arise only from code
digits that were generated after encoding the symbol. In other words, if
we consider the block code obtained by terminating the encoding after N
code digits have been generated, this code will have a very small minimum
distance in general. If straddling occurs in the last information digits, the
minimum distance with truncation may even be zero. Therefore, it will be
necessary to encode a tail of known digits following the information digits.
This is similar to the procedure used to terminate a convolutional code.
We will return to the problem of terminating a codeword after discussing
sequential decoding for arithmetic coding.

Before we introduce our metric for sequential decoding, we consider
the relation between the codes generated by arithmetic coding and the
codes used in block coding and convolutional coding.

Where it is shown that arithmetic coding includes block
coding and convolutional coding as special cases.

The coding method presented here differs fundamentally from other coding
methods such as block coding and convolutional coding. A block encoder
performs a mapping of source sequences of length K into code sequences
of length N. In our coding method, we use an arithmetic procedure to gen-
erate code digits progressively as the source sequence is being processed.
As mentioned, the arithmetic encoder can be terminated after encoding
some fixed number of source symbols. Due to the straddling effect, the
termination may produce code sequences of varying lengths. We will use
a trick, to be described later, to force the arithmetic encoder to produce
a code sequence of a given length N. This will make the arithmetic en-
coder into a block encoder. The questions arise: what types of block codes
can be generated by an arithmetic encoder? Can an arithmetic encoder
generate “good” block codes?

The answer to these questions is not as difficult as might be expected.
Consider the binary arithmetic encoder which uses the following two source
intervals:



32 Chapter 1. Arithmetic Coding for Noisy Channels

().(I) ‘0’ .?5 .I75 ‘P 1I.O

The coding probabilities are Py (0) = Pz (1) = 1/4 and the cumulative
probabilities are F'x(0) = 0 and Fx (1) = .75. The encoder starts with the
sequence interval [0, 1) for the empty sequence. If a ‘0’ is encoded, it selects
the source interval [0, .25), rescales it twice, emits the code digits ‘00’, and
returns to the interval it started with [0,1). Similarly, if a ‘1’ is encoded,
the encoder emits the code digits ‘11’ and returns to its original state.
Since the encoder always returns to its original state, it will implement
the simple mapping

0 — 00
1 — 11

which is exactly the (2,1) binary repeat code. Any (N, K) block code
can be implemented by selecting DX source intervals of length D~ such
that the encoder will produce the corresponding blocks of code digits and
return to the source interval [0,1) after each encoding operation.

Example: The binary block code consisting of the codewords {000, 011,
101, 110} can be implemented by an arithmetic encoder using four source
intervals specified by the following table of cumulative probabilities and
coding probabilities:

z_| Fx(x) | Px(z)
zy | 375 | 1/8
rg | 625 | 1/8
T4 | 75 1/8

By determining the indexing of the source symbols in our symbolic rep-
resentation {z1,x2,x3, 24} of the source alphabet, we can determine the
assignment of source symbols to block codewords of the encoder.

There is no particular interest in implementing a block code in this
fashion. However, this answers our question as to whether an arithmetic
encoder can generate “good” block codes. The answer is that an arithmetic
encoder can generate any block code. The question remains whether there
are arithmetic encoders which are not equivalent to block codes and which
will outperform block codes.

A convolutional encoder can be viewed as an encoder formed by a col-
lection of block encoders in which the current block encoder is selected



1.3. Arithmetic Coding with Gaps 33

Y

Y

v,
Figure 1.5: A Simple Convolutional Encoder

according to the value of a certain number of previous information digits.
It is thus possible to implement a convolutional encoder as an arithmetic
encoder in which the rescaled source intervals are assigned on the basis
of a certain number of previous information digits. Such an arithmetic
encoder uses the same approach as an arithmetic source encoder which
is tailored for the output of a discrete stationary source, which bases its
source intervals on the conditional probabilities of the source. When an
arithmetic channel encoder places source intervals on the basis of previous
information digits, the lengths of its source intervals are viewed as con-
ditional coding probabilities. For example, the systematic convolutional
encoder shown in Figure 1.5, which can be viewed as a collection of four
(2,1) binary block codes, can be implemented using the conditional coding
probabilities

rescaled source interval for given
Xy =0 Xy =1 Xi—1Xk—2
[0,.25) [.75,1) 00
[.25,.5) [.5,.75) 01
[.25,.5) [.5,.75) 10

[0, .25) [.75,1) 11

To implement any (IV, K) convolutional encoder of memory m using an
arithmetic encoder, we must determine DX conditional source intervals of
length D~V (where the size D of the coding alphabet must be a prime
number in the case of a convolutional encoder) for each of the D™ possible
states of the register, such that the equivalent conditional block code for
each state corresponds to the mapping realized by the convolutional en-
coder in that state. Again, there is no practical interest in implementing
a convolutional encoder in this fashion.

The arithmetic encoder for noisy channels presented in this chapter can
be viewed as a general coding method that includes both block coding and
convolutional coding as special cases.



34 Chapter 1. Arithmetic Coding for Noisy Channels

1.4 A Metric for Sequential Decoding

A sequential decoder operates by exploring the tree whose vertices corre-
spond to possible encoder states and whose branches are labeled with the
encoded digits resulting from the transition between the states they con-
nect. At every decoding step, the sequential decoder chooses one path to
extend in the partial tree. This choice is based on a metric computed for
each leaf of the partial tree. The essential characteristic of this metric is
that it must enable one to compare encoder paths of unequal lengths. Fano
postulated such a metric on intuitive grounds. In [15], Massey derived a
metric based on the a-posteriori probability of the partial information se-
quence corresponding to a state given the complete received block. Massey
showed that this metric is equal to Fano’s metric for the maximum likeli-
hood case, i.e., when the information digits are independent and uniformly
distributed.

The purpose of this section is to derive a metric following Massey’s
approach which is suited for the arithmetic channel encoder we described.
Without loss of generality, we restrict our attention to the case of a bi-
nary code alphabet. As in Massey’s derivation, the expression for the
a-posteriori probability of reaching a given encoder state given the re-
ceived sequence will be derived. Massey’s derivation relies on a simplifying
assumption which does not apply exactly in the case of a convolutional
encoder. Nonetheless, the metric he obtains, i.e., the Fano metric, works
well in practice for decoding convolutional codes. We will make a similar
assumption for arithmetic coding.

Simplifying Assumptions and Notation

Consider a sequential decoder which is about to examine a node which
we refer to as the current node in the partial encoder tree. Massey’s
simplifying assumption can be stated roughly as follows: the code digits
on the branches in the part of the code sequence beyond the current node
in the encoder tree are independent and identically distributed (i.i.d.),
which distribution is the distribution that achieves the capacity of the
channel'®. Massey considers an idealized situation where this assumption
holds exactly, but the metric that he derives achieves excellent results
in practice when used to decode a convolutional code. Therefore, we
will adopt a similar assumption for our arithmetic encoder. However, we
cannot directly apply this assumption to our problem, as the following
example will illustrate.

10\ fassey forced me to write that he forgot to mention this latter part in his paper [15].



1.4. A Metric for Sequential Decoding 35

Example: We use the following rescaled source intervals to encode the
output of a binary symmetric source:

0.0 0.2 0.8 ; 1.0

Ial 1 J

Suppose that the encoder is about to compute the metric for an encoder
state for which the current source interval is [.49,.89) and straddling has
occurred 4 times prior to reaching the current state. In this situation, it
would be foolish to assume that the future of the code sequence is indepen-
dent of the current encoder state. Given that the current source interval
is “almost contained” in the interval [.5,1.0), we can reliably predict that
the next 5 digits in the code sequence will be 10000. If no straddling had
occurred, we could reliably predict that the next digit in the code sequence
will be a 1.

Thus, we will always have to treat a portion of the future code sequence
separately. This portion consists of at least one future code digit, plus as
many code digits as will result from unresolved straddling operations. We
call this portion of the code sequence the “postponed code digits” of the
current node'!. For the partial code sequence following the postponed
code digits, we will revise Massey’s assumption as follows: the code dig-
its in the part of the code sequence which follows the postponed digits
of the current node are independent and identically distributed, which
distribution is the capacity-achieving distribution of the channel. For an
arithmetic encoder, there is a strong case for making the assumption con-
cerning the distribution of the code digits, since the encoder was designed
mainly to approach the capacity-achieving distribution of the channel.

For the postponed digits, there are two possible code sequences depend-
ing on how straddling will be resolved in later encoding operations. We
can compute the probability of those two code sequences in the previous
example.

Example: (continued) We follow up the subtree of possible encoder states
until straddling is resolved in each leaf. This process is represented in Fig-
ure 1.6, where the encoder operates in floating-point and without rescaling
(see Figure 1.2), showing only the values of the postponed code digits of the
current node on the branches where they are determined. The probability
that the postponed code digits will be ‘01111’ is equal to the probability of
observing the sequence ‘aaa’ at the output of the binary symmetric source,

II'Name offered to me by Jim Massey on the occasion of his 65th birthday.



36 Chapter 1. Arithmetic Coding for Noisy Channels

a
<::::: o [49,.4932)
.49, .506) <i::::

b
(.49, .57) <::::: L0005~ [.5028, .506)
.49, .89) 1 554, .57)

Figure 1.6: Determining the probabilities of the postponed digits

i.e., Py = 273 = .125. The probability of generating the postponed code
digits ‘10000’ is 1 — Py = .875.

Unfortunately, it would generally be impractical to require a sequential
decoding algorithm to look sufficiently far forward in the tree of encoder
states to determine the probabilities of the postponed digits of the current
node. Yet the metric that we will develop requires the use of these prob-
abilities. Therefore, we adopt a new simplifying assumption concerning
the probability of the postponed code digits and their dependence on the
current encoder state: for a given encoder state, let [I, h) be the source
interval computed. The probability Py that straddling be resolved below
1/2, i.e., that the postponed digits be equal to a 0 followed by 1’s, is as-
sumed to be equal to the fraction of the subinterval that lies below the
critical point 1/2, i.e.,

Ly
h—1

The probability that the postponed digits be equal to a 1 followed by 0’s
is necessarily then assumed to be 1 — Fj.

In the previous example, this simplifying assumption yields P, =
(1/2 — .49)/(.89 — .49) = .025. We computed the true P, and found
it to be .125. This assumption will not give a close approximation of the
true Py in general. In addition, the approximation will depend on how the
shrunk source intervals have been placed in the unit interval. However, the
fact that we only consider two possible outcomes for the postponed digits
already makes for a considerable improvement compared to Fano’s metric
if we were to use it directly for our arithmetic encoder. This improvement
has been confirmed by extensive simulation.

Before proceeding to derive the metric, we describe the setting and
introduce some notation. We use a binary arithmetic encoder with gaps
on the output of a discrete stationary source (DSS). The output of our
encoder is transmitted through a binary memoryless channel (BMC) . The
received sequence at the output of this channel is fed into the sequential

P():




1.4. A Metric for Sequential Decoding 37

decoder. This situation is illustrated in Figure 1.7. When computing a

Seq. | ’ Arith. |,
Decoder | Y; ...Yy BMC Xi...Xy | Encoder | U, .| Ug D55

Figure 1.7: Situation for the variable-length decoding problem

metric in our sequential decoder, we are considering a node in the encoder
tree where k information digits have been processed by the decoder. The
following notation will be used for this situation:

Uy ...Uy denotes the k information digits that have been processed by
the decoder at the node currently reached in the encoder tree.

X1 ...Xy denotes the complete output block of the encoder after all K
information digits have been processed, of which the k£ information
digits Uy ...Uy are but a prefix. This output block can be decom-
posed into the following three parts:

X7 ... X, denotes that part of the output block which is determined
by the partial information sequence U ... Uy.

Xp41-..Xnts denotes that part of the output block which is in-
fluenced by the current state of the encoder at time k. This
consists of the next code digit plus the number S — 1 of further
postponed digits caused when the coding interval has straddled
the middle of the unit interval.

Xp1541 --- X denotes the tail of the output block which, following
Massey, we assume to be independent of the information digits
Up...Ug.

Y] ... YN denotes the complete received block at the output of the binary
memoryless channel.

The Metric

The metric we will derive is defined as the logarithm of the a-posteriori
probability of the k£ information bits given the complete received block,
ie.,

L=logP(uy...ugly...yn).

As in Fano’s metric, we use the logarithm with the aim of obtaining an
additive metric which can be computed recursively for each node based



38 Chapter 1. Arithmetic Coding for Noisy Channels

on the metric of its parent node. The metric that we are about to derive
will not achieve this property in the strict sense, but part of the metric
can be computed recursively and another part will have to be computed
individually for each node.

The a-posteriori probability of the information sequence to the current
node can be written as

P(uy...ug,y1..-ynN)
P(y1...yn)

Puy...uglyr ...yn) = (1.8)

We can expand the numerator in (1.8) as follows

P(uy...ug,y1...yn) = P(ur ...ug)P(y1 .. .yn|u1 ... ug).

Using the notation introduced above, we can write the conditional proba-
bility in this expression as

Plyy...ynlur...ux) = P

Ynil - YntS|UL ... Ug) -
YntSH1---YN|UL - .- U)
Y1 ---Yn|x1 ... xp) - Ps - P(YntS+t1---YN)

where we have used Massey’s assumption and the fact that Uy ...Uy,
Xi1...X, and Y7 ...Y,, form a Markov chain. We have introduced the
notation Ps for the probability of the “postponed digits” given the past
information digits. We now derive Ps using P, as given by our simplifying
assumption.

Ps = P(’yn+1---yn+s|U1---Uk)

= Z P(Ynt1 - YntS> Tyl -+ Tnis|us ... ug)

Tn+1---Tn+S
= E P(Yn+1 - -YntS|Tnt1 - - Tnts, Ut ... ug) -
Tn+4+1.--Tn+S

- P(Tp41 - - Tps|ur - .. ug)

= Z P(Yn+t1 .- Ynt5|Tnt1 - Tngs) -

Tn4+1.-.Tn+S

- P(Tp41 - Tpps|ur ... ug)



1.4. A Metric for Sequential Decoding 39

The second conditional probability in the sum is non-zero only when
Tptl ---Tnts 18 equal to “011 ... 1”7 or to “100 ... 07, in which case it
takes the values Py and 1 — P, according to our assumption. Thus, we can
continue

Ps = PYT:L:_1S|XZ¢1S (yn—i—l e yn+5|011 e 1) - Py +
PYnn_l—_F15|X:;_|—i9 (yn_|_1 ... yn+S|100 c e O) * (1 - PO)
n+S
= Py Pyix(yns1l0) J] Prixwil)) +
1=n-+2
n+S
(1—-P) - Pyix (ynt1]1) H Py x (:]0) (1.9)
1=n-+2

Finally, using (1.8) and the results of our derivation, we obtain

_ PS H?:l P(yz|xz)P(u1 .. uk)
[T1:5° P(y:)

Taking the logarithm of this expression, we obtain our metric

P(uy ... uglyr ... yn)

n P( |£L') n+S+1
E:Zlogﬁ + log P(uy .. .ux) + log Ps — Z log P(y;).
i=1 L i=n+1

(1.10)

When the source considered is a discrete memoryless source, the metric
becomes

n P( ‘513) k n+S+1
L= Zlog ﬁ + ZlogP(ui) + log Ps — Z log P(y;). (1.11)
i=1 ¢ i=1 i=n+1

As mentioned earlier, this metric is not strictly additive, in the sense that
it cannot be computed for each node based on the metric of its parent node.
However, the first two terms of (1.10) are identical with Massey’s metric,
while the following two terms correspond to the modification required to
handle the postponed digits. Massey’s metric can be computed recursively,
but the additional terms corresponding to the postponed digits must be
calculated individually for each node. Note that the probability Ps of
the postponed digits must be taken into account even for nodes in which
no straddling has occurred because the next output digit of the encoder
depends on the current encoder state in the same way as the straddling
digits do.



40 Chapter 1. Arithmetic Coding for Noisy Channels

Our metric simplifies for the case where the source is a binary symmet-
ric source and the channel considered is a binary symmetric channel with
a crossover probability of . According to Massey’s forgotten assumption,
the received digits at the channel output will be independent and uni-
formly distributed. Massey’s metric, which in this case is equal to Fano’s
metric, becomes

LEano = w(e)loge + (n —w(e))log(l —¢) + (n — k) log 2, (1.12)

where w(e) denotes the Hamming weight of the error sequence. The addi-
tional term for the “postponed digits” is

Ls =log Ps + (S +1)log 2. (1.13)

1.5 Implementation and Results

Seq. Arith.
Decoder BSC Encoder |

BSS

A

A

Figure 1.8: Simulation setup

In this section, we investigate the performance of an arithmetic encoder
in the simulation of a simple communication system. The arithmetic en-
coder is applied to the output of a binary symmetric source (BMS). The
output of the encoder is transmitted over a binary symmetric channel
(BSC) whose output is forwarded to a sequential decoder. This situation
is illustrated in Figure 1.8. The sequential decoder uses the stack algo-
rithm described in [32]. Erasures are declared if a specified number of
decoding steps have been performed without yielding a decoded block,
where a decoding step is defined as one operation of extending the top
path in the stack.

The aim of these simulations is not to measure the overall performance
of arithmetic coding for noisy channels or to determine the choice of in-
tervals for the best arithmetic encoder. Rather, we aim to obtain a first
impression of the capabilities of this coding method, to evaluate the effect
of the various parameters involved, and to perform a rough comparison
with a few convolutional encoders, which are its closest relatives in this
particular setup since they can also be decoded using a sequential decoder.

In all but one of the simulations, the shrunk source intervals of the
arithmetic encoder are placed on the edges of the unit interval as indicated
in the following picture:



1.5. Implementation and Results 41

O.(I) ‘O; 29I 1 _%9 (1; 1I.O

The rate of the encoder is specified by (1.7) which can be written as

1

= ——— |bit . 1.14
T~ log, 2p [bits/use] (1.14)

It would seem natural to represent the performance of an arithmetic en-
coder by varying the rate and giving the measured probabilities of error
in function of the rate for a given channel. However, since arithmetic cod-
ing is the only coding method known to us where the rate can be varied
continuously, the performance of encoders is usually represented by fixing
the rate and varying the crossover probability of the binary symmetric
channel. We will stick to this convention.

It is a common practice in coding theory to represent the performance
of a coding system by plotting the bit error rate versus the ratio Ey/Ng
of the energy per information bit to the noise spectral density. To convert
the crossover probability of the binary symmetric channel to Ej, /N, for a
given effective code rate R.g, we assume an additive white Gaussian noise
channel with binary antipodal signaling. As will be explained shortly,
the effective code rate of an arithmetic encoder is slightly lower than the
code rate expressed in (1.14) because of the tail bits appended at the end
of an information block. To avoid any confusion as to the units used,
we include the conversion formulas that we used in an appendix to this
chapter. Among others, those formulas show the meaning of the expression
“one dB above the cutoff rate Ry”, which may sound confusing since it is
not the cutoff rate but Ej /Ny which is expressed in dB.

We now explain the procedure used to add tail digits to the end of
an information block and show simulation results which quantify the ef-
fect of the tail. The effect of the placing of the source intervals will be
investigated in a simulation where the intervals are placed symmetrically
at random for a given channel and a given rate. Finally, we compare
the performance of an arithmetic encoder with the performance of three
convolutional encoders.

Tail Digits and Termination

Like a convolutional encoder, an arithmetic encoder is a causal device,
meaning that the code digits emitted by the encoder at any given time
cannot depend on information digits which have not been processed yet.
Therefore, if the code sequence is terminated immediately after the last
information digits of a block have been processed, those last digits will



42 Chapter 1. Arithmetic Coding for Noisy Channels

contribute very little to the code sequence and the probability of decoding
them incorrectly will be very high. In other words, the Hamming distance
between code sequences corresponding to information blocks which differ
only in their last digits is small.

In order to overcome this shortcoming of causal encoders, tail digits
which are known to the encoder and the decoder are appended at the end
of an information block. For a convolutional encoder, it is common to
append a number of zero digits equal to the memory m of the encoder so
as to ensure that the encoder will have been driven back to its zero state
after the last digit has been encoded. A sequential decoder considers a
tree of possible encoder paths rather than a trellis, so it is not necessary to
append m tail digits. Any number of tail digits up to m could be encoded.
If the same tail sequence is encoded in every path of the encoder, it is not
useful to encode more than m tail digits, as the resulting code sequences
would not differ in the portion emitted after the first m tail digits have
been processed. For the convolutional encoders presented shortly, we have
used the conventional approach of encoding m tail zeros.

For an arithmetic encoder, the situation is slightly more complex due
to two effects which we now describe briefly:

1. The encoder does not automatically generate a code sequence of the
same length for each encoded block because of the straddling effect
discussed earlier. Therefore, adding a fixed number of tail digits
will not necessarily provide the same protection for the last digits of
every information block encoded.

2. There is no obvious maximum for the number of tail digits when the
same tail sequence is encoded in every encoder path. For example, if
the source intervals are placed at the edge of the unit interval and a
tail of zeros is appended to the information sequence, encoding the
tail will effectively focus the source interval on the value of the lower
endpoint it had attained after processing the information sequence.
In this case, the number of significant digits in the finite-precision
radix-2 representation of the lower endpoint of the source interval
provides an upper bound for the number of useful tail zeros that can
be appended. It is not clear what this upper bound would be if the
source intervals were to be placed differently or if the tail does not
consist only of zero digits.

In order to gain more flexibility in the length of the tail appended, we use
a trick which circumvents the second effect stated. Incidentally, the same
trick could also be used to allow longer tails for a convolutional encoder.



1.5. Implementation and Results 43

We use a pseudo-random generator to generate a tail sequence
for every information block, where the initial seed of the pseudo-
random generator depends on the last digits of the information
sequence. In each path of the code tree, the decoder can gener-
ate a sequence of tail digits which are identical to the tail digits
the encoder would have generated in this path. The pseudo-
random generator used is very sensitive to small variations of
its seed value. Thus, the tail sequences encoded in neighboring
paths in the code tree are expected to be independent.

Using this trick, we are free to use tail sequences of any length. To cir-
cumvent the first effect stated above, we use the following procedure:

The length K of an input block and the length N of an out-
put block are fixed, giving an effective code rate Reg = K/N.
The encoder will encode the information block followed by tail
digits generated by the pseudo-random generator until it has
generated a code sequence of length at least V. The first N
digits of this code sequence are transmitted.

By using this procedure, we guarantee that the arithmetic encoder will
always be able to generate a code block of length N for an information
block of length K, except in the unlikely case when the encoder follows a
path where straddling is never resolved. In practice, this case is excluded
by requiring that the arithmetic encoder be given a maximal number of
allowed straddling operations, after which it intervenes by shifting one
endpoint of the source interval inwards to force a resolution.

In the procedure described, the effective length of the tail is determined
by choosing the natural rate of the arithmetic encoder according to (1.14).
Therefore, when the length of the tail is varied in our simulations, the
effective code rate Rog = K /N remains constant. The effective length ¢
of the tail is given as

t=N- (1.15)
where R is the natural rate computed in (1.14).

The metric used by the sequential decoder in the portion of the encoder
tree corresponding to the tail digits must be modified to reflect the fact
that the digits encoded are not the output of a binary symmetric source
as is the case for the information digits. Since the digits encoded by
the encoder are known to the decoder, the new metric is obtained by
setting P(u;) = 1 in (1.11) if u; is the correct tail digit at position 7 and
P(u;) = 0 if it is not, in which case the metric is equal to —oo. For



44 Chapter 1. Arithmetic Coding for Noisy Channels

Input block size K 128

Output block size N 256

Effective rate Reg 1/2

Ey/Ny | 5.59 (1 dB above Ry)

Crossover probability e .0285

Stack size 64’000

Maximum steps before erasure 32’000

Table 1.6: Parameters for the simulation results in Figures 1.9, 1.10
and 1.11

Figure 1.9: Bit error rate P, in function of the tail size ¢



1.5. Implementation and Results 45

6 8 10 12 14 4 16 18 20 22

Figure 1.10: Block error rate Pg and probability of erasure P, in
function of the tail size ¢

Figure 1.11: Pp + P, in function of the tail size ¢



46 Chapter 1. Arithmetic Coding for Noisy Channels

a binary memoryless channel, the term in the metric corresponding to
Fano’s metric when w; is the correct tail digit becomes

LEano = w(e)loge + (n —w(e))log(l —€) + nlog2, (1.16)

and the term corresponding to the postponed metric remains the same as
in (1.13).

Figure 1.9 shows the bit error rate measured in a simulation where the
size of the tail was varied using (1.15) while all other parameters were kept
constant. The parameters of this simulation are given in Table 1.6. The bit
error rate gives an incomplete picture of the performance of the encoder
because it does not take erasures into consideration. In all the results
shown, an erased block does not contribute to the bit or to the block error
rate. Figure 1.10 shows the block error rate Pgp and the probability of
erasure P, measured in the same simulation. It appears that the encoder
trades block errors for erasures as the tail size is increased. This tendency
is analyzed in Figure 1.11 where the sum of P and P, is plotted in
function of the tail size . As the plot shows, it appears that a tail length
of 16 is virtually optimal in the sense that it minimizes the sum of Pg and
P.. This length depends on the parameters of the code, of the channel
and of the decoder involved.

The effect of the placing of the source intervals

A simulation was performed in order to investigate the effect of how the
source intervals are placed in the unit interval. Since the metric derived
assumes that the intervals are placed symmetrically around the middle
of the unit interval, we did not try to place the intervals asymmetrically.
The tail size t was fixed at 16 which, given the effective rate of 1/2 and
the block sizes chosen, yields a source interval size of py = 0.272626933
for both source intervals. The sum of the block error rate Pg and the
probability of erasure P, was measured in a series of 150 simulations using
the parameters indicated in Table 1.7. In each simulation, a number x was
selected at random between 0 and 1/2 — pg, and the source intervals were
chosen to be [z, x+po) for the source digit ‘0’ and [1 —z —pp, 1 —x) for the
source digit ‘1’. The resulting measurements are plotted in Figure 1.12 in
function of the lower endpoint x of the left source interval.

On its left endpoint, the graph includes a measurement for the intervals
[0, po) and [1 — pg, 1) which yields Pg + P. = 10~3. However, the measure-
ment for the right endpoint of the graph corresponding to the source inter-
vals [1/2—po,1/2) and [1/2,1/2+ po) is not included in the graph because
it yielded Pg + P. = 2.8 x 102 which is an order of magnitude worse than



1.5. Implementation and Results 47

Input block size K 128

Output block size N 256

Tail size t 16

Effective rate Req 1/2

Ey/No | 5.59 (1 dB above Ry)

Crossover probability & .0285

Stack size 32’000

Maximum steps before erasure 16’000

Table 1.7: Parameters for the simulation results in Figure 1.12

x 10

1.8¢

=
i
T

PB+Pe

=
N
T

0.8

0.6 1 1 1 1
0 0.05 0.1 0.15 0.2

Figure 1.12: P+ P. in function of the left endpoint x of the left source
interval



48 Chapter 1. Arithmetic Coding for Noisy Channels

any other measurement in the graph. The graph shows a slight tendency
for better performance when the source intervals are placed wider apart
on the unit interval. The best measurement in the graph was obtained for
the intervals [0.0434650148, 0.3160919478) and [0.683908052, 0.956534985)
which yielded Pg + P, = 7.1 x 10~*.

Apart from excluding the bad choice of adjacent intervals, the results
of these measurements encourage an exhaustive search for good arithmetic
encoders. The performance of the encoder appears to be very sensitive to
the choice of intervals. It may be that encoders using asymmetric intervals
would perform even better than the encoders considered, but our metric
would have to be modified for this case. There are endless variations of
encoders that could be investigated, as for example encoders using more
than two source intervals or encoders using conditional coding distribu-
tions. The results of the measurements performed provide a motivation
to investigate further such variations.

Comparison of arithmetic coding with convolutional
coding

A simulation was performed in order to compare the performance of an
arithmetic channel encoder with the performance of convolutional en-
coders. Such a comparison is made difficult by the difference in the effec-
tive code rate between convolutional encoders, which varies as the memory
of the encoder determines the tail length. Furthermore, in order to make
a fair comparison between the bit error rates of various encoders when the
a sequential decoder is used, the probability of erasure must be identical
for the encoders considered.

Figure 1.13 shows the results of the simulation, whose main purpose
was to compare the performance of an arithmetic encoder (curve 4) with
the performance of the R = 1/2 non-systematic convolutional encoder of
memory 12 with an optimum distance profile (curve 2) as specified in [32,
Table 12.1D]. To ensure a fair comparison, the effective rate of the arith-
metic encoder was chosen to match the effective rate of the convolutional
encoder exactly, i.e., K = 128 and N = 280 for both encoders. Further-
more, the parameters of the arithmetic encoder were fine-tuned so that its
probability of erasure matches the probability of erasure of the memory 12
convolutional encoder very closely over the whole range considered. This
required that the tail size of the arithmetic encoder be set to t, = 17 (as
compared to the tail size t.,, = 2 x 12 = 24 of the memory 12 convolu-
tional encoder) and that the sequential decoder for the arithmetic encoder
be allowed a larger stack size and a greater number of computations be-



1.5.

Implementation and Results

49

Table 1.8: Parameters for the simulation results in Figure 1.13

Convolutional Encoders Curves 1, 2, 3

R.g for memory 6 % = 4776

Regr for memory 12 % = 4571

R.g for memory 16 % = 4444

Stack Size 32’000

Maximum steps before erasure 16’000
Arithmetic Encoder Curve 4

Input block size K 128

Output block size N 280

Tail size t 17

Effective rate Reg 4571

Stack size 64’000

Maximum steps before erasure 50’000

~uncoded

» 4.)

Ey/No

4.5 5 5.5 6 6.5

7 7.5 8

Figure 1.13: Bit Error Rate P, in function of E; /Ny for convolutional
encoders of memory 6 (1.), 12 (2.), 16 (3.) and for an arithmetic encoder

(4.)



o0 Chapter 1. Arithmetic Coding for Noisy Channels

fore declaring an erasure. The resulting encoder parameters are shown in
Table 1.8.

Figure 1.13 also shows the performance for uncoded transmission, and
the performance of the R = 1/2 non-systematic convolutional encoders of
memory 6 (curve 1) and of memory 16 (curve 3) with optimal distance
profiles as specified in [32, Table 12.1D]. Since E,/Ny depends on the
effective rate of transmission, each curve is automatically shifted according
its effective rate of transmission. However, the probabilities of erasure for
the encoders of various memory sizes do not coincide in general, and there
are no erasures at all for uncoded transmission?!2.

Based on the results of this simulation, we would argue that the per-
formance of the arithmetic encoder compares well with the performance
of the convolutional encoders tested. The comparison with the memory
12 convolutional encoder is particularly significant, since we have taken
appropriate care to allow a fair comparison. In this respect, it should be
pointed out that the convolutional encoder considered is the optimal en-
coder of the type and dimensions specified, while the arithmetic encoder
has not been optimized in any way. The comparison shows that the bit
error rate of the arithmetic encoder falls less steeply than that of the
convolutional encoder as a function of E,/Ny. On the other hand, the
arithmetic encoder performs significantly better for low values of Ej/Nj.
This gives a clear incentive to investigate the use of other decoders, better
suited for very noisy channels than a sequential decoder, in conjunction
with arithmetic channel encoders.

1.6 Discussion and Open Problems

We have presented a new coding method for noisy channels based on the
well-known arithmetic encoder used in source coding. We summarize the
characteristics of this coding method and state a few of the open problems
surrounding it:

e The rate R of an arithmetic channel encoder can be any real number.
Equation (1.6) relates the rate of the encoder to the factor by which
the source probabilities are shrunk to yield coding intervals. The rate
could even be modified continuously while encoding an information
sequence.

121n addition, the memory 6 encoder attains its cutoff rate Ro for E,/Ng = 4.52dB,
the memory 12 encoder and the arithmetic encoders attain their cutoff rate for
Ey,/No = 4.45dB and the memory 16 encoder attains its cutoff rate for E;/Ng = 4.41dB.
Therefore, the memory 16 encoder has an advantage over the memory 12 encoder and
the memory 6 encoder has a disadvantage.



1.6. Discussion and Open Problems o1

e The encoding is specified by the endpoints of the coding intervals.
These are real-valued parameters which can easily be tuned while
encoding an information sequence. This may be an asset when con-
sidering this method for adaptive coding or for coding for channels
with feedback. Indeed, there appears to be a close similarity between
the coding method presented here and Horstein’s coding algorithm
for channels with noiseless feedback. This parallel has yet to be
investigated.

e Arithmetic coding for noisy channels can be seen as a generalized
coding method that subsumes both block and convolutional coding.

e When designing our method, we have specifically assumed that we
were dealing with channels whose capacity-achieving distribution is
the uniform distribution. If this were not the case, the use of an
arithmetic decoder to transform the output distribution of an arith-
metic channel encoder into the capacity-achieving distribution of the
channel could be investigated.

e Our preliminary measurements of the performance of an arithmetic
channel encoder indicate that this encoder may be particularly useful
for channels with a low signal-to-noise ratio. It was not possible
to investigate this more closely because of the limitations of the
sequential decoder used. This suggests that one should search for
other decoders which can be used in conjunction with an arithmetic
channel encoder. In particular, the possibility of using a Viterbi
decoder should be investigated.

e A thorough investigation of the code generated by an arithmetic
channel encoder and how it relates to the parameters of the encoder
would contribute considerably to the search for good arithmetic chan-
nel encoders.

e Though random coding arguments certainly apply to a general arith-
metic encoder due to the inclusion of block coding and convolutional
coding as special cases of this encoder, it would be interesting to de-
velop such arguments specifically for arithmetic channel encoders.

Finally, since this channel coding algorithm is based on a source cod-
ing algorithm, it can be used for joint source and channel coding in a very
natural way. In fact, we have always assumed that we were encoding the
output of a discrete stationary source in our derivation of the encoder.
The metric we derived for the sequential decoder is based on a-posteriori
probabilities. Therefore, the metric and the decoder can easily be used for



52 Chapter 1. Arithmetic Coding for Noisy Channels

joint channel and source decoding. To illustrate this aspect of the coding
algorithm presented, we conclude this chapter with a tongue-in-cheek por-
trayal of the divisions currently separating the source coding community
from the channel coding community and how they came to be.

Of coding for unicorns.

When Shannon wrote his paper in 1948, the “information theory commu-
nity” consisted of himself and a few colleagues who were aware of his work.
His paper had a few sections on coding for the Noiseless Channel and a few
sections on coding for the Noisy Channel. For a few years, the same peo-
ple were busy finding solutions to the coding problem for both channels.
Then, as time went on, these became separate fields with hundreds of re-
searchers working separately in each field. There are separate conferences
on the topic of “source coding” and “channel coding” and separate sessions
at Information Theory symposia. Researchers working in one field rarely
visit the conferences and sessions devoted to the other field. This would
be fine if the problems of source and channel coding were truly separable
as many researchers in the two fields would like to believe. However, as we
will show, the requirements of both fields are fundamentally incompatible.
The position of a “source coder” can be summarized as follows:

I search for the optimal method for coding and decoding a dis-
crete stationary source for a noiseless channel. If the “channel
coders” are doing their job properly, I can count on having a
truly noiseless channel to code for.

The position of a “channel coder” can be summarized as:

I search for the optimal way of coding and decoding the output
of a binary symmetric source for a noisy channel. I can make
the error probability as small as desired for any rate below the
capacity of my noisy channel. If the “source coders” are doing
their job, I can count on having a true binary symmetric source
at the input of my encoder.

Both positions are based on an unrealistic assumption about the other
field. The noiseless channel that the “source coder” expects to obtain
from the “channel coders” is a channel with zero error probability. As any
“channel coder” will tell him, this is not possible under most circumstances.
On the other hand, while the “source coders” can turn the output of almost
any source into a close approximation to the output of a binary symmetric
source, they cannot decode what they encoded if there is even one error left



1.6. Discussion and Open Problems 53

in the code sequence they receive. Indeed, the better their source coding
algorithm, the more an error will propagate in general. If presented with
this fact, our “channel coder” will mutter something like:

These “source coders” must get a grip on the problem of error
propagation.

But this seems to be as difficult as turning a noisy channel into a noiseless
one. This dispute will continue for as long as the “source coder” and the
“channel coder” don’t finally collaborate and try to solve their common
problems together.

It seems as if the arithmetic encoder that we presented provides an
almost ideal setting for this collaboration. The distribution of tasks would
be as follows:

1. Leave the task of encoding the source for the channel to us “source
coders”. We have an excellent algorithm for doing so and we are
better at providing the input distribution and rate that the channel
really needs.

2. Leave the task of decoding the channel output to the “channel coders”.
They have several excellent algorithms for implementing the optimal
Bayesian decoder, while the arithmetic decoder we have devised is
completely useless for anything but a truly noiseless channel or a
UNICOTN.

Appendix: Conversion Rules between ¢ and
Ey /Ny

The relation between Ej, /Ny and the crossover probability e of the binary
symmetric channel is given in [34] as

E 1 — 2¢)2
== (€, Rest) = 1010g;, erf 1 [(Ris)

N > ] [dB] (1.17)

for the additive white Gaussian noise channel when binary antipodal sig-
naling is used. Reg is the effective rate of the code obtained by dividing
the length of an input block (excluding tail digits) by the length of an
output block (including encoded tail digits). The function erf~1(.) is the
inverse of the error function, which is defined as

e 2 T _ 42
erf(x) def ﬁ/ e Vdt
0



54 Chapter 1. Arithmetic Coding for Noisy Channels

for z € [0,4+00) and erf(—z) = —erf(z).
The relation (1.17) can be inverted to give

E 1 1
£ = 5% <FZ’R6H> = 5 — éerf <\/Reﬁ‘10Eb1/0N0> .

The cutoff rate Ry of a binary symmetric channel with crossover prob-
ability ¢ is

Ro(e) =1 —log, (1 +/e(1 — 5)) :

This relation can also be inverted to yield

1 1
9 :€RO(Reﬁ‘) = 5 — 5\/1 _4(2_Reff — 1/2)2

which gives the crossover probability € for which an encoder of a given
rate Res is used at the cutoff rate of the corresponding binary symmetric
channel.

Thus, the expression “z dB above Ry” is used to mean that Ej, /Ny for
the channel and the code used is z dB above v, [er, (Res), Res]-



Chapter 2

Universal Arithmetic
Coding

In one of his most quoted papers [3], Elias introduced universal represen-
tations of the integers. In effect, his representations are codes whose ex-
pected codeword length is upper bounded when used to encode any finite
or countably infinite source whose probability distribution is monotone
non-increasing. Although Elias was not the first to study universal source
coding (see Lynch [14] and Davisson [9]), his approach has influenced all
subsequent research in the field. In this chapter, universal arithmetic cod-
ing for finite-alphabet sources will be considered. The optimal coding
distribution for any source whose probability distribution lies in a convex
set known as a polytope will be sought. This includes as a special case the
set of all monotone distributions for a given finite alphabet size and the
set of all monotone distributions with a given expected value and a given
finite alphabet size. These two cases of practical interest will find their
application in the source coding algorithms discussed in the remaining of
this thesis.

Many results in this chapter are not new. In unpublished work [12],
Gallager discovered the optimal coding distribution for universal coding
over any convex set of probability distributions. As reported in Krichev-
sky’s book [31], Ryabko solved the same problem independently and dis-
covered the optimal coding distribution for the set of monotone distrib-
utions for a given alphabet size. Nevertheless, there are two reasons for
including this discussion in this dissertation. One reason is that the results
are relevant for the source coding algorithms presented in the next chap-
ter. The second reason is that, except where stated, the results presented

29



56 Chapter 2. Universal Arithmetic Coding

here were obtained independently of Gallager’s and Ryabko’s work. As a
result, the approach described differs considerably from both Gallager’s
and Ryabko’s derivations.

2.1 On Universal Coding

The field of universal coding has one undeniably impressive feature: its
name. It is inspiring, almost magical, and conjures up thoughts of space
travel and science fiction. It attracts the attention of research students
who, like this writer, would much rather be working in universal coding
than in “source-independent coding for any member of a class of sources”.
As often happens when a sensational term enters the realm of science, it
is difficult to formulate a precise definition for it. We will discuss some
definitions and find none of them satisfying for our purpose. We will
bypass this difficulty by using the more prosaic, but clearly defined concept
of optimality to describe the type of codes that we will be seeking in this
chapter.

Plea for a better definition of the term “universal”

We distinguish between the discipline known as “universal coding” and the
adjective “universal” used to modify a specific code or encoder. We claim
that there is a broad consensus on the meaning of the former, while there
is disagreement on the precise meaning of the latter.

The discipline known as “universal coding” can be described as follows:

Definition 2.1 An encoder is designed for universal coding if it is de-
signed to encode the output of any source in a class of sources rather than
the output of one particular source.

One strategy for universal coding consists in estimating the parameters of
the source based on the observation of the received sequence and adjusting
the parameters of the encoder accordingly. Whenever the parameters
of the encoder are modified in function of the particular sequence being
encoded, we speak of an adaptive encoder. In this chapter, we are only
interested in non-adaptive encoders and adaptive encoders are excluded
from the following discussion.

According to Definition 2.1, when we specify that an encoder is de-
signed for universal coding, we do not assert anything about its perfor-
mance over the given class. Any encoder can be used for universal coding
as the following example will show.



2.1. On Universal Coding o7

Example: The trivial code with one codeword of length 1 can be used
for universal coding over the class of all discrete stationary sources. The
corresponding encoder will generate the length 1 code sequence when used
to encode the output of any discrete stationary source, independently of
the particular parameters of the source being encoded. The performance
of this encoder will be terrible for most discrete stationary sources, since
the best decoder will be incapable of reproducing the source sequence in
almost all cases.

The trivial encoder in our example is a lossy encoder (for nontrivial
sources), meaning that the source sequence cannot always be recovered
exactly from the code sequence. The definition of universal coding we
gave applies to lossy and lossless coding. However, we will focus only on
lossless coding for the remaining of this chapter.

When the adjective “universal” is used to modify a particular encoder,
it certifies that the encoder is fit to be used for universal coding. As we
have seen, any code or encoder could be used for universal coding for better
or for worse. Therefore, the adjective “universal” must imply something
about the performance for the given class of sources of the encoder it
modifies.

In his book “Universal Compression and Retrieval” [31], Krichevsky
gives a simple definition of a universal code:

Definition 2.2 (Krichevsky) A code is universal if it is good for several
sources.

This definition relies heavily on the interpretation of the term “good”. A
mathematician would probably reject this definition as imprecise. A prac-
tically minded engineer might translate this definition as follows: “A code
is universal if there is a sufficient number of customers willing to pay to
encode the output of several sources with it as to remunerate the code’s in-
ventor”. An academic discussion on the universality of a given code would
then necessarily involve speculation on its potential commercial success.
Krichevsky’s definition is clever and it shows the aim of a universal en-
coder in simplest terms. Yet it cannot be used to determine whether a
particular code is universal or not. In a way, it is akin to our definition of
universal coding as a discipline.
In [3], Elias gives the following definition:

Definition 2.3 (Elias,1975) A countably infinite prefiz set of codewords
has the universal property if, given any countable set M of messages and
any probability distribution P defined on M, assigning messages in order



58 Chapter 2. Universal Arithmetic Coding

of decreasing probability to codewords in order of increasing length gives
an average codeword length that is bounded above by

K1 + K-H(P),

where K1 and Ko are constants > 1 and H(P) is the entropy of the dis-
tribution P.

This definition is for a restricted type of encoders' and one particular
class of sources. Given these restrictions, the definition fulfills all of our
expectations: most countably infinite prefix sets of codewords will not sat-
isfy the bound stated. Only those which do will earn the name “universal
code”. As expected, the adjective “universal” implies a bound on the per-
formance of the encoder on the class of sources. However, Elias’ definition
cannot be generalized to a wider class of sources and codes. For example,
if we consider a class consisting only of discrete memoryless sources with
a given alphabet size IV, any prefix-free set of N codewords would fulfill
the bound in Elias’ definition.

Krichevsky’s definition of a universal code corresponds to our concept
of universal coding but it does not provide a precise tool to distinguish
between codes that are fit and codes that are unfit for universal coding.
Elias’ definition gives us such a tool only for a particular instance of uni-
versal coding. Unfortunately, we found no definition which fulfills our
requirement in general. Therefore, we will refrain from using the appella-
tion “universal code” and describe the codes in which we are interested by
using the concept of optimality instead of universality. In short, we can
say that

An encoder is optimal for universal coding over a class of
sources if there exists an upper bound on its performance over
the class such that no other encoder achieves a better such
upper bound.

There are several ways one can define an upper bound on the performance
of an encoder over a class of sources and we will discuss some of those
bounds for universal arithmetic coding shortly. Before we do so, we must
argue against another definition of a universal encoder which is based on
the concept of optimality.

Whatever the particular upper bound that we select to determine the
optimality of an encoder over a class of sources, it is evident that if there

IThough Elias’ definition of the term universal seems to apply to codes rather than
encoders, his requirement that codewords of increasing length be assigned to messages
in order of decreasing probabilities specifies the encoding to be applied.



2.1. On Universal Coding 09

existed an encoder which achieved the entropy for every source in the class,
this encoder would necessarily be optimal. This is because of Shannon’s
converse to the noiseless coding theorem which states that it is not possible
to encode the output of any source with an expected codeword length
below the entropy of the source. It was discovered in the early days of
universal coding that some families of encoders have a surprising property
which we define as follows.

Definition 2.4 Consider a parametric family of encoders C = (Cy)nen
and a class of sources S. For every value of the integer parameter n, C,
1s an encoder which can be used for universal coding over the class S. The
family of encoders C is said to be asymptotically optimal for S if, for every
source in S, the performance of the encoder C,, considered as a function
of n, tends towards the entropy of this source as n tends to infinity.

For example, S could be the class of all binary memoryless sources and C,,
an encoder which encodes blocks of n source digits using a specific code.
The coding method proposed by Lynch [14] and Davisson [9] is asymp-
totically optimal, as is one of the universal representations introduced by
Elias in [3], though Elias’ definition of asymptotic optimality differs from
the definition given here.

When the first asymptotically optimal encoder families were discov-
ered, it became widely accepted that an encoder must be a member of an
asymptotically optimal family in order to be considered universal. In [10],
Dayvisson includes a requirement that resembles asymptotic optimality in
his definition of universal coding. We argue against including asymptotic
optimality in the definition of a universal encoder for the following reasons:

e Why make the adjective “universal” virtually a synonym for “asymp-
totically optimal” when the latter expression already describes the
corresponding property in a satisfying manner?

e Asymptotic optimality is a property of a family of encoders, while the
adjective “universal” was meant to describe a property of a particular
encoder.

The last point in particular emphasizes the disadvantage of such a defin-
ition. A definition of the adjective “universal” which requires asymptotic
optimality judges a particular encoder based on the fact that it belongs to
a “good” family rather than on the qualities of the encoder itself. Popular
wisdom teaches us that there are black sheep in every good family. Do we
really want such an aristocratic definition of a universal encoder?



60 Chapter 2. Universal Arithmetic Coding

Optimal coding distributions for universal arithmetic
coding

In order to define optimal universal arithmetic coding, consider the situa-
tion when the semi-infinite output sequence Y7, Y5, ... of a discrete station-
ary source is encoded by an arithmetic encoder. Let y1,¥2,... ,yn denote
the symbols of the source alphabet?. Since the source is stationary, the
marginal probability distribution Py (.) of a source output random vari-
able Y}, is independent of k. If Py (.) were known, then supposing that the
arithmetic encoder uses infinite precision arithmetic, we remember from
(1.4) that

lim E[W]=H(Y)=-)_ Py(ys)log, Pv(ys),

L—oo
k=1

where E[W] denotes the average expected codeword length per input sym-
bol and L denotes the length of the input blocks encoded. The expected
average codeword length when coding the symbol y; is — log, Py (yx). If
the arithmetic encoder actually uses a coding distribution @(.) instead of
the true source distribution Py (.), then the expected average codeword
length when coding the symbol y; becomes —log, Q(yr). The overall
expected average codeword length then becomes

N
lim EW] = =3 Pr(y:)log, Q)

k=1
N

o o, @) Py (yr)

= —iv:P (yx) logy Py (y )+§:P (yx) log B ()
— YATk) T2 FY ATk Pt VRS20 (g

= H()+ D(Fy||Q), (2.1)

where
D(P|IQ) = mes%;p(.) P(z)log, gﬁg (2.2)

denotes the information divergence from the probability distribution P
to the probability distribution (). It is also called the Kullback-Leibler
distance from P to () and is finite only when supp@(.) C suppP(.).

2Notice that the notation differs from the previous chapter. N now denotes the size
of the source alphabet rather than the output blocklength of the encoder.



2.1. On Universal Coding 61

Universal arithmetic coding uses one coding distribution to encode the
output of any source in a class of sources S. We suppose that these sources
are either discrete memoryless sources or discrete stationary sources and
that their single-letter probability distribution is known to belong to a
given class of distributions. Therefore, the class of sources S can be viewed
as a class of source probability distributions Py (.). Equation (2.1) applies,
where Py (.) is the probability distribution of the actual source being en-
coded and )(.) is the coding distribution used for universal coding. The
expected average codeword length can be split into the entropy H(Y) of
the source being coded and a redundancy term D(Py||@). The optimal
coding distribution @(.) for universal coding over the set S is the distri-
bution which minimizes the redundancy D(Py||Q) over Py € §. Two
possible scenarios must be distinguished here:

1. the sources in S occur according to a known prior distribution. Let
us define the indicator random variable X whose value is the actual
source whose output is being encoded. X takes on values in S accord-
ing to the prior distribution Px(.). The source distributions Py (.)
can be written as conditional distributions Py|x(.|z). The optimal
coding distribution @(.) is the one which minimizes the expected
redundancy, i.e.,

Q = arg ming: » _ D(Pyx(-|z)||Q") Px (z). (2.3)

TES

The summation becomes an integral over the continuous probability
distribution px(.) if S is a continuous set of distributions. The prior
distribution is sometimes called “side-information”.

2. no prior distribution is known on S. This is the case that will be in-
vestigated in this chapter. A uniform distribution can be assumed, as
in the maximum-likelihood solution to a Bayesian estimation prob-
lem. Alternatively without the knowledge of a prior distribution,
the optimal coding distribution can be chosen as the one which min-
imizes the worst-case redundancy over S, i.e.,

_ N D(Py110"). 2.4
() = arg ming max (Py||Q") (2.4)

According to the nature of S, the maximum or the minimum in (2.4)
may not exist, in which case they must be replaced by a supremum
or an infimum respectively.

The remaining of this chapter will be devoted to the search for a solution
Q(.) to (2.4) when S is a convex set known as a polytope. The next



62 Chapter 2. Universal Arithmetic Coding

section will give the definition of a polytope, list some of its properties,
and introduce the polytopes which are of practical interest for the source
coding algorithms developed later.

2.2 Polytopes and Discrete Probability Dis-
tributions

In this section, we consider discrete probability distributions of size N
as plain vectors in RY. We will write Py for the set of vectors in RY
which correspond to probability distributions of alphabet size N, i.e., Py
is the set of those vectors in RY whose components are non-negative and
sum to 1. Py designates the open set of probability distributions in Py
whose components are all different from zero. In the analysis of these
distributions, we will also use vectors in RY which are not in Py, and
vectors in P,., where r # N. To avoid confusion, we introduce the following
notation:

e capital letters, e.g. P, denote vectors of RV which are in Py.
p1,p2,...,pn are the elements of the vector P.

e underlined lower-case letters, e.g. v, denote vectors which are not
necessarily in Py. v1,vs,... ,v, are the elements of v.

e bold capital letters, e.g. A, denote matrices of any dimension.

It may seem strange that we have more than one way of denoting vectors,
but this will help us keep in mind which vectors have a “physical” meaning
as potential source probability distributions. Furthermore, we will use the
notation 1, for the “all ones” vector and 0, for the “all zeros” vector in
RY . We will usually drop the subscript N when there is no ambiguity.
Finally, when we write an inequality involving vectors, we mean that the
inequality holds for every component of the vectors.
We need the concept of a convex combination to define a polytope.

Definition 2.5 Let v,,v,,...,v, be any r vectors in RN, let p be any
vector in P,. Then the vector

V= vy + p2ls + .o+ iy,

is called a convex combination of the vectors vy,vs,...,v,.. If p € Py,
then v 1s called a strict conver combination of vi,v,,...,v,.

We are now ready to define a polytope.



2.2. Polytopes and Discrete Probability Distributions 63

Definition 2.6 Letwv,,v,,...,v, be anyr vectors in RN such that no vec-

tor v, 1s a convex combination of the other vectors. The polytope S o
Vy,Us, ... ,0, > is the set of all convex combinations of vy,v,,... ,v,. The
vectors vy,vs,... ,v, are called the vertices of the polytope S. If S is a
polytope, then the open polytope g s V1,Vy,...,0, < 15 the set of all

strict convexr combinations of the vertices of S.

For example a line segment, a triangle or a square in R? are common
polytopes with 2, 3, or 4 vertices respectively. A polytope is a convex set by
the definition of convex sets, which demands that all convex combinations
of points in the set be in the set. The following proposition will make
it easier in some cases to verify whether r vectors are valid vertices of a
polytope.

Proposition 2.1 Any r linearly independent vectors of RN are the ver-
tices of a polytope.

Proof: this follows immediately from the fact that a convex combination
is a special case of a linear combination. 1

The converse is not true in general, i.e., the vertices of a polytope need
not be linearly independent vectors. We define the rank of a polytope S as
the rank of the matrix whose columns are the vertices of S. We will call
a polytope with linearly independent vertices a regqular polytope to reflect
the fact that its corresponding matrix has full column rank.

The polytopes that we are considering always have all their vertices in
Pn - In this case, we can state the following proposition:

Proposition 2.2 Any polytope S whose vertices Py, Ps, ..., P, are in Py
is a subset of Pn.

Proof: this can be verified by writing any element P of S as
P:,u1P1 +/L2P2—|—...+/L7~PT.

Every component of P is non-negative because it is a sum of non-negative
terms. The sum of the components of P is

N N r
Zpk: = Z Z HiDPik
k=1

k=1 1i=1

r N
= Zﬂi me = 1.
k=1

=1



64 Chapter 2. Universal Arithmetic Coding

Thus, S is a subset of Py. [

We are ready to discuss the few polytopes that will concern us for the
rest of this chapter. Py itself is of course a regular polytope whose vertices
are the unit vectors of RY, i.e.,

1 0 0
0 1 0
PN:<U1,U2,...,UN>:< . , . seen . > .
| 0] | 0] |1

Its vertices are linearly independent probability vectors and any probabil-
ity vector can be written as a convex combination of its vertices, where
the components of the vector are the convex coefficients.

The set M x of all monotone probability distributions of alphabet size
N, i.e.,

Mn ={P|P € Py and p1 > ps > ... > pn}

is the regular polytope

17 71/27 [1/37 1/N
0 1/2 1/3 1/N
MN:< 0 ) 0 ) 1/3 gy 1/N >,
0] L 0 | [ O | i 1/N |

and the corresponding open polytope My is the set of all strictly mo-
notone distributions. The vertices of My are linearly independent prob-
ability vectors. Every monotone probability vector P can be written as
a convex combination of the vertices of My using the convex coefficients

Wi, 2, -, 4y With uy = Npy and
225 :k(pk_pkH-l) for k = 1a2a"' aN_]-a

which coefficients are all non-negative and sum to 1.

We come at last to the polytopes that will be of most interest to us. We
look at the set of probability vectors whose expected value is a constant
c. The expected value of a function f(.) of a random variable X with
probability distribution P is defined as

E[f(X)] = pef(ar).
k=1



2.2. Polytopes and Discrete Probability Distributions 65

By writing fx det f(zy), we can identify the function f with the vector
[ = (f1,f2s--., fn). If we consider the set of all vectors in RV whose
“expected value” is equal to ¢, we get the set {v € RV | iT -v = ¢}, which is
the equation for a hyperplane in RY . So the set of all probability vectors
with expected value c is the intersection of the polytope Px and a hyper-
plane. We call this set Py s .. Lemma 2.2 describes the nature of this
set. In the proof of this lemma, we apply a well known lemma from con-

vexity theory, due to the Hungarian mathematician Farkas (pronounced
“Farkash”), which we state here.

Lemma 2.1 (Farkas’ Lemma, 1901) Let A be an M x N real matriz
and b a vector in RN . Then the following two statements are equivalent:

1. Ve e RV, ATz <0y = 0"2 <0

2. du € RM such that Ap=>band p >0y,
Farkas’ Lemma allows us to exchange a set of equations for a set of in-
equalities and vice-versa. We refer to Rockafellar’s book [35] for a proof of
this lemma. We will prove a slightly modified version of Farkas’ Lemma in

the next section. We are now ready to state our lemma about the nature
of 'PN,LC

Lemma 2.2 The set Pn,f,c of all probability vectors P whose expected

value iT - P is equal to c

(i) is empty if ¢ > maxy, fr, or ¢ < miny f,

(ii) is a polytope of rank N — 1 if ming fi, < ¢ < maxy, f,

(iii) or is a polytope of rank r if ¢ = maxy, fr or ¢ = miny fi, where r is

the number of indices k for which fi = c.

The proof of this lemma will be long, but it includes a construction for
the set Py, s, which will be useful in practice.

Proof: for the proof, we can assume that f; < fo <...< fn. For any
P in Py,

N
fi < Zpk:fk < fn
k=1

so the intersection Py ¢ . we seek is non-empty if and only if

fi<e< fn. (2.5)



66 Chapter 2. Universal Arithmetic Coding

This proves (i). If equality holds on both sides in (2.5), then all the
vectors P € Py satisfy f7 - P = ¢ and Pn.t,c = Pn. If equality holds on
either side of (2.5) then any probability vector which has a non-zero k-th
component for which fi # ¢ has f7 - P # ¢ and so cannot be in PN, fc-
We thus have a problem in P, where r is the number of components of
f which are equal to ¢, for which we can repeat the argument used when
equality holds on both sides. This proves (iii).

Consider now the case where both inequalities are strict. Let ¢g be the
greatest index of f for which f;; < ¢ and jo be the smallest index of f
for which f;, > c. Let ky, ko, ...k, be the indices of f for which f;, = c,
where m can of course be zero. For every i < i and every j > jo, the
vector v(#7) with components

Gg) _  Jfi—¢

') =

’ fi—fi

(4,7) C_fi

v =

J fi— fi

o™ = Ofork=1,2,...Nk#ik#] (2.6)

is in Py, r.. because its components are non-negative, their sum is 1 and

7 v =¢. For I =1...m, the vector v'¥) with components

'U,g:’) = 1
o) = 0fork=1,2,...N,k #k (2.7)
is also in Py fre because it is in Py and f o) = ¢. All in all, there

are io(N — jo + 1) +m vectors v(*7) and v("“) where ig +m+1 = jo. No
v(®9) can be a convex combination of other vectors because the only other
vectors which have a positive i-th component have a j-th component which
is equal to zero. No v(*) can be a convex combination of other vectors
v because no other vector has a non-zero k;-th component. Thus, the
vectors defined in (2.6) and (2.7) are the vertices of a polytope S. Every
element v of S is a probability vector by Proposition 2.2 and its expected
value fT -v is equal to ¢ because v is a convex combination of the vertices
of S which all have the same expected value ¢. Thus, we can state that
S CPn,fe-

Let any NN vertices of S define the rows of a square matrix A. Then
the equation Az = 1, has at least two distinct solutions, namely z = 1
and z = (1/c)f. The determinant of the matrix must therefore be zero,
and the rank of the polytope S can be at most N — 1. The N — 1 vectors

y(lyjo)’y(%jo)j o ’y(io,jo),y(kl), o ’y(km)’y(io,jo-H)’ o 7y(7;05N)



2.2. Polytopes and Discrete Probability Distributions 67

1 X --- ololo --- 0olO --- 07
0 X|0]0 010 0
20 0 01X |0 0|X X
k1 0 010X 010 0
km 0 01010 X0 0
Jo X X|X |0 010 0
0 01010 0]|X 0
N oL o --- 0]l0l0 -~ 0]0 - X

Figure 2.1: the N — 1 columns of this matrix are linearly independent.

are linearly independent as can be seen by looking at the positions of their
non-zero elements, which are indicated as X’s in the matrix in Figure 2.1.
Thus, the polytope S has rank N — 1.

To prove the converse, namely that Py ;. C S, we will use Farkas’
Lemma, 2.1. Let V denote the matrix whose columns are the vertices of
S. Take any vector z € RV such that

VT& < Op- (2.8)
For j = jo,..., N, consider the inequality v{")7 .z < 0. We can write
this inequality as
fj —C Cc— fio
Ti, + x; <0.
fi—f ™ fi—fi’
This implies that
C — fj
T < —"7y . 2.9
J = c — fio 20 ( )
Now consider the inequality v(#70)7.xz < 0fori = 1,... ,io. This inequality
implies
s S, ez ficm i, e ) (2.10)

x T, = Z;
_C_fjo jo_c_fjoc_fio v C_fio 0

where the second inequality comes from using (2.9). Finally, the inequality
v#IT . ¢ <0 forl=1,...,m implies that z;, < 0, which we can also put



68 Chapter 2. Universal Arithmetic Coding

in a form similar to (2.9) and (2.10), viz.

c— fr,
Tr, < 2.11
ki > c fio 10 ( )
because ¢ — fy, =0 forl =1,... ,m. Now take any vector v € Py ;. and

consider its scalar product with z. Using (2.9), (2.10) and (2.11), we can
write N

"z =) wa

k=1
N
c— [k
< Uk Tiy =
N N

X
- (T )

¢ to k=1 k=1
= 0, (2.12)

where the last equality comes from the fact that v is a probability distribu-
tion so that the sum of its elements is 1 and its expected value f” -v is equal
to c. By Farkas’ Lemma 2.1, since VT2 < 0 implies that v” -z < 0 for all
x, there must be a vector 4 € RY such that u > 05 and Vpu = v. Since
the expected value of every column of V is equal to ¢ and the expected
value of v is also equal to ¢, we know that the sum of the components of
p must be 1. We have proved that every element of Py ¢ . can be written
as a convex combination of the columns of V, which implies that v € S,
and hence that Py ;. C S. This concludes the proof. n

As promised, the proof gave us a method for constructing the polytope
Pn.r,c. Perhaps surprisingly, it turned out that such a polytope may have

up to N?/4 vertices. Intuition is misled by the picture we have of cutting
the triangle P3 in R® with a plane, which will yield a line segment in the
best case, i.e., a polytope with only two vertices.

Exzample: The polytope Py f . for N =5, f =10,1,2,3,4]" and ¢ = 3/2
has six vertices. We can compute them using (2.6) to obtain

1/47] [1/27 [5/87 0 0 0
0 0 0 1/2 3/4 5/6
<3/, o, o |,[12],] o, 0o]>.
0 1/2 0 0 1/4 0
o | Lo | [38] o || o] |16]




2.2. Polytopes and Discrete Probability Distributions 69

Now consider the intersection of the polytope S =< v;,vq,... ,v, >
with the hyperplane Hy, . = {z € RY |@T -2 = c}. Let V denote the matrix
whose columns are the vertices of S. Every vector v in the polytope can
be expressed as

v=Vu,

where p € Ps. Every element v in the intersection of the polytope with
the hyperplane Hj, . must satisfy
B" - v=c=h"Vp.

Let f = VTh. We see that the convex coefficients p of the vertices of
S which generate points in the intersection of S with Hj . must satisfy
iTH = c¢. The set of all convex combinations which satisfy this condition
is the set defined above as P, ¢ .. By Lemma 2.2, we know the nature of
this set. If it is non-empty, it is a polytope. Let us write A for the matrix

whose 7 columns are its vertices. Then, every element p of Ps ;. can be
written as p = Av, where v € P,.. We see that the intersection of S with

Hp, . is the set of all vectors v € RY which satisfy
v = VAv where v € P,.

This is again a polytope. We have proved the following theorem:

Theorem 2.1 Let S be any polytope in RY and let V be the matriz whose
columns are the s vertices of S. Let H,. = {v € ]R{N|QT -v = ¢} be a
hyperplane in RY . Define the vector f = VT h. Then the intersection of
S with Hp, . a

(1) is empty if ¢ > maxy fr or ¢ < ming f,
(ii) is a polytope of rank s — 1 if minyg, fr, < ¢ < maxy, fi and S is regular,
(iii) s a polytope of rank r if ming fi, < ¢ < maxy, fr, where r < rank(S),

(iv) or is a polytope of rank r if one of the inequalities in (i)-(iii) holds
with equality, where v < min{rank(S),m} and m is the number of
indices k for which fi = c.

Proof: the proof follows immediately from the results above and from
the fact that the rank of the matrix product VA is at most equal to
min{rank(V),rank(A)} and thus it is equal to the rank of A if V is
non-singular. [



70 Chapter 2. Universal Arithmetic Coding

In particular, the set of all monotone N-ary distributions with a given
expected value, which we shall denote as My s, is a polytope of rank
N — 1. We can construct this set based on the methods indicated in the
proof of Lemma 2.2 and of Theorem 2.1.

Ezample: Suppose we wish to construct the set My for N = 5,

h=10,1,2,3,4]" and ¢ = 3/2. My .. is the intersection of the polytope

M with the hyperplane Hj, .. As indicated in the proof of Theorem 2.1,

we must compute the vector f = VTh where V is the matrix whose

columns are the vertices of the polytope Msy. This yields
f=10,1/2,1,3/2,2]".

We now compute the matrix A whose columns are the vertices of the poly-
tope Pn, f,c using the construction method given in the proof of Lemma 2.2.
This yields

0 1/4 0 0
0 0 1/3 0
A=[0 0 0 1/2
1 0 0 O
|0 3/4 2/3 1/2

Finally, the matrix product VA yields a matrix whose columns are the
vertices of the polytope My ;. we were seeking, i.e.,

C1/47 [ 2/5 ] [3/107 [ 4/15 ]
1/4 3/20 3/10 4/15
< |14 |,]3/2 |,|2/15]|,|4/15|>.
1/4 3/20 2/15 1/10
0 | [3/20] [2/15] | 1/10 |

In the next sections, we seek the optimal probability distribution for
universal coding over polytopes of probability distributions. In practice,
we will usually be interested in the optimal coding distributions for the
polytopes My and My s c.

Before proceeding further, it is worthwhile to point out that Theo-
rem 2.1 can be extended to cover the intersection of a polytope with any
number of hyperplanes. This is stated in the following corollary:

Proposition 2.3 (Corollary to Theorem 2.1) The intersection of a
polytope S with any number of hyperplanes is either empty or a polytope.

Proof: this follows immediately by applying Theorem 2.1 recursively.



2.3. Optimal Universal Coding for a Polytope 71

2.3 Optimal Universal Coding for a Polytope

We are now ready to discuss the solution of (2.4) when the set considered
is a polytope S C Pxn. The probability distribution ) € Py is sought
such that the worst-case redundancy p is minimized over all distributions
in PN, i.e.,

— D(P 2.13
p= uin max D(P[|Q). (2.13)

In particular, the solutions will be investigated closely for the following
polytopes:

e Py, i.e., the optimal coding distribution is sought for universal arith-
metic coding when nothing is known about the source except that
it is stationary with a single-letter distribution of alphabet size V.

e My, i.e., the source is known to be stationary with a single-letter
distribution Py (yx),k = 1,..., N that is monotone non-increasing
in k.

® Pn,fc; 1.€., the source is known to be stationary and its expected
value satisfies E[f(Y)] = c¢. Particular attention will be paid to the
case when f(yx) =k, for k=0,1,2,... ,N — 1.

o My ., i.e., the source is known to be stationary with a monotone
non-increasing single-letter distribution Py (yx) and E[f(Y)] = c.

Some insight is gained by noting the following fundamental property of
the information divergence.

Proposition 2.4 the information divergence D(P||Q) is strictly convez-U
in both its variables P and ().

Proof: the expression for the divergence can be written as

D(PIIQ)=-H(P)— Y. P(z)log, Q(x), (2.14)

rEsuppP

where the notation H(P) is used somewhat imprecisely to denote the
entropy of a random variable whose probability distribution is P(.). Both
H(.) and log(.) are known to be strictly convex-N (concave) functions in
their respective variable. With respect to its first variable P, (2.14) shows
the divergence to be a sum of a strictly convex-U function and a linear
function. With respect to its second variable (), the divergence is the sum



72 Chapter 2. Universal Arithmetic Coding

of a constant, —H(P), and a sum of strictly convex-U functions. Both
these combinations are strictly convex-U. 7

The following property holds for the maximization of any convex-U func-
tion over a polytope. In particular, it holds for the inner maximization of
the divergence in (2.13).

Proposition 2.5 let f be any conver-U function whose domain includes

a polytope S =< vy,v,,...,v, >. Then
= . 2.15
max f(z) = max f(u) (2.15)

In other words, the function attains its mazimum over the polytope S on
a vertex of S.

Proof: it is known from the theory of convex functions ([35], Chapter 32)
that the supremum of a convex-U function f over a closed convex set C
is equal to the supremum of f on the relative boundary® of C. In the
case of a polytope, the relative boundary is a union of polytopes. Now
the maximum of f is sought over this union of polytopes. It must lie
on the boundary of one of the component polytopes. The boundaries of
the component polytopes are also unions of polytopes. This step can be
repeated until at last the function is to be maximized only over a union
of line segments connecting vertices of the original polytope S. These line
segments are polytopes themselves, and their boundaries are the vertices
Uq,V9,...,0, Of S. O

The problem stated in (2.13) can be rewritten using Propositions 2.4 and
2.5. The optimal coding distribution for universal arithmetic coding over
a polytope of probability distributions S =< Py, P, ..., P, > is the distri-
bution () € Px which yields the minimal redundancy p in the expression

— mi D(P:]|Q). 2.1
p= min max D(F}|Q) (2.16)

Proposition 2.5 also shows the rationale for our interest in polytopes. In
some applications, the optimal coding distribution is sought for any set
of r probability distributions in Ppy. If these distributions do not fulfill
the requirements we stated in Definition 2.6 for the vertices of a polytope,
we can start by eliminating those distributions which can be written as
a convex combination of the others. The remaining distributions will be

3The relative boundary of a convex set in RY is defined in [35] as the boundary
which results when the set is regarded as a subset of its affine hull.



2.3. Optimal Universal Coding for a Polytope 73

the vertices of a polytope which contains the probability distributions
that were eliminated. Therefore, the optimal coding distribution for the
original r distributions is equal to the optimal coding distribution for the
vertices of the remaining polytope. In other words, the problem of finding
the optimal coding distribution for a finite set of probability distributions
is equivalent to the problem of finding the optimal coding distribution for
a polytope.

There is a considerable progress from (2.13) to (2.16). What was a
combined minimization and maximization of a function of two continuous
variables is now seen as the minimization of a function of one variable
whose value at every point is the maximum of r convex functions. The
following proposition (see [35, Theorem 5.5]) will show the nature of a
function constructed in this way.

Proposition 2.6 let fi, fa,..., fr be convez-U functions defined over the
convex region C. Let f be a real-valued function defined over C such that,
for every v € C,

f(v) = max fi(v),

k=1.

i.€., the function f is equal in every point to the maximum of the compo-
nent functions fi,..., f-. Then f is a conver-U function. Furthermore,
if f1, fo,..., fr are strictly convex-U, then f is strictly convex-U.

Proof: Let v and w be any two points in C. Now define ¢ and 7 such that
flv) = maxfiy(v) = fi(v) (2.17)
fw) = max fi(w) = f;w). (2.18)
For any A € [0, 1], define n such that
FOu+ (1= Nw) = max fr(Av + (1 = Nw) = fr(de + (1 = Nw).
Since f,(.) is convex-U, the following inequality holds

fa(du 4+ (1= Nw) < Afp(v) + (1 = A) fr(w).

But (2.17) and (2.18) imply that f;(v) > fn(v) and f;(w) > fn(w), which
in turn implies that

fOu+ (1= Nw) <Afi(v) + (1 =N fj(w) =Af(v) + (1 =) f(w).

Therefore, f(.) is convex-U. Strict convexity is proved by replacing all
inequalities in the proof by strict inequalities. [



74 Chapter 2. Universal Arithmetic Coding

Proposition 2.6 shows our problem as stated in (2.16) to be a simple mini-
mization of a convex-U function over a convex-U region, albeit a convex-U
function defined as the maximum of r component convex functions. The
theory of convex-U functions tells us that a convex-U function will always
have a minimum over a convex region and that this minimum will be
unique. Therefore, all that remains to do is to find this minimum for all
polytopes.

We will define a property which will help us to discover the minimum
we seek for some polytopes.

Definition 2.7 The probability distribution () € Py s said to be Kull-
back-Leibler equidistant from the probability distributions Py, Ps, ..., P,
n Py if

D(PA||Q) =D(R||Q)=...=D(R[|Q)=C
for some C € RT.

Based on this definition, we will prove a theorem that will allow us to
determine the optimal coding distribution for some polytopes. In the
proof of this theorem, we will use the following lemma which is closely
related to Farkas’ Lemma 2.1.

Lemma 2.3 Let A be an N x M matrix and b be an N x 1 vector. Then
one and only one of the following two propositions is true.

Jdz € RV such that ATz >*0,, and bz =0 (2.19)
Ap=>b, or
du € RM  such that u >0, and Ap=-b, or (2.20)

where the notation >* signifies that at least one of the component inequal-
ities 1s strict.

The proof of Lemma 2.3 is given in an appendix to this chapter. We are
now ready to state the following theorem which provides the solution of
(2.13) for a particular type of polytope.

Theorem 2.2 Let S =< P, P,,...,P. > be a polytope in Pn. If a
distribution () in the open polytope S is Kullback-Leibler equidistant from
the vertices of S, then Q) is the unique distribution in S with this property
and Q) is the solution of the problem stated in (2.18) for the polytope S.



2.3. Optimal Universal Coding for a Polytope 75

Proof: Consider the problem stated in (2.13). Using the convexity of the
divergence and Propositions 2.5 and 2.6, we showed that this problem is
equivalent to minimizing a convex function defined as

def

f(Q) = max D(P|Q).

k=1...N

Now suppose the distribution () in the open polytope S is Kullback-Leibler
equidistant from the vertices of S but it is not the minimum of f(.). Then,
since a convex function can have no local minima, there must be at least
one direction in Py relative to which all component functions D(Fg]|.) of
f(.) are decreasing at the position (). In other words,

d" -1y =0 and

& - gradD(P)|Q) < O for k=1...N, (22

3d € RV such that {

where at least one of the inequalities is strict. The gradient of the function
D(Py||Q) whose N variables are the components of the probability vector
() are easily computed as

1 Dkl DPk2 A
gradD(P||Q) = o [— o , — o ,—q—N

Using the notation

- der [d_1 dy d_N]T
= q17q27"')qN Y

and letting P be the matrix whose k-th row is the probability vector P,
we can rewrite the system of inequalities and one equality in (2.21) in
matrix form as

Pd >* 0y (2.22)

d-Q = o (2.23)

This corresponds to the statement of Lemma 2.3. Since () is in the open
polytope S, it can be written as a strict convex combination of the vertices
of S. In other words, there exists a vector u > 0 such that

Therefore, the second proposition (2.20) of Lemma 2.3 is satisfied. This
implies that the first proposition of Lemma 2.3 cannot be satisfied. In



76 Chapter 2. Universal Arithmetic Coding

other words, any vector d which satisfies the inequalities (2.22) cannot
satisfy the equality (2.23). Thus, the function f(.) = maxy D(Pxl||.) has
a local and a global minimum at the Kullback-Leibler equidistant distrib-
ution (). Furthermore, () is the only Kullback-Leibler equidistant vector
from the vertices of S because the minimum of a convex-U function is
unique. [

Theorem 2.2 provides the solution to the problem stated in (2.13) for a
special type of polytope. We will use this theorem to find the solution for
all polytopes. For this, we need to show another property of a function
f(.) defined as the maximum of component convex-U functions.

Lemma 2.4 Let fi, fo,..., fr be convez-U functions defined over the con-
vex region C. Let f(.) be a function defined for every vector v in C by
f(v) = maxg=1.. ., fr(v) and let v, be the vector for which f(.) is mini-
mized over C. Then one of the two following statements must hold:

1. i such that minyec fi(v) = fi(vy) and fj(vy) < fi(vg) for all j #1i

2. i and j such that f;(vy) = fi(vy) = f(vg)-

Proof: The first statement holds if v, = arg min, f;(v) and f;(v,) < fi(vy)
for all ¢ # j. In this case, f(v) = max; f;(v) = fi(v) in a neighborhood
of v, because a convex-U function is continuous. Therefore, since the
minimum of f;(.) is attained for v,, f(.) has a local minimum at v,. But
this local minimum is also the global minimum of f(.) because f(.) is
convex-U due to Proposition 2.6.

If the first statement does not hold, there must be at least two compo-
nent functions f;(.) and f;(.) whose values are equal for the argument v,
because if f(.) was equal to only one component function f;(.) at v, then
that function would have a local minimum at v, which would necessarily
also be its global minimum. [

The following proposition is one of the fundamental inequalities of Infor-
mation Theory [29, Theorem 2.6.3].

Proposition 2.7 D(P||Q) > 0 with equality if and only if P = Q.

Proposition 2.7 shows that, except for a trivial polytope consisting of
only one probability distribution, the minimum of the function f(.) =
maxy, D(Pyl|.) is never located at the minimum of an individual divergence
D(PF;]|.). The individual divergences in our problems attain their minima
at the vertices of the polytope for which their value is zero while the other



2.3. Optimal Universal Coding for a Polytope 7

divergences are necessarily positive. Therefore, it is always the second
case in Lemma 2.4 that holds for the function f(.) in our problem.

Using this fact, we can finally state the general solution of the problem
stated in (2.13).

Theorem 2.3 (Corollary to Theorem 2.2) Let the polytope S =< P,
P, ... ,P. > in Py be such that there is no Kullback-Leibler equidistant
distribution in the open polytope S as required by Theorem 2.2 and let V
be the set {Pi,...,P.} containing the vertices of S. Then there ezists
a subset V' of V containing at least two elements such that the vertices
in V' form a polytope S’ for which there is a Kullback-Leibler equidistant
distribution Q € ', i.e.,

D(P||Q) = C fori=1,...r and P;€ V', and
D(P|Q) < C fori=1,...r and P; ¢V .

This distribution @ is the solution of the problem stated in (2.13) for the
polytope S.

Proof: If there exists a subset V' which satisfies the conditions in Theo-
rem 2.3, then

def ’ def
70) < max D(P|L) = 1'() < max D(P.
in a neighborhood of the distribution () which is Kullback-Leibler equidis-
tant from the vertices in V'. In this neighborhood, f’(.) has its global
minimum at @, so f(.) must have a local minimum. But, since f(.) is
convex-U, this local minimum is also its global minimum.

It remains to be shown that such a subset V' always exists. We have
seen in Proposition 2.6 that a solution @) to (2.13) always exists and
Lemma 2.4 and Proposition 2.7 have shown that there is a set V"' C V
containing at least two distributions for which D(P||Q) = C for all P €
V". Consider the polytope S” formed by the distributions in V. Since
D(P||Q) < C for all P € V which are not in V", the solution of (2.13)
for the polytope S” must be the same as the solution () for the polytope
S. (@ is Kullback-Leibler equidistant from the vertices of S” by definition.
The only thing remaining to be proved to show that S” and () satisfy the
requirements of Theorem 2.2 is to show that the solution () lies in the
open polytope S”.

Suppose that Q is outside the open polytope S”. This brings us back to
the equality (2.23) and the inequalities (2.22) in the proof of Theorem 2.2.
Only this time, we have assumed that there is no p > 0 which satisfies



78 Chapter 2. Universal Arithmetic Coding

PTE = (Q, since Q is not in the open polytope S”. There can be no
pu > 0 for which P"y = —Q or P”y = 0 because the columns of P are
Erobability distributions and hence P; >* ( for each column P; of P. Thus,
by Lemma 2.3, there exists a vector d which satisfies (2.23) and (2.22). In
other words, there is a direction in Py relative to which all the component
divergences D(P||.) for P € V" are decreasing for (). Therefore, there can

be no minimum of f (.) located at @ if @) lies outside the open polytope
S”. O

Optimal universal coding for some regular polytopes

Now that we have shown the nature of the solution of the problem we
stated in (2.13) for all types of polytopes, we would like to proceed to
find this solution for the polytopes that we are practically interested in.
Unfortunately, Theorem 2.3 does not help us to find the solution () for
any particular polytope. We will have to wait until our discussion of
Gallager’s Redundancy-Capacity Theorem in the next section to obtain
such a constructive method. Gallager’s approach differs from ours in that
it begins by exchanging the “min-max” problem we stated in (2.13) for an
equivalent “max-min” problem.

Before we surrender the solution of our problem to Gallager’s masterful
guidance, we use the approach we developed so far to state the solution
of our problem for some of the polytopes we are interested in, using a
property that we now describe.

Proposition 2.8 A regular polytope S =< Py, Ps,... ,Py > in Py al-
ways has a unique Kullback-Leibler equidistant distribution () in Py.

Proof: The proof of this proposition will show us how to compute the
Kullback-Leibler equidistant distribution (). Any vector () which is Kull-
back-Leibler equidistant from the vertices of S must satisfy the system of
equations

1 1 1
p1110g——|—p1210g——|—...—|—p1N10g— = C-|-H(P1)
g1 gz agn
1 1 1
po1log — 4+ paolog— + ...+ ponylog— = C+ H(P)
g1 gz Y
1 1 1
pnilog — +pnolog— + ...+ pyylog— = C+ H(Pn)
a1 qz aN

where p;; denotes the j’th element of the probability vector P;. Since
log(1/x) is a bijective function mapping the positive real numbers onto R,



2.3. Optimal Universal Coding for a Polytope 79

we can perform the variable transformation /; = log(1/¢;) fort =1,... ,N.
Writing [ for the vector whose i-th component is /;, P for the matrix whose
t-th row is the probability distribution P;, and h for the vector whose
i-th element h; is the entropy H(F;), we can rewrite this new system of
equations in matrix form as

The matrix P is invertible because its rows are the vertices of a regular
polytope. Therefore, there is always a unique solution to the equation
stated and this solution can be written as

I=CP 1y +P 'h

Since P is a stochastic matrix, it satisfies P1 = 1. Its inverse similarly
satisfies P11 = P71(P1) = (P7!P)1 = 1. Thus, we can simplify this
solution to obtain

l=Cly+P'h (2.24)

If we define g def p-1 h and invert the variable transformation, each com-
ponent of the solution vector () can be written as

qr, = 279279,

For any C, each component of () is positive and there is exactly one
choice for C' which will yield a vector () whose components sum to one,

ie, ) € Pn. M

Using Proposition 2.8 and the construction method stated in its proof,
we can compute the Kullback-Leibler equidistant distribution ) € Py for
any regular polytope S. If we are lucky and @) € S , then by Theorem 2.2
we know that we have found the solution of (2.13) for S. We will try this
approach on two of the polytopes we are interested in.

Consider the polytope Py itself. Its vertices form the N x N identity
matrix and the entropies of its vertices are all zero, i.e., h = 0p. Us-
ing (2.24), we obtain a Kullback-Leibler equidistant distribution () whose
components are

1
qk:2_C:Nfork:1...N.

This distribution lies inside the open polytope Pn so it is the solution
of the problem stated in (2.13). In other words, if you know nothing



80 Chapter 2. Universal Arithmetic Coding

about the sources whose output you are encoding except that the size of
their alphabet is IV, then it is best to design your code for the uniform
distribution of alphabet size N. The corresponding worst-case redundancy
is p = log, N. Though this is an obvious result, it is pleasant that our
theory gives the answer we expected for this simple case.

Now consider the polytope My of all monotone non-increasing proba-
bility distributions. We saw earlier that this set corresponds to the regular
polytope

17 [1/27 [1/3] [ 1/N
0 1/2 1/3 1/N
Mu=< | O [ O | 3] . |UN|s,
o] [ o | [ 0 | | 1/N |

By transforming the corresponding system of equations, we obtain

o (k=11

i fork=1...N, (2.25)

qr = 2

where C' must be chosen such that Zsz1 g = 1. The corresponding
worst-case redundancy is

N _ 1\k—1
p=D(PA]|Q) =log, ﬁ =logy, » %
k=1

For k= 2,...,N, we can write (2.25) as

9-C 1)*
= 1—= .
=1 ( k>
Since this distribution () is monotone and strictly decreasing, it lies in the

open polytope MP and is thus the solution of (2.13) for the polytope of
all monotone non-increasing probability distributions.

Example: The optimal coding distribution when coding for a binary
memoryless source when the only thing known about the source is that

Px(0) > Px(1)

is Q(0) = .8 and @(1) = .2. The optimal coding distribution for a ternary
monotone source is ) = 108/151-[1,1/4,4/27]T. For a quaternary source,
it is Q = .6651 - [1,1/4,4/27,27/256]".



2.3. Optimal Universal Coding for a Polytope 81

0.45

0.25

0.2

0.15

0.1

0 L L L I T T
0 5 10 15 20 25 30

Figure 2.2: The optimal distribution for universal coding over the
polytope Mo

The optimal coding distribution for a monotone source of alphabet size
32 is plotted in Figure 2.2. The corresponding worst-case redundancy is
p = 1.1815.

The distribution in (2.25) was discovered by Ryabko, as reported in
Krichevsky’s book [31]. This distribution has a very interesting character.
When k gets large, the term (1 —1/k)* tends towards 1/e. Therefore, the
probabilities for large k£ can be approximated as

N 2-¢ 1
W™= g1
Now imagine that you are the last symbol of a monotone non-increasing
probability distribution and you harbor exasperated dreams of grandeur
and jealousy for the symbols that precede you. What is the best thing that
could happen to you? You dream of being the last symbol in a uniform
distribution, obtaining a probability of 1/N like all other symbols. The
expression we wrote above assigns roughly a constant times that value to
the last symbol of the optimal coding distribution. In a way, the optimal
distribution is very kind in its nature to the last symbols of the monotone
distributions, being of the form 1/k that favors them most. In its tail,
it scales this distribution down by a constant factor and distributes those
earnings to the first symbols in the distribution. This explains why the
geometric (or exponential) distribution, which is often assumed in situ-



82 Chapter 2. Universal Arithmetic Coding

ations when the true distribution is unknown, is a very bad choice for
universal coding. Contrary to the optimal distribution we derived, the
geometric distribution assigns negligible probabilities to the last symbols
in the distribution.

2.4 The Redundancy-Capacity Theorem

We now proceed to describe Gallager’s solution for the problem stated in
(2.13). Gallager presented his solution in a paper he submitted to the
IEEE Transactions on Information Theory in September 1976 [12]. The
paper was never revised and was turned into an internal report in 1979.
Gallager’s result is simple and elegant and its implications are fundamental
to the theory of universal coding®. Partly because the paper is unpublished
and partly because the result is relevant to our work, we allow ourselves
to reproduce Gallager’s approach here.

We return first to our original statement of the problem of optimal
arithmetic coding for a set S of probability distributions. In (2.3), we
stated the problem of finding the optimal coding distribution for a set &
of source probability distributions Py |x(.|z) when a prior Px(.) indicates
the probability of occurrence of each source in §. The problem was one of
finding the coding distribution @)(.) which would minimize the expected
redundancy over S. When no prior is known as in the cases we are in-
terested in, we argued that the optimal coding distribution should be the
one which minimizes the worst-case redundancy as expressed in (2.4). Gal-
lager’s argument relies on the introduction of a dummy prior distribution
which allows us to modify the problem in (2.4) into a form that resembles
the problem in (2.3).

Assume we are about to encode the output of an unknown source from
a finite set S containing r sources. Let X be the indicator random variable
whose value is the index of the source whose output is being encoded.
The following equation shows how the effect of the dummy prior can be
canceled by maximizing over the choices for the prior distribution Px(.)
to obtain the same result as in the min-max problem stated in (2.4).

max Y Px(s)D(Prix(12)]|Q) = max D(Prix(0)]|Q).  (2:20)

4With all due respect, I cannot understand why Gallager chose never to publish
this fundamental result. While far more papers are published than should be, here
is a paper whose main result belongs in every basic book on Information Theory, but
students have to fight for a third hand copy on the “black market” rather than being
able to obtain it through official channels.



2.4. The Redundancy-Capacity Theorem 83

This is true because the distribution Px that maximizes the left side of
(2.26) can assign non-zero probabilities only to values of X for which the
divergence is equal to the maximum. We must keep in mind that the prior
distribution Px has no meaning in reality as no true prior is given on the
r sources. It is introduced only to help us in the derivation. The sum in
(2.26) can be expanded as follows

- R~ al Pxy (z,y)
;PX(x)D(PY|X(-|CU)||Q) = ;;ny(a:,y logP @ -00)
= D(Pxy||Px - Q). (2.27)

For the set S, (2.4) can now be re-written using (2.26) and (2.27) to give

p = minmax D(Pxy || Px - Q). (2.28)
Q Px

The proof of Gallager’s theorem relies on the existence of a saddle
point® for the divergence D(Pxy||Px - Q). The existence of a saddle
point guarantees that the solution of the min-max problem is equal to
the solution of the equivalent max-min problem when in both problems
the divergence is maximized over all choices of Px and minimized over all
choices of (). Before we prove that there is a saddle point, we investigate
the max-min problem briefly. We can write the max-min problem as

f = H}l)aXInC;Il D(ny”PX : Q) (229)

To see what happens to the inner minimization, we rewrite the divergence

5If f is a real-valued function from any non-empty product set C x D, a saddle point
of f with respect to maximizing over C' and minimizing over D is a point (ug,vg) €
C' x D for which f satisfies

f(u,v0) < f(uo,v0) < f(uo,v),Vu € C,Vv € D.
If f has a saddle point (ug,vp), then (see [35, Lemma 36.2])

{Lnea(}}(i%m f(u,v) = 11;l’éln max f(u,v) = f(uo,vo),

where the maxima and minima can be replaced by suprema and infima where appro-
priate.



84 Chapter 2. Universal Arithmetic Coding

as

D(Pxy||Px-Q) = ) Y Pxv(zy)log PP)({Y)( Qy(?y)

z=1y=1

B S Pxy(z,y) Py(y)
= 22 Pl y)los 5o B NS00

z=1y=1

Py (y)
Q(y)

K N
= D(PXYHPXPY)"’ZZPXY(x’y)IOg
z=1y=1

Py (y)
(y)

— I(X;Y)+ D(P/|Q), (2.30)

N
= D(Pxvy||Px-Py)+ ) Pr(y)lo

whose minimum is attained when D(Py||Q) = 0 for ) = Py because of

Proposition 2.7, where Py (y) = def > . Pvix (y|z)Px (x) for all y. Thus, the
max-min problem can be expressed as

€= n]lgaXI(X;Y), (2.31)

which is equivalent to the expression for the capacity of a channel. Theo-
rem 4.5.1 in Gallager’s book [30] gives an important property of channel
capacity which will be of use here. This theorem is repeated here in our
notation.

Theorem 2.4 The necessary and sufficient condition on a probability dis-
tribution Px to mazimize D(Pxvy||Px - Q) is that, for some number &,

D(Pyx(-|2)||Q) = & for all x with Px(x) > 0, (2.32)
D(Pyx(.|2)||Q) < & for all x with Px(x) = 0. (2.33)

We now show that D(Pxy ||Px -@) indeed has a saddle point. We have
already shown that ming D(Pxy||Px - ) is achieved for () = Py in all
cases and in particular when Py is a distribution which achieves capacity.
Furthermore, when ) = Py, maxp, D(Pxvy||Px - Py) is achieved for any
capacity-achieving distribution Px, which, by Gallager’s Theorem 2.4,
is positive only for those x for which D(Py|x(.|7)||Q) is equal to the
maximum redundancy. Therefore, the function D(Pxy||Px - @) has a
saddle point when Px is the capacity-achieving distribution and () is equal
to the corresponding channel output distribution Py-. We have finally
proved the theorem which relates universal coding to channel capacity:



2.4. The Redundancy-Capacity Theorem 85

Theorem 2.5 (Gallager’s Redundancy-Capacity Theorem) The
min-max problem of universal coding stated in (2.28) is equivalent to the
maz-min problem of channel capacity stated in (2.29) and (2.31). The
optimal worst-case redundancy p can be obtained by solving

p=maxI(X;Y)
Px

where Py x(ylk) is the probability distribution of the k-th source. The
optimal coding distribution () can be computed from the distribution Px
which achieves the mazimum in (2.81) as

K

Q) =Y _ Pyix(ylz)Px (x)

r=1

fory=1...N.

Thus, the problem of finding the optimal coding distribution for uni-
versal arithmetic coding over a finite set of distributions is equivalent to
the problem of computing the capacity of a channel. All the results that
we derived in the previous sections can be applied to compute the capacity
of a channel. Conversely, all the methods known to compute the capacity
of a channel can be used to compute the optimal coding distribution for
universal arithmetic coding. In particular, the algorithm developed by
Arimoto [5] and Blahut [7] to compute the capacity of a discrete memory-
less channel can also be used to compute the optimal coding distribution
for the polytopes Py, ¢ . and My ¢ .. Although the Arimoto-Blahut algo-
rithm converges towards the capacity for every discrete memoryless chan-
nel, its rate of convergence is slow in situations where the channel has a
large input alphabet but only a small subset of the input alphabet obtains
a non-zero probability in its capacity-achieving distribution. Remember
that the polytope My .. can have up to N?/4 vertices for an alphabet
size of N. Therefore, computing the optimal coding distribution over
Mn,t.c 1s equivalent to computing the capacity of a channel with up to
N2 /4 input values and N output values. As a result, the Arimoto-Blahut
algorithm converges so slowly as to become impractical for alphabet sizes
greater than about 32. In practice, we are interested in the case N = 256.
We will use the insight we gained in the previous sections to construct an
alternative to the Arimoto-Blahut algorithm in the next section.

Optimal coding distribution with a prior

The solution of the problem stated in (2.3) is implicit in the proof of
Gallager’s redundancy-capacity Theorem 2.5 when § is a finite class of r



86 Chapter 2. Universal Arithmetic Coding

probability distributions and a prior distribution Px is given on S. Using
(2.27) and (2.30), we can write (2.3) as

Q = arg ming [I(X;Y) + D(Pv[|Q)] (2.34)

where Py is derived from the given distributions Px and Py|x and its
value for every y is

Py(y) = ) Py|x(ylz)Px(z).
TES

The minimum of (2.34) is attained when D(Py||Q) = 0 for Q' = Py
because of Proposition 2.7. We have proved the following proposition:

Proposition 2.9 The optimal coding distribution for universal arithmetic
coding over a finite set S of r probability distributions Py x (.|z) for which
a prior Px over S is known is

Q) = Prix(ylz)Px(z)

TES

for all y. If no prior is known but a uniform prior is assumed, the corre-
sponding optimal coding distribution becomes

Q) =~ 3 Priy).

T
Py €S

The solution of the problem stated in (2.3) for a polytope of probability
distributions cannot be reduced to a problem over the vertices of the
polytope in the same manner as for (2.4).

2.5 An Iterated Arimoto-Blahut Algorithm

In the previous sections, we learned a few rules to follow when seeking the
optimal coding distribution for universal arithmetic coding over any set
of probability distributions. These can be summarized as follows:

e any distribution which can be expressed as a convex combination of
other distributions in the set can be eliminated, since such a distri-
bution will have no influence on the solution,

e if the distributions in the set form the vertices of a regular polytope,
then we can use (2.24) and test whether the resulting distribution is
contained in the corresponding open polytope.



2.5. An Iterated Arimoto-Blahut Algorithm 87

Using these two rules, we found the solution of (2.13) for the set Py of all
distributions of size N and for the set M y of all monotone non-increasing
probability distributions of size N.

Furthermore, we have seen what conditions a probability distribution
() must fulfill to be the solution of (2.13). However, we did not find
a method to determine a distribution () which fulfills these conditions.
Gallager’s redundancy-capacity theorem taught us that we can use any
method designed to compute the capacity of a channel to compute the
solution of (2.13). Gallager’s theorem also showed that the results we
developed with obscure probability-geometric argumentation could be ob-
tained in a simple and elegant derivation requiring little more than three
pages. Using the terminology of Chapter 1, we can say that we took the
“direct approach” to solving the min-max problem of optimal universal
coding, while Gallager used a “Shannon bypass” for the same problem.
However, we will use the insight we gained through our geometric ap-
proach to develop a variant of the Arimoto-Blahut algorithm to find the
optimal coding distribution over polytopes which have too many vertices
for the Arimoto-Blahut algorithm to handle practically, or alternatively,
to find the capacity of a channel whose input alphabet is too large for the
Arimoto-Blahut algorithm to handle practically.

The Arimoto-Blahut algorithm is known to converge towards the ca-
pacity-achieving input distribution for all channel transition matrices. The
algorithm adapts the parameters of the channel input distribution in an
iterative process. In situations where the input alphabet is very large but
only a few input symbols have non-zero probabilities in the final solution,
the algorithm converges too slowly to be of practical use. If we knew
which symbols of the input alphabet will end up with non-zero probabili-
ties, we could use the Arimoto-Blahut algorithm with only these symbols
as an input alphabet and obtain the same solution as for the entire input
alphabet, but the algorithm would converge much faster. The algorithm
we present starts with an input alphabet consisting only of two symbols,
and grows the alphabet until it includes all the symbols with non-zero
probabilities. The Arimoto-Blahut algorithm is used at every stage in this
process, but it is never used on the entire input alphabet.

The first step of the algorithm will make use of the following proposi-
tion.

Proposition 2.10 For a polytope S =< Py, P, > with only two vertices,
there is always a unique Kullback-Leibler equidistant distribution Q in the
corresponding open polytope S.



88 Chapter 2. Universal Arithmetic Coding

Proof: The polytope < Py, P, > is the line segment joining P, and P.
Each point () on this segment can be expressed as

Q(8) = 0P, + (1 — 8)P; for 6 € [0, 1].

The function of one variable D(P;||Q(€)) is monotone decreasing in 6 (its
derivative is non-positive) and attains the value 0 for # = 1. The function
D(P,||Q(#)) is monotone increasing in 6§ and it starts at the value 0 for
6 = 0. Therefore, these two functions must meet exactly once on the line
segment joining P; and P. 7

In the simple case of a polytope < Py, P, > with two vertices, it is not
necessary to use the Arimoto-Blahut algorithm to determine the Kullback-
Leibler equidistant distribution (). Instead, a binary search algorithm can
be used®. The binary search algorithm works faster and better than the
Arimoto-Blahut algorithm for a polytope with two vertices.

The Iterated Algorithm

We are ready to describe the iterated algorithm which we will use to com-
pute the optimal coding distribution () for a polytope S =< Py, P, ...,
P, > with a large number of vertices (or, alternately, to compute the
capacity of a channel with many inputs):

1. Find an ¢ and a j which maximize D(F;||Q;;) where @Q;; is the
Kullback-Leibler equidistant distribution in the open polytope >
P;, P; <. Let S” be the resulting polytope with two vertices and @’
the corresponding Kullback-Leibler equidistant distribution.

2. Compute D(F;||Q") for all vertices Py of S which are not vertices
of S’. If all these divergences are smaller than or equal to the diver-
gence from the vertices of S’ to ', then )’ is the optimal coding
distribution for the polytope S by virtue of Theorem 2.3 and the
algorithm can be terminated.

6The algorithm can be implemented as follows

1. left := 0 ; right :=1

2. 0 := (right + left) / 2; Q :=0P1 + (1 — 0)P»

3. IF (D(P1]|Q) > D(P»||Q)) THEN left := ¢ ELSE right := 0
4. TF (|D(P1]|Q) — D(P%||Q)| < €) THEN STOP

5. GOTO step 2



2.5. An Iterated Arimoto-Blahut Algorithm 89

3. Add one of the vertices Py of S which maximized D(F%||Q’") to the
set of vertices of S’. Use the Arimoto-Blahut algorithm to recompute
the optimal coding distribution )’ for the new polytope S’. Return
to step 2.

Whenever the algorithm terminates at step 2, we can be sure that the so-
lution obtained is the correct solution since it fulfills the conditions stated
in Theorem 2.3. The algorithm will always terminate and discover the cor-
rect solution, because in the worst case it will do so after including all the
vertices of S into the set of vertices of S’, in which case the last iteration
corresponds to the Arimoto-Blahut algorithm applied to the polytope S.

Though the algorithm is bound to terminate eventually, we are not sure
whether it will generate only those vertices with non-zero prior probabili-
ties in all cases. We will say that the algorithm has introduced unwanted
letters if, after it terminates, it has assigned zero probabilities to some of
the vertices in its partial polytope S’. So far, we have not been able to
find an example of a polytope or a channel transition matrix for which the
algorithm introduces unwanted letters. In particular, the algorithm was
successful for the polytope My ., thereby achieving a considerable sav-
ing in computing time compared with the conventional Arimoto-Blahut
algorithm. The algorithm achieves no saving when computing the opti-
mal coding distribution for the polytope Pn . in general because, as it
turns out, all the vertices of this polytope may have a non-zero probabil-
ity in its capacity-achieving prior distribution. However, the algorithm
can still be used to compute a sub-optimal solution for Py ;. when the
number of vertices is too large to compute the optimal distribution using
the conventional Arimoto-Blahut algorithm. We will discuss these results
shortly.

Before we proceed, a few words must be said about the implementa-
tion of the iterated algorithm. We learned in Proposition 2.10 that there
is always a Kullback-Leibler equidistant distribution in the open polytope
corresponding to a polytope with two vertices. The obvious way to exe-
cute step 1 is to compute the Kullback-Leibler equidistant distribution for
every pair of vertices and find the pair that maximizes the corresponding
Kullback-Leibler distance. However, even using the fast binary search ap-
proach, this is a task that will use a considerable amount of computing
time for polytopes with many vertices. In all the examples that we tested,
we observed that it was sufficient to use a two-pass algorithm which can
be described as follows:

1. Pick i’ at random,

2. find j that maximizes D(Py||Q ;) where Qs ; is the Kullback-Leibler



90 Chapter 2. Universal Arithmetic Coding

equidistant distribution from Py and P; in the open polytope >
Pi’ ) Pj <

3. find ¢ that maximizes D(P;||Q;;) where );; is the Kullback-Leibler
equidistant distribution from P; and P; in the open polytope >
Pi,Pj <.

The resulting F;, P; and ();; can be used as a starting point in the iterated
algorithm. In some cases, we can guess which two vertices P; and P; max-
imize D(F;||Qi;) by observing the solutions for a few polytopes, thereby
simplifying the iterated algorithm by eliminating its first step. This will
be the case for the polytope My ¢.c.

Finally, from the second iteration onwards, the prior distribution ob-
tained in the previous iteration can be used to provide an initial prior for
the Arimoto-Blahut algorithm in step 3 of the iterated algorithm. How-
ever, the new vertex added must be assigned a non-zero probability in this
initial prior, because the Arimoto-Blahut algorithm cannot adapt an ini-
tial parameter of zero (see [5]). In our implementation, we tried to solve
this problem in various ways. For example, we tried assigning a proba-
bility of 1/r" to the new vertex and rescaling the prior obtained at the
previous iteration by a factor (1 —1/r’) for the remaining vertices, where
r’ is current the number of vertices of the polytope S’. Surprisingly, none
of the initial priors we tested allowed a significant improvement over using
simply the uniform distribution at each iteration as an initial prior for the
Arimoto-Blahut algorithm.

The Optimal Coding Distribution for My ;.

The optimal coding distribution was determined for My s . when f =

[0,1,...,N — 1]T for various values of N and c. Figure 2.3 shows the
optimal coding distribution for My ;. for N = 32 for various values of
c. For ¢ = 8, My ¢, has 241 vertices. Of those, only 10 vertices have
non-zero probabilities in the solution. The iterated algorithm required 5.32
seconds of CPU-time to determine this solution, while the conventional
Arimoto-Blahut algorithm used 764 seconds of CPU-time to converge to
the same solution. For N = 64 and ¢ = 16, My ¢ . has 993 vertices. The
iterated algorithm terminated after 47 seconds of CPU-time, after finding
that the solution depended only on 19 of those vertices. The conventional
Arimoto-Blahut algorithm had to be interrupted after running for four
hours without finding the solution.

We observed that the two vertices found in the first step of the iterated



2.5. An Iterated Arimoto-Blahut Algorithm 91

0.45

0.35

0.3

0.25

0.2

15 20 25 30

Figure 2.3: The optimal coding distribution for My ; . for N = 32 and
c=3,8 and 14. a

algorithm for the polytope My ¢ . are always
P=[l—-o,0,0,...,0a]T (2.35)
and

P,=[3...,308,0,...,0]" (2.36)

where o, 8 and 3’ must be chosen such that P, and P, are monotone
non-increasing probability distributions and f7 - P, = ¢ for i = 1,2. This
observation effectively eliminates the need to perform the first step of
the iterated algorithm when using it to determine the optimal coding
distribution for the polytope My ¢ ..

It is interesting to observe how the sub-optimal coding distributions
Q' evolve from one iteration to the next in the iterated algorithm as more
and more vertices are taken into consideration. Figure 2.4 shows the cod-
ing distributions obtained by the iterated algorithm for N = 32 and ¢ = 8
after two, three, four and five vertices have been included into the set of
vertices of the polytope S’. Figure 2.5 shows the worst-case redundancy
maxpes D(P||@’) as a function of the number of vertices of the polytope
S’ for which )’ is the optimal coding distribution. The figure shows that
the coding distribution obtained after the fourth iteration based on a poly-
tope S’ with only five vertices already achieves a worst-case redundancy
which is very close to the worst-case redundancy of the optimal coding



92 Chapter 2. Universal Arithmetic Coding

0.25

0.2

0.15

0.1

0.05

0 10 20 30 0 10 20 30
2 vertices 3 vertices

0.2

0.15

0.1

0.05

0 10 20 30 0 10 20 30
4 vertices 5 vertices
Figure 2.4: Coding distributions after partial completion of the iterated
algorithm for N = 32 and ¢ = 8.

distribution, which depends on 10 vertices. This provides the rationale
for using the iterated algorithm to determine a coding distribution for uni-
versal coding over a polytope with many vertices even when the optimal
solution assigns non-zero probabilities to all the vertices, as is often the
case for the polytope Py r,.. When the conventional Arimoto-Blahut al-
gorithm is unable to find the optimal solution in a reasonable time, we can
use the iterated algorithm to produce a sub-optimal solution whose worst-
case redundancy will be close to that of the optimal solution. This effect
becomes more pronounced as the alphabet size increases. This can be seen
in Figure 2.6 which plots the worst-case redundancy maxpes D(P||Q’) as a
function of the number of vertices for the polytope My ;. where N = 256
and ¢ = 36. This polytope has 13105 vertices. The iterated algorithm
obtains a coding distribution whose worst-case redundancy is comparable
to that of the optimal solution after including only 20 of the 97 significant
vertices of the optimal solution. Finally, Figure 2.7 shows the worst-case
redundancy p for the optimal coding distribution for the polytope My ¢ .
for N = 32 as a function of the average c. Figure 2.8 shows the same
graph for the polytope Py ., again for N = 32.



2.5. An Iterated Arimoto-Blahut Algorithm 93

0.75

0.7

0.65

0.6

0.55

0.5

0.45

0.4 Il Il Il Il Il Il Il

Figure 2.5: Worst-case redundancy as a function of the number of
vertices in S’ for N = 32 and ¢ = 8.

24

2.2H -

1.8 -

1.6+ . : . . N . . -

140 -

12 *

10 20 30 40 50 60 70 80 90 100

Figure 2.6: Worst-case redundancy as a function of the number of
vertices in S’ for N = 256 and ¢ = 36.



94 Chapter 2. Universal Arithmetic Coding

0.7

Figure 2.7: Worst-case redundancy p of the optimal coding distribution
for My s,c as a function of the average c for N = 32.

4.5

25 n

15+ . . . —_—

0.5H .l

Figure 2.8: Worst-case redundancy p of the optimal coding distribution
for Pn,r,c as a function of the average ¢ for N = 32.



2.6. Coding Techniques 95

2.6 Coding Techniques

Let us assume that we want to use arithmetic coding to encode the output

of an unknown source for which we are only told that its alphabet size is
N = 32. We can

e encode the output of the source using a block code of 5 binary dig-
its per source symbol, i.e., the optimal coding distribution for the
polytope Ps2. The expected redundancy will be at most log, 32 = 5.

e or estimate one parameter of the source distribution, namely its
average ¢ and use the optimal coding distribution for the polytope
P32 r.c in an arithmetic encoder. For every value of the average c, the
expected redundancy is upper bounded by the corresponding value
of the curve in Figure 2.8, whose maximum over c is approximately
p < 4.2 for c = 15.5.

If we know that the probability distribution of the source is monotone
non-increasing, we can

e encode the source based on the optimal distribution for universal
coding over the polytope M3s. The expected redundancy p will be
at most 1.1815.

e or estimate the average c. For every value of ¢, the redundancy
will be upper-bounded by the corresponding value of the curve in
Figure 2.7, whose maximum over ¢ is approximately p < .646 for
c=3.

The two options stated are based on the principles of universal coding
which we developed in this chapter. We will use this approach in a prac-
tical coding algorithm in the next chapter, where we will present a device
which has the property that it transforms the output of any discrete me-
moryless source into a source with a monotone non-increasing probability
distribution.

In practice, we will encode sequences of bytes, i.e., symbols taken from
an alphabet of size N = 256. Most of our examples so far were for an al-
phabet size of N = 32 because this was the largest alphabet size for which
we could compare the results obtained with the iterated Arimoto-Blahut
algorithm to the results of the conventional Arimoto-Blahut algorithm.
We can now conclude this chapter with the parameter values that will be
significant for our practical implementation:

e the block code of block length 8 which corresponds to the optimal
coding distribution for Pas6 has a worst-case redundancy of 8 binary



96 Chapter 2. Universal Arithmetic Coding

0.8 n

0.6 n

0.2 4

0 I I I I I I
0 20 40 60 80 100 120

Figure 2.9: Worst-case redundancy p of the optimal coding distribution
for My, y,c as a function of the average c¢ for N = 256.

digits. In the practical coding examples of the next chapter, the
inputs files that we wish to encode are already encoded using this
trivial block code. Therefore, the usefulness of the universal coding
distributions which we computed can be assessed by comparing them
to the worst-case redundancy of the block code.

e the worst-case redundancy p for arithmetic coding over Ma56 when
using the corresponding optimal coding distribution is p = 1.60.
This corresponds to a gain of 6.4 binary digits when compared to
the block code of length 8.

e the worst-case redundancy p for optimal universal arithmetic coding
over My r. when N = 256 is plotted in Figure 2.9 as a function
of the average c. The worst-case redundancy varies as a function
of ¢ between p = 0 for ¢ = 0 and ¢ = 127.5 and p = 1.07 for
¢ = 16.5. This corresponds to a gain of between 6.93 and 8 binary
digits compared to the block code of length 8.

We will not implement universal arithmetic coding over the polytope
PN,i,c for N = 256.



2.6. Coding Techniques 97

Appendix: Proof “of Lemma 2.3

We begin by repeating the statement of Lemma 2.3.

Lemma 2.3 Let A be an N x M matriz and b be an N x 1 vector. Then
one and only one of the following two propositions is true.

3z € RN such that ATz >*0,, and b’ -2 =0 (2.19)
Ap =29, or

du € R™  such that u >0, and Ap = —b, or (2.20)
A.E — QN'

where the notation >* signifies that at least one of the component inequal-
ities 1s strict.

Proof: The proof of this lemma will encompass two parts: first we
will prove that (2.20) = —(2.19). In a second part, we will prove that
—(2.20) = (2.19).

Assume first that (2.20) is true and that there exists a vector u > 0
such that Ay = b or Ay = —b. Then, for any vector z € RV for which
ATz >* 0, we can write

z"-b = 2T (xAp)
= :I:(ATQ)TE.

The last expression cannot be zero if u > 0 and ATz >* 0. Therefore,
(ATz >*0) = (2T -b #0) in this case.

Now assume that there exists a vector y > 0 such that Ay = 0. Then,
for any vector z € RY | we can write

0 -z=0=(Ap) " -z=p" (ATz).

Since p > 0, this equation cannot hold if A7z >* 0. Therefore, Pz € RY
such that ATz >* 0 in this case. This completes the first part of the
proof.

In the second part, we assume that there is no vector u € RM such
that u >0and Apu=b, Ap=—bor Au=0. B

As reported in [33, p. 34|, there is a theorem by Tucker which states

that, for the matrices B, C and D, exactly one of the following statements
must hold

“Many thanks are due to my officemate Zsolt Kukorelly for completing this proof. It
is only fitting that the proof of a variant of Farkas’ famous Lemma should be obtained
with the help of another valiant Hungarian.



98 Chapter 2. Universal Arithmetic Coding

1. dz such that Bz >* 0, Cz > 0 and Dz = 0.
2. 3p, >0, p, >0 and p, such that B, + CTEg +D"p, =0.

If we choose B = AT and C = —bT and D = 0, p, becomes irrelevant, us

becomes a scalar, L., is a vector in RM and z is a vector in RY . Tucker’s
theorem now states that exactly one of the following statements must hold

1. 3z € RN such that ATz >* 0, and b” -z <O0.
2. 3p, € RM and ps3 € R such that t, >0y, p3 > 0 and Ap, = 3.
The second statement is equivalent to the following statement:

Ap=bor

AS= 0, (2.37)

Ju € RM such that >0, and {

where p = p_ /ps if p3 > 0 and p = p, if p3 =0.
In our assumption, (2.37) is false both for b and for —b. Therefore, by
Tucker’s theorem, there must be a vector z; € RV such that

ATz, >* 0y and b’ -z, <0
and a vector z, € RV such that
ATz, >* Oy and —b" -z, <0.
Since b’ -z, > 0and b” -z, <0, there is a A € [0,1] such that
AQ" - z) + (1= @ -z,) =0.

Define the vector z = Az; + (1 — A)z,. Because of the linearity of the
scalar product,

bz ="z 4+ (1= N -z, = 0.

Furthermore,
ATz =MATz, + (1 - XAz, >* 0y.

Therefore, z satisfies the requirements of (2.19). This completes the proof.
O



Chapter 3

Coding by Source
Transformation

The previous chapter showed how to encode the output of a source when
we are told that its marginal probability distribution lies in a given poly-
tope. In this chapter, we are aiming to construct a practical source coding
system based on the results of the previous chapter. An urgent question
arises: who tells us that the marginal distribution of the source we are
about to encode lies within a given polytope? Do we wait for a friendly
genie to pop up and volunteer this essential information? Or are the re-
sults of the previous section doomed to be of no use in practical systems,
a pure intellectual exercise with no applications in the real world? Once
again, we find the answer to this question in Elias’ pioneering work. Not
content with having devised universal representations of the integers, Elias
went on to ponder how one could use those representations to encode the
output of any discrete stationary source. In his paper [4], he shows that
by encoding the interval since the last occurrence of the current symbol
rather than encoding the current symbol itself, the codes he presented in
his earlier paper [3] could be used to achieve an upper bound which tends
towards the entropy of any discrete stationary source as the alphabet size
tends towards infinity. An even better performance can be achieved by
encoding what he calls the recency-rank of the current symbol. Effectively,
he had devised a universal coding method which is asymptotically opti-
mal for the class of discrete stationary sources. By the time of his second
paper [4], Elias was not alone in considering this type of encoding. In
[23], Willems presented a version of interval coding in which intervals are
encoded when their value is less than the alphabet size, otherwise the sym-

99



100 Chapter 3. Coding by Source Transformation

bol itself is encoded using a fixed prefix followed by a block code. Willems
uses a simpler alternative to Elias’ representations of the integers to en-
code the resulting intervals. Ryabko introduced a coding method which is
related to recency-ranking in [20], as did Bentley et al. in [6].

In this chapter, we will start by generalizing Elias’ approach of using
universal coding on a larger class of sources than the class it was designed
for. The concept of “source transformation” will be introduced. Two
devices for source transformation will be considered and analyzed: Elias’
recency-rank calculator, and a closely related device which we shall call
the “competitive list transformer”. While these devices will be studied
under the assumption that they are applied to the output of a discrete
memoryless source, in practice we plan to encode the output of discrete
stationary sources which are not necessarily memoryless. The concept of
conditional coding will be introduced, or coding based on a context tree, to
transform the output of some discrete stationary sources into an array of
essentially memoryless sources. A universal source coding algorithm using
conditional coding in conjunction with competitive list transformers will
be introduced. Finally, we will present the compression results achieved
by this algorithm when used to encode a standard collection of files.

3.1 Source Estimation and Source Transfor-
mation

In the previous chapter, we defined the concept of universal coding as
describing the use of one encoder to encode the output of any source in a
given class of sources. In practice, the sources to be encoded will seldom be
restricted to a class for which there is a good universal encoder. One way
to get around this problem is to map the large class of sources that we wish
to encode into a class for which there is a good universal encoder. This
can be done through an operation we will call “source transformation”.
In order to describe the role of source transformation, we will start by
clarifying the situation when encoding the output of a known source and
when encoding the output of an unknown source using adaptive coding.

When the source to be encoded is known, the coding situation is il-
lustrated in Figure 3.1. The encoder is applied directly to the output
sequence of the source, and the decoder generates a replica of the source
sequence. Both the encoder and the decoder depend on the parameters of
the source. In other words, they have been designed to encode and decode
the output of this particular source.

If the parameters of the source to be encoded are not known, adaptive



3.1. Source Estimation and Source Transformation 101

U;

Source

A

Encoder

Y

Y

Decoder Sink

Figure 3.1: Coding situation when encoding the output of a known
source.

coding can be used. In adaptive coding, all the parameters of the source
are estimated on-line while the output of the source is being encoded.
This situation is illustrated in Figure 3.2. Once again, the encoder is

Source
Estimator

U;

A

Encoder Source

Y

Decoder Sink

Y

Source
Estimator

Figure 3.2: Adaptive coding.

applied directly to the output sequence of the source and the decoder
generates a replica of the source sequence. The source estimator estimates
the parameters of the source based on its observation of the source output
sequence, and the source encoder is modified after each encoded symbol
to reflect the updated source parameters. The condition for decodability



102 Chapter 3. Coding by Source Transformation

is that the estimation for the source parameters in the encoder and in
the decoder coincide at every coding step. This is ensured by allowing
the estimated parameters of the source for the k-th encoding operation to
depend only on the observation of the source output sequence up to its
(k—1)-th element. Since the decoder has generated a replica of the source
sequence up to and including its (k — 1)-th element before performing the
k-th decoding operation, it can replicate the source parameters estimated
by the encoder.

We are now ready to discuss the lesson we learned from Elias’ ap-
proach of using universal coding on another class than the class of sources
the encoder was designed for. The coding situation for this approach is
illustrated in Figure 3.3. This time, the encoder is not applied directly to

Universal || R; Source - U
- < Source
Encoder Transformer
X;
) Inverse
| Universal | R; Ui | o
> Source Sink
Decoder
Transformer

Figure 3.3: Universal coding with source transformation.

the output sequence of the source. Instead, the encoder is fed with the
output sequence of a source transformer. From the point of view of the
encoder, the source is now “transformed”, i.e., the source consists of the
block including the real source and the transformer. The role of the source
transformer is to perform an invertible mapping from the possible output
sequences of the source to sequences for which universal coding achieves
a good performance. In other words,

if the sources we wish to encode belong to a class for which
there is no good universal encoder, we can seek an invertible
source transformation which maps the sources in the class into
sources in a new class for which there exists a good universal
encoder.

There are several examples of invertible source transformations that can
be used for this type of encoding.

Ezxzample: In the method we described earlier as “interval coding”, the
transformer replaces the current output symbol of the source with the dis-



3.1. Source Estimation and Source Transformation 103

crete time interval that elapsed since the last occurrence of the current
symbol. For example, if the past output sequence of a source with alpha-
bet {A,B,C,D} ended with the sequence “... ,C, D, A, A, B,C, A” and
the next symbol to be processed was a ‘D’, the transformer would forward
an interval value of 6 to the encoder, because the symbol D occurred 6 sym-
bols earlier in the source output. Supposing that the source to be encoded

is a discrete memoryless source whose alphabet is 4 = {u1,us,... ,un},
the marginal probability distribution of the intervals R at the output of
the source transformer can be expressed for r = 1,2,3,... as
N
Pgr(r) = Z Py (ui) Priv (r|us)
i=1

= D [Pu(u) (L~ Pu(u) .

It is easy to see that this probability distribution is a monotone non-
increasing function of r. Therefore, the source transformer in interval
coding maps all sources in the class of discrete memoryless sources into
a class of sources whose marginal probability distributions are monotone
non-increasing. It does so at the price of an alphabet expansion: while
the sources in this example have an alphabet size of IV, the interval since
the last occurrence of a symbol can take on any value between 1 and +o0.
Willems’ version of interval coding and Elias’ recency-ranking circumvent
the problem of the alphabet expansion. We will describe recency-ranking
and a related method in the next section. Elias’ universal representations
of the integers can be used to encode the intervals generated by the source
transformer in our example.

It should be pointed out that Elias’ derivation of interval coding makes
no use of the fact that the probability distribution of the intervals is mo-
notone non-increasing. Elias uses the expected value of the interval given
the current symbol to state an upper bound on the performance of his uni-
versal representations when used to encode intervals. As a result, Elias’
upper bound applies to all discrete stationary ergodic sources and not just
to memoryless sources.

There are not many examples in the real world where we know in ad-
vance that a source we wish to encode belongs to a class of sources for
which there is a good universal encoder. The method of source transfor-
mation gives us the chance to apply universal coding to sources in wider
classes, like the class of all discrete memoryless sources or the class of all
discrete stationary sources. The source transformer is the genie who pops



104 Chapter 3. Coding by Source Transformation

up and volunteers the information without which we could have confined
the optimal coding distributions of the previous chapter into the realm of
entertaining but useless theories.

Partial
Source
Estimator
Y
Univ. | R; Source | U;
Enc. Transf. Source
X;
| Univ. R; . SInV' U, Sink
" Dec » Source > in
) Transft.
A
Partial
Source
Estimator
Figure 3.4:  Universal coding with source transformers and partial

source estimators.

We can combine the technique of source transformation with a partial
source estimation. This situation is illustrated in Figure 3.4. Contrary
to the source estimation performed in adaptive coding, a partial source
estimator does not estimate all the parameters of the source. Its aim is to
estimate one or a few parameters which will allow the use of a universal
encoder designed for a more restricted class of sources, yielding a better
performance.

Example: Suppose that the output of the source transformer is known
to have a marginal probability distribution which lies in the set My of
all monotone non-increasing distributions of alphabet size IN. The partial
source estimator can be used to estimate the average ¢ = E[f(R;)] of the
output sequence. Using this information, the optimal coding distribution
for the set My ;. of all monotone non-increasing distributions whose
average E[f(.)] is equal to ¢ can be used to achieve a better worst-case
redundancy than is achievable for the set M y.




3.2. Recency Ranking and Competitive Lists 105

In the next section, we discuss recency-ranking and introduce the com-
petitive list transformer. Our aim is to use these methods as source trans-
formers for universal coding. We show that the marginal distribution of
the output sequence of either transformer is a monotone non-increasing
distribution whenever the device is applied to the output sequence of a dis-
crete memoryless source. This will allow us to use the results obtained in
the previous chapter regarding optimal universal coding for sources with
a monotone non-increasing probability distribution.

3.2 Recency Ranking and Competitive Lists

We described Elias’ method of coding the discrete interval since the last
occurrence of the current source output symbol. In this scheme, the in-
terval encoded is the number of symbols emitted by the source since the
source last emitted its current output symbol plus one. The recency-rank
is defined in a very similar way: it is the number of distinct symbols emit-
ted by the source since the last occurrence of its current output symbol
plus one. In other words, symbols that have appeared more than once in
the source output in the meantime are counted only once when determin-
ing the recency-rank of the current symbol, whereas they are counted as
many times as they have occurred when determining the interval of the
current symbol.

Example: Consider a source with alphabet {A, B,C, D} whose output
ended with the sequence “... ,C,D,A, A, B,C,A”. This situation was
treated in a previous example to illustrate interval coding. When the next
symbol to be processed is a ‘D’, we found the corresponding interval to
be 6 because the source emitted the five symbols A, A, B, C, A since it last
emitted a ‘D’. The recency-rank of ‘D’ in this case is 4 because the three
symbols { A, C, B} occurred in the source output since the last occurrence
of the symbol ‘D’. The fact that ‘A’ occurred three times in the meantime
makes no difference to the recency-rank.

By definition, the recency-rank is always at most equal to the corre-
sponding interval. Therefore, Elias’ upper bound on universal coding for
the intervals which, as mentioned earlier, is based on the expected value
of the interval given the current output symbol must hold for the recency-
rank as well. Furthermore, since the recency-rank counts only distinct
symbols in the past output of the source, it is at most equal to the size
of the source alphabet. Therefore, the recency-rank does away with the
alphabet expansion which is a drawback of interval coding.



106 Chapter 3. Coding by Source Transformation

The recency-rank can be computed on-line by a device we call the “re-
cency-rank calculator”. The recency-rank calculator transforms a sequence
of symbols from a source with an alphabet of size NV into a sequence of
integers between 1 and N. The device holds an ordered list of the symbols
of the source. At every step, the device seeks the current output symbol
of the source in its list, outputs the position r of that symbol in the list,
and updates the list by moving the current symbol to the top of the list.
This explains the term “move-to-front” which Ryabko in [20] and Bentley
& al. in [6] use to describe this coding method. In this operation, the
symbols which were located at positions 1 to r — 1 are all shifted down
one position in the list. If the source output symbol is already at the top
position in the list, the device outputs a 1 and leaves the list unchanged.
The operation of the recency-rank calculator is shown for a 5-ary alphabet
{A,B,C, D, E} in Figure 3.5. When the source output symbol is found at

Input: C C D C

A C " C D><

B%A " A C

C B ' B Ar—

D D D B——

E “ E 2 E » E >
Output: 3 1 4 2

Figure 3.5: The Recency-Rank Calculator “in action”

position r, the symbols at positions 1 to r — 1 must have occurred at least
once in the source output sequence since the last occurrence of the current
symbol, since this is the only way those symbols could have jumped to a
position above the current symbol in the list. Therefore, the output of the
recency-rank calculator is indeed the recency-rank defined above.

The inverse recency-rank calculator holds a list which is always identi-
cal to the list in the recency-rank calculator. Whenever the inverse device
receives a recency-rank, it looks up the corresponding symbol in the list
and updates the list by moving this symbol to the front of the list. If both
devices are started in the same state, the inverse device will always be
able to recover the source sequence from the sequence of recency-ranks.
Therefore, the recency-rank calculator and its inverse satisfy the require-
ments we set for devices to be used as a source transformer and an inverse
source transformer in a universal coding scheme.



3.2. Recency Ranking and Competitive Lists 107

The competitive list transformer is a device very similar to the recency-
rank calculator. It also holds a list of the source alphabet. Whenever a
symbol is received from the source, it locates that symbol in the list and
outputs its position r. Instead of moving the symbol to the top of the
list as would a recency-rank calculator, it exchanges the symbol with the
symbol preceding it in the list. When the symbol received is already at
the top of the list, the competitive list transformer outputs a 1 and leaves
the list unchanged. The operation of the competitive list transformer is
shown for the alphabet {A, B, C, D, E} in Figure 3.6. The competitive list

Input: C A D C
A " A A =A><
B><C » C » C
C B =B><:D4’
D D D B—
E > E > E » E >
Output: 3 1 4 2

Figure 3.6: The Competitive List Transformer “in action”

transformer is a non-expanding transformer, since it will output integers
between 1 and N when it is applied to the output sequence of a source
whose alphabet size is IN. Upon receiving a rank, the inverse compet-
itive list transformer retrieves the corresponding symbol in the list and
proceeds to update the list as in the transformer. If the initial state of
the inverse transformer is chosen to be identical to the initial state of the
transformer, the source sequence can be recovered from the sequence of
ranks. Therefore, this device also fulfills the requirements for a source
transformer to be used for universal coding.

The name “competitive list” was chosen to reflect the process where
symbols are competing to rise in the list and symbols which occur in the
output of the source receive a bonus towards that end. The competitive
list was first studied by Rivest in [19] as a method to order the entries in a
database so as to minimize the time required to retrieve an entry. Rivest
calls the competitive list a “self-organizing list using the transposition
heuristic”’. We prefer the name “competitive list” because it is shorter and
it evokes a better image of how the list functions.

While it has been shown that both the competitive list transformer
and the recency-rank calculator are valid source transformers in the sense



108 Chapter 3. Coding by Source Transformation

defined previously, no thought has been given to the outcome of the trans-
formation realized by those two devices. According to the approach de-
scribed in the previous section, we plan to encode the output of a source
transformer using a universal encoder. Which type of universal encoder
can be used to encode the output of a competitive list transformer or of
a recency-rank calculator? We will soon give an analytical answer to this
question for both transformers. Before we proceed, it is worth giving an
intuitive description of the effect we expect the recency-rank calculator
and the competitive list transformer to have on the output distribution of
a source.

In both devices, symbols are allowed to rise in the list only when they
occur in the output sequence of the source. Therefore, once the influence
of the initial ordering of the list has faded away, symbols that occur fre-
quently will be found more often near the top of the list, while symbols
that occur infrequently will in general be found near the bottom of the
list. This effect is stronger in the competitive list, where the occurrence of
an infrequent symbol has a minor effect on the ordering of the list, while
such an event causes a stronger disturbance in the recency-rank calculator.
On the other hand, a recency-rank calculator will reach its steady state
sooner, i.e., the influence of the initial ordering of the list will fade away
sooner than it will for the competitive list transformer. Since frequent
symbols will mostly be found near the top of the list, we can also expect
small ranks to be found more frequently than larger ranks in the output
of those source transformers. Conceptually, we expect a decreasing mar-
ginal distribution at the output of the source transformers. The output
distribution of the competitive list transformer is expected to be “more
decreasing” than the output distribution of the recency-rank calculator.

We will show that the output distributions of a competitive list trans-
former and of a recency-rank calculator which have reached their steady
state are monotone non-increasing when those transformers are applied to
the output of a discrete memoryless source. Though it is not clear what
“more decreasing” means, we will quantify the difference between the two
transformers in the results of a simulation.

In practice, we are mostly interested in encoding the output of a dis-
crete stationary source which is not necessarily memoryless. The results
we present apply only to memoryless sources. In the next section, we dis-
cuss an approach which can convert some stationary sources into an array
of essentially memoryless sources. Together with the results we are about
to present, this serves as a justification for the practical source coding
algorithm presented in the next section.



3.2. Recency Ranking and Competitive Lists 109

Steady-State Analysis

We now consider the situation when the competitive list transformer is
applied to the output of a discrete memoryless source with an alphabet A
of size N. This situation is illustrated in Figure 3.7. The competitive list

Ri Ro. ... Competitive | 17 17, Discrete
Pt Rk List 2 Memoryless
Transformer Source

Figure 3.7: The situation for the steady-state analysis.

transformer has N! possible states corresponding to all possible orderings
of the alphabet 4. We write {s1, s2,...,sn1} for the set of possible states
and S for the random variable whose value is the state of the list.

Steady-State Analysis for the 2 and 3-Symbol Alphabets

b

(0} ) )b

Figure 3.8: The state-diagram of a 2-symbol competitive list trans-
former

We first study the behavior of the competitive list transformer for a
binary memoryless source with an alphabet A4 = {4, B} and with proba-
bilities a and b respectively. This list has two possible states, s; = “AB"
and so = “BA". The probabilities of being in these two states at any time
can be written as a vector Ps = [Ps(s1), Ps(s2)]”. The state-transition
diagram of this system is shown in Figure 3.8.

The transition matrix of the competitive list transformer

=[]

maps the current state probability vector Ps into the state probability
vector at the next step. The steady-state probability vector satisfies the



110 Chapter 3. Coding by Source Transformation

relation
Ps = TPg

and the additional constraint that the sum of the the state probabilities
must be 1. Together, those two relations yield the solution

Ps = [a, b]T

The steady-state probabilities of the output ranks can then be computed
as

Pr(r) = Prs(r|s1)Ps(s1) + Pris(r|s2) Ps(s2)

for r = 1...2. But Pgjs(r|s;) is precisely the probability of the symbol
at the r-th position in the list corresponding to state s;. This gives us the
steady-state rank distribution

Pr = [Pr(1), Pr(2)]" = [a® + b*, 2ab]".

It is easy to verify that Pr(1) > Pr(2) for any choice of the probabilities
a and b, which in this simple 2-symbol case confirms our claim that the
output distribution of the competitive list is monotone non-increasing.

The state-transition diagram of the competitive list transformer for a
3-symbol alphabet A = {A, B, C} with probabilities a,b and c is given in
Figure 3.9. The transition matrix is

O OO O SR
OO0 OoR
SO O o O
o o OO
@ O o O OO
O oo o

Though this matrix is relatively sparse and has a clear symmetric pattern,
it is almost impossible to find the solution of the equation Ps = T Pg either
by hand or with one of the powerful symbolic software tools available.
With a little luck and by analyzing the numerical solutions for a few
examples, we found the steady-state probability vector to be

" Pg(“ABC™) T C a2b ]
Ps(“BAC™) b2a
po_ | Ps(*BCA™) | _ 1| b
S = Ps(ccCBA//) - Z C2b
Ps(“CAB") ca

| Ps(“ACB") | | a’c |



3.2. Recency Ranking and Competitive Lists 111

Figure 3.9: The state-diagram of a 3-symbol competitive list trans-
former

where A = a?(b+c) +b%*(a+c)+c?(a+b). The output probabilities can be
computed as in the 2-symbol case, giving a complicated expression which
we will spare the reader.

It appears to be very difficult for even moderately large N to compute
the steady-state probability vector directly from the equation Pg = TPg
because the transition matrix T is an N! x N! matrix. Luckily, we can
guess the general solution based on the two examples just derived, thereby
avoiding the troublesome burden of solving such huge systems of equations
explicitly.

Steady State Solutions for N-ary Alphabets

The general solution is given in the following proposition, which was stated
by Rivest in [19] in a slightly different form'.

Proposition 3.1 The steady-state probabilities of a competitive list ap-
plied to the output of a discrete memoryless source with alphabet A =

I'Unaware of Rivest’s solution, I sought the invaluable help of my colleague Thomas
Ernst with whom we were able to discover this solution independently, albeit 20 years
after Rivest’s original solution. Nonetheless, I cannot resist the temptation of thanking
yet another friend for the exciting collaboration which has led to this belated proposi-
tion.



112 Chapter 3. Coding by Source Transformation

{ui,us,... ,un} and corresponding probabilities a1, s, ... ,an are given
as
I N1 N2 1 0
Ps(ui tiy .. Uiy ) = N e TR R (3.1)
for any (i1,42,-.. ,in) € SN, where Sy is the set of all permutations of
the numbers 1,2,...N. The normalization factor A is
N—-1_N-2 1 0
A= Z QT oy, (3.2)

(7;1,7;23"' 77'N)ESN

Proof: Transitions to a given state s = u;, u;, ... u;, of an N-ary compet-
itive list are possible only from state s itself, or from states s’ in which
two adjacent symbols of the list are permuted, i.e., there must be a k
such that s" = u;, ... w4, 4, ... u;,. These correspond to the non-zero
elements in the row pointing to s in the transition matrix. There are NV
non-zero elements, one pointing from s itself, and N — 1 pointing from the
states in which two adjacent list elements are permuted. The steady-state
constraint corresponding to state s is thus

Ps(s) = ay, Ps(s)+ aj, Ps(ujug, ---uqy)
+ .- +aikPS(ui1 "'uik+1uik ’U,@N)

+ -4 OziN_1PS<'UJi1 .- -UiNUiN—l)'

Inserting the solution stated in the proposition, we obtain

Ps(s) = %[ailaf\f_l---a?]v
+anal a2 af,
_|_..._|_aika£\1[_1... Z;k i\i_k_l...a?N
+"'+O‘iN—1O‘ﬁ_1"'aleO‘?N_l]

1 _ _
= Zaf\lf 1ag 2---a?N(ai1+ai2+---+aiN)
= PS(S)a

where we have used the fact that

N N
Zaik = ZPU(’UJ%) =1.
k=1 k=1



3.2. Recency Ranking and Competitive Lists 113

Thus, the solution stated satisfies the equation Ps = T Psg. The division
by A ensures that the additional constraint ) Ps(s) = 1 is satisfied.
The uniqueness of the steady-state probabilities ensures that the solution
stated is the only solution. 1

As before, it is possible to write the probability distribution of the
ranks based on the steady-state distribution of the list. This results in the
following proposition:

Proposition 3.2 The steady-state output probabilities of a competitive
list transformer applied to the output sequence of a discrete memoryless

source with alphabet A = {u1,us,... ,un} and corresponding probabilities
a1,0,... ,QN are

NI

Pgr(r) = ZPR|S(T|Sk)PS(Sk)
k=1
1
= X Z auaﬁ_l e a?N. (3.3)
(il,...iN)ESN

forr=1...N.

Although this is a precise formulation of the output distribution of a com-
petitive list given its input distribution, it does not give much insight into
the character of the output distribution. In an appendix to this chap-
ter, we state an alternative formulation which gives more insight into the
mathematical structure of the output probabilities derived by relating it
to a matrix operator known as a permanent.

We are now ready to prove the following theorem:

Theorem 3.1 When a competitive list transformer is used on the output
sequence of a discrete memoryless source with strictly positive probabilities
Qay,09,...,an to yield the output sequence Ri, Ra, ..., the steady-state
distribution Pr(.) of the output ranks R satisfies the inequality

with equality everywhere only when the input distribution is a; = 1/N for
1 =1,2,...,N. Otherwise all inequalities are strict.

Proof: We begin by proving the outer inequalities. For r = 1,2,... N,
the sum in (3.3) can be partitioned as follows

Pr(r) = w01 + wpaae + - -+ + wenan,



114 Chapter 3. Coding by Source Transformation

where where w,; > 0 for all 7 and Zjvzl wy; is the sum of the state
probabilities which is equal to one. Thus,

N
Pr(r) < (Z wrk) max a; = max .
1 (] 1
Similarly,
N
Pr(r) > (kz:l wrk> miin o; = miin ;.

We have proved that max; a; > max, Pr(r) and min; ; < min, Pgr(r).
Now, for any r between 1 and N — 1, we define

£(r) € Pg(r) — Pr(r +1).

Using (3.3), we can write

£r) = %( S el loal,

(il,...iN)EsN
§ : N-1 0
_ air—|—1 azl to a’LN)
(il,...iN)ESN

1 N
- LY -anel e,

(il,...’iN)GSN

We partition the set Sy of all permutations of the N-tuple (1,2,...,N)
into two sets SL and S% of equal cardinality in the following way: pick a
permutation (i1,42,... ,ix) in Sy at random, and put it in S%;. Now se-
lect the permutation (i1,%2, ... ,%r41, %, --- ,4n) that is the same in every
position as the previous permutation except that positions r and r + 1 are
exchanged, and put it in S%. For example, if N = 5, r = 3 and we picked
the permutation (3,2,5,4,1) to put in S}, we must put (3,2,4,5,1) in S%.
We can separate the sum above into two sums

1 N—
(r) = 3 > (o —aiy)an el
(il,...iN)ES]lV
1 N—-1
+E Z (air - air+1)ai1 T OK?N .
(il,...iN)ESJZV



3.2. Recency Ranking and Competitive Lists 115

Since the permutations in S} and S3 differ only in the r-th and the
r + 1-th position, we can reduce these two sums to one sum over S}

1
_ ) ) N—-1 0
&) = 12 |(an —ai)al Tt al,
Sl
N-—1 N—r N-—r—1 0
+(alr—|—1 - alr)all e 7;7«_|_1 7;;,« U alN:|
_ 1 (i, —ay . ) N=1  gN-7.
= X a;, —a; ) (a; a;
Sl
N—r—1 0 N-1 N—r N-—r—1 0
tr41 Qg Ty T air+1 a; T aiN)
1
_ E: R N—1 N-r+1
- Z (al'r* aZr—}-l )all air_l
Sl
N—r—1 N-—-r—1 0
Oé?:r air+1 T Oéi]\] (alr - Oéir—}—l )'
We can finally write the following equation
N-—1 0
1 al AR Oéz
2
(ry==> — = (i, — a4,1,)" (3.5)
. r r41
A o Q.

Since all the probabilities are strictly positive, we have proved that Pr(r) >
Pr(r 4+ 1). Equality holds only when all the terms of the sum in (3.5) are
zero, which is true only if all the probabilities «; are equal, i.e., a; = 1/N
fori=1,2,... ,N. 0

Theorem 3.1 confirms our claim that the output distribution of a com-
petitive list transformer applied to the output of a discrete memoryless
source is monotone non-increasing. This will not necessarily be true when
the competitive list transformer is applied to the output of a discrete sta-
tionary source which is not memoryless. A notorious counter-example is
the source which outputs the semi-infinite sequence 0,1,0,1,0,1,... with
a probability of 1/2 and the semi-infinite sequence 1,0,1,0,1,... with a
probability of 1/2. This source is stationary, but the competitive list trans-
former will always output the constant rank 2 with probability 1. How-
ever, simulations indicate that the output distribution of a competitive
list transformer applied to most practical sources tends to be monotone
non-increasing.

Steady-state probabilities of the recency-rank calculator

We will now derive the state probabilities and the output probability dis-
tribution of a recency-rank calculator when it is applied to the output of



116 Chapter 3. Coding by Source Transformation

Figure 3.10: The state-diagram of a 3-symbol recency-rank calculator

a discrete memoryless source. For comparison, the state-transition dia-
gram of a recency-rank calculator applied to a discrete memoryless source
with alphabet A = {A, B, C'} and corresponding probabilities a, b and c is
shown in Figure 3.10. The corresponding state transition matrix is

OO OO o R
OO O R
SO O SO R
Q OO oo OO
QO OO O
Q O O o o O

The steady-state probabilities of the recency-rank calculator are obtained
by solving the equation Ps = T Ps as for the competitive list transformer.
Again, the solution of this equation was discovered by observing the nu-
merical solution for a few simple examples.

Proposition 3.3 The steady-state probabilities of a recency-rank calcula-
tor applied to the output of a discrete memoryless source with alphabet
A = {u1,us,... ,un} and corresponding probabilities a1,as,... ,an are



3.2. Recency Ranking and Competitive Lists 117

given as

107 P ST PYMA & 7 Nt

Ps(uiluZ'Q . .UZ'N) =

(1 - ail)(l — Oy — aig) e (1 — QG — ... aiN—z)
(3.6)
for any (i1,42,... ,in) € SNy, where Sy is the set of all permutations of

the numbers 1,2,...N.

Proof: The proof is carried out by verifying that the state probabilities
stated sum to one and that they satisfy the equation Ps = T Ps for the
state-transition matrix T of a recency-rank calculator. We leave out the
actual derivation, since it is even more tedious than the derivation of
Proposition 3.1. [

As for the competitive list transformer, the output probabilities of the
recency-rank calculator are determined by the state probabilities (3.6).

Proposition 3.4 The steady-state output probability distribution of a re-
cency-rank calculator applied to the output sequence of a discrete memo-
ryless source with alphabet A = {uy,us,... ,un} and corresponding prob-
abilities a1, s, ... ,an satisfies

N1
Pr(r) = ) Pris(r|sk)Ps(sk)
s
= > o e (3.7)

(i1,...,in)ESN (1_ai1).”(1_ai1 _"'_aiN—z)

forr=1...N.

The following theorem shows that the output distribution of a recency-
rank calculator is monotone non-increasing.

Theorem 3.2 When a recency-rank calculator is used on the output se-
quence of a discrete memoryless source with strictly positive probabilities
Qay,09,...,an to yield the output sequence Ry, Ra, ..., the steady-state
distribution Pgr(.) of the output ranks R satisfies the inequality

max a; > Pr(1) > Pr(2) > ... > Pr(N) > mina; (3.8)

with equality everywhere only when the input distribution is a; = 1/N for
1 =1,2,...,N. Otherwise all inequalities are strict.



118 Chapter 3. Coding by Source Transformation

Proof: The proof of this theorem follows the same outline as the proof
of Theorem 3.1. We refer to that proof whenever the derivation is iden-
tical. For a start, the proof of the outer inequalities is the same as for
Theorem 3.1.

Regarding the inner inequalities, we will treat the last inequality sep-
arately. Forr =1,2,... ,N — 2, we can write
def

&(r) Pr(r) — Pr(r +1)

— Z (air_air+1)(1_ai1)...(1—ai1—..-_aiN_z).

(il...’iN)ESN

As in the proof of Theorem 3.1, we partition the set Sy into the set S
and the set S%, where each permutation (i1,...,7y5) in S} has a “twin”
permutation (i1,...,%41,%r,...,%in) in S which is identical up to the
elements at positions r and r + 1 which are exchanged. We can now write
£(r) as a sum over the set S}, which, after a few transformations, yields

(i, — @i, yy)?
6(7“) = Z 1 —a. — + Pg(uiluiQ...uiN).
71

e — 0Oy — O
(i1, in )ESL r—1 r+1

Every term in this sum is non-negative which implies that the sum is
non-negative. Furthermore, the sum is equal to zero if and only if every
term in the sum is equal to zero, which is the case only when the source
probabilities o, ... ,ay are all equal?.

The same approach can be used to prove the last inner inequality and
its condition for equality, except that a different expression is obtained:

def

§(N—-1) = Pgr(N-—1)- Pr(N)
2
oy, — Oy,
= z ( +1) Ps(uiluig...um).
(7,1,... ,ZN)ES}V
This sum confirms the last inner inequality. 7

As for Theorem 3.1, Theorem 3.2 will not hold in general for discrete
stationary sources which are not memoryless. The counter-example stated
for the competitive list will produce the same result with a recency-rank
calculator. In simulations, it appeared that the output distribution of a

21f it was possible to prove the relation écpr(r) > &rro(r) forr = 1,... N — 1,
it would demonstrate in what sense the output distribution of the competitive list
transformer is “more decreasing” than that of the recency-rank calculator. I do not
know whether this relation holds.



3.2. Recency Ranking and Competitive Lists 119

recency-rank calculator has a generally decreasing shape for most practical
sources, but it is seldom monotone non-increasing. In particular, many
sources were observed for which the probability Pr(2) that the rank be
equal to two is much smaller than the probabilities of subsequent ranks.

Comparing the competitive list and the recency-rank

Both the competitive list transformer and the recency-rank calculator re-
alize a non-expanding invertible transformation of the source output se-
quence, i.e., they produce one output rank per source output symbol, and
the alphabet {1,2,..., N} of the ranks has the same size as the source
alphabet. For a block U; . ..Uy, of source symbols and the corresponding
block R, ... Rjys of ranks, we can write

H(Rl...RMUl...UM) = H(Rl...RM|U1...UM)+H(U1...UM)
= H(UlUM|R1RM)+H(R1RM)

The initial state of the list is a fixed system parameter known both to the
encoder and the decoder. Thus, we can write

H(Ry...Ry|Uy...Uy) =0,

reflecting the fact that the transformation is a deterministic operation.
Similarly,

HU,...Uy|Ry...Ry) =0,

since it is possible to recover the original source output sequence using the
sequence of ranks, i.e., the inverse transformation is also a deterministic
operation. Thus, we have

HU,...Uy)=H(R:...Rpy).
If we let M go to infinity, we obtain
H,(R) = H(U). (3.9)

When the input to the transformer is the output of a discrete memoryless
source, we have in addition

H(U) = Hw (U),

i.e., the single-letter entropy of the source is equal to its entropy rate.
However, for the output of the source transformer, in general

H(R) > Ho(R).



120 Chapter 3. Coding by Source Transformation

H(R)

A

H(U)

Figure 3.11: Output Entropy vs. Input Entropy of the Competitive
List Transformer

H(R)

H(U)

Figure 3.12: Output Entropy vs. Input Entropy of the Recency-Rank
Calculator



3.2. Recency Ranking and Competitive Lists 121

This shows that the source transformation may induce an increase of the
single-letter entropy compared to the entropy of the source. Since the uni-
versal encoder we plan to apply to the output of the source transformer
is based solely upon its marginal probability distribution, the single-letter
entropy of the output ranks is a lower bound for the expected codeword
length of the universal encoder. Therefore, the competitive list trans-
former and the recency-rank calculator can be compared based on the
single-letter entropy of their output ranks in function of the entropy of
the source.

Figure 3.11 represents the results of a simulation where the entropy
of the output of a competitive list transformer was estimated for 100’000
randomly chosen discrete memoryless sources of alphabet size 64. Each
source generated an output sequence of 10% symbols which were processed
by the competitive list transformer. The graph plots the measured single-
letter entropy at the output of the competitive list transformer versus the
entropy of the discrete memoryless source. Each point in the graph repre-
sents one such measurement, i.e., the graph contains 100’000 points. For
comparison, Figure 3.12 shows the outcome of the same simulation where a
recency-rank calculator was used instead of a competitive list transformer.
The recency-rank calculator was applied to the same 100’000 source output
sequences as the competitive list transformer. The graph shows a consid-
erably larger spread, or increase of entropy for the recency-rank calculator
than for the competitive list transformer. What the graph does not show
is that the measured output entropy of the recency-rank calculator was
greater than the measured output entropy of the competitive list trans-
former for each of the 100’000 sources simulated. It is not known whether
this relation can be shown analytically. Furthermore, we observe that
the output entropy of both transformers “touches” the line H(U) = H(R)
for some sources. This happens only for entropies H(U) = log,(L) for
L =1,2,3.... This effect is explained by considering the statements of
Theorems 3.1 and 3.2: when the probability distribution of the source
approaches a uniform distribution of size L (i.e., Py(uy) = 1/L for some
k and Py (ug) = 0 for all other k), the output distribution also approaches
a uniform distribution of size L and the output entropy approaches the
input entropy.

The results of this simulation indicate that the competitive list trans-
former will achieve better results in practice than the recency-rank calcula-
tor, tough both transformers realize a mapping of all discrete memoryless
sources into the class of sources whose marginal distribution is monotone
non-increasing. As pointed out earlier, the recency-rank calculator is ex-
pected to converge towards its steady state faster than the competitive



122 Chapter 3. Coding by Source Transformation

list transformer. However, we will overcome this disadvantage of the com-
petitive list transformer by starting with an empty competitive list and
letting its size grow as new symbols are observed in the source output. In
the next section, we show how this can be realized in practice, while still
allowing the inverse transformer to recover those new symbols from the
sequence of ranks. Before we proceed to the discussion of our practical
coding algorithm, we conclude this section heavy with propositions and
theorems by stating a list of the “theorems” that we were unable to prove:

e We could not show in what sense the output distribution of the
competitive list transformer is “more decreasing” than that of the
recency-rank calculator.

e The graphsin Figures 3.11 and 3.12 seem to indicate that there exists
an upper bound for the single-letter entropy of the output of both
source transformers given the entropy of the discrete memoryless
source they are applied to. We were not able to determine such an
upper bound analytically.

e We could not show that the output entropy of the competitive list is
always smaller than that of the recency-rank calculator though our
simulation results indicate that this may be true.

e Though we showed that the output distribution of both source trans-
formers is monotone non-increasing, we do not know whether every
monotone non-increasing distribution can be the output distribution
of a competitive list transformer or of a recency-rank calculator.

e Finally, though simulations indicate that the output distribution of
a competitive list transformer tends to be monotone non-increasing
for a larger class of sources than the class of all discrete memoryless
sources, we were unable to determine such a class.

3.3 Conditional Competitive Lists

In the previous section, we described two source transformers whose steady-
state output distribution is monotone non-increasing when they are ap-
plied to a discrete memoryless source. In this section, we show how condi-
tional coding can be used to transform the output of some discrete station-
ary source into an array of essentially memoryless sources. Furthermore,
we show how the convergence of a competitive list transformer towards its
steady state can be accelerated in a practical context-tree source coding
algorithm. Finally, we return to our discussion of coding distributions



3.3. Conditional Competitive Lists 123

for the output of a source transformer and discuss an alternative to the
optimal coding distributions presented in the previous chapter.

Context-tree algorithms

We begin by introducing the concept of a context-tree algorithm the way
it is commonly implemented, i.e., as an adaptive algorithm where the
encoding is based on estimated probability distributions. Following this,
we will discuss how a context-tree algorithm can be modified to include
source transformers and universal arithmetic coding.

Context-tree source coding algorithms encode the output of a source
based on estimates of its conditional probability distributions. The context
of length w of the source at any given moment is defined as the sequence
of w past output symbols of the source. A context-tree algorithm holds
a list of possible source contexts, which can be represented as a tree. In
this tree, the root represents the empty context ; the nodes at depth
1 from the root represent the last symbol emitted by the source ; the
nodes at depth k represent the k-th past output symbol of the source.
An example context-tree for a ternary source with alphabet {A ,B,C} is

TN
N e .
o

Figure 3.13: An example context-tree for a ternary source

shown in Figure 3.13. At every node, a context-tree algorithm holds an
estimate of the conditional probability distribution of the source given
the corresponding context. When a source symbol is to be encoded, an
arithmetic encoder uses the estimated distribution in the deepest node
corresponding to the current source context. For example, if the past
output sequence of the source ended with the sequence “ ..., B, A, B, C,
A”  the node selected in the tree of Figure 3.13 is the node corresponding
to the path A-C-B which is marked with a cross in the figure. On the
other hand, if the past output sequence of the source ended with the
letter “B”, the estimated probabilities in the root context would be used



124 Chapter 3. Coding by Source Transformation

for the encoding as there is no path starting from the root corresponding
to the letter “B”. A context-tree algorithm must be designed in such a
way that the tree and the probability estimates are identical at every
step in the encoder and in the decoder. Once a symbol is encoded using
the probability estimated in a given node, the probability estimates can
be updated and the tree shape can be modified by adding or possibly
removing nodes in the tree. The decoder decodes the received symbol
based on an identical tree containing the same estimated probabilities
as the tree in the encoder. Once it has determined which symbol was
encoded, the decoder can perform the same modifications in the tree as
the encoder.

Universal source coding algorithms are commonly compared based on
three performance measures:

e the compression rate k, usually measured by the average number of
output bits per input byte [bpB].

e the storage requirement o of the algorithm [kBytes|

e the throughput 6, measured by the number of kBytes compressed per
second.

Context-tree algorithms such as PPM [8] and CTW [24] have achieved
by far the best compression rates ever obtained. However, they have a
relatively slow throughput and they require a lot of storage.

When designing a context-tree algorithm, the lengths of the contexts
used are the principal parameters to consider in order to ensure a good
compression rate. Longer contexts give rise to a tradeoff between one
advantage and two disadvantages. The advantage of using longer contexts
can be stated as follows:

The theoretical lower bound for the compression rate at a given
context is determined by the conditional entropy of the source
given the context. On average, increasing the length of con-
texts can only reduce the conditional entropy for discrete sta-
tionary sources (see [30, Theorem 3.5.1]), thereby allowing bet-
ter compression rates.

The disadvantages of longer contexts can be summarized as follows:

1. At every context, there is a transient phase during which the sta-
tistics accumulated are insufficient to provide a good compression
rate. Longer contexts occur less frequently than short ones. There-
fore, the length of the transient phase will increase with the length
of the contexts used.



3.3. Conditional Competitive Lists 125

2. If N is the alphabet size of the source, there are N possible con-
texts of length w. Increasing the length of the contexts used can
drastically increase the storage requirement of a context-tree algo-
rithm.

The two context-tree algorithms cited above are designed mainly to over-
come the first disadvantage stated. Both algorithms are based on clever
ideas to achieve a seamless transition between shorter contexts and longer
contexts as the latter fade out of their transient phase. However, these al-
gorithms make no effort to reduce the storage required by their respective
context trees.

We now present our own context-tree algorithm which is based on
source transformation and universal arithmetic encoding. Since it ap-
pears to be the fashion of the trade to name algorithms using three letter
acronyms, we choose to call our algorithm “CCL” to stand for “Conditional
Competitive Lists”.

The CCL algorithm is a context-tree algorithm where the prob-
ability estimation in each node of the context-tree is replaced
by a competitive list transformer. The role of the competitive
list transformer is to convert the partial output sequence of
the source processed in each context into a sequence whose
first-order probability distribution is monotone non-increasing
as stipulated by Theorem 3.1. The output sequence of each
competitive list transformer is encoded using a universal arith-
metic encoder.

There are two caveats in the scheme we just described:

1. Theorem 3.1 holds only when the input of the competitive list trans-
former is the output sequence of a discrete memoryless source.

2. Theorem 3.1 holds only for the steady-state output distribution of
the competitive list transformer.

The second caveat stated is not particular to the CCL algorithm. As
mentioned earlier, both PPM and CTW are built around two methods to
overcome the transient of the probability estimator in each context. The
CCL algorithm must overcome the transients of its source transformers
rather than transients of probability estimators. A method which allows
one to overcome this transient will be described shortly using what we
shall call a “conditional competitive list”. This approach is closely related
to the method used by CTW to overcome the transient of its probability
estimators.



126 Chapter 3. Coding by Source Transformation

The first caveat stated poses a more significant threat to the integrity
of the CCL algorithm. In order to tackle this problem, it is necessary
to investigate the conditions under which a context-tree algorithm can be
used to encode the output of a source efficiently.

e if a source coding algorithm models sources as context-trees where
each node in the tree contains the true conditional probability distri-
bution of the source given the corresponding context, the algorithm
approaches the entropy rate H,, (U) of any discrete stationary source
on average with every increase of the tree depth. This holds because
the conditional entropy H (UL |U; ...Ur—1) is monotone non-increas-
ing in L and its limit is the entropy rate Ho(U) of the source (see
[30, Theorem 3.5.1]).

e when a context-tree algorithm uses estimated conditional probabil-
ity distributions in each node as is the case for PPM and CTW, it
is not enough for the source to be stationary as this does not en-
sure that the probability distribution estimated in each node of the
context-tree converges towards the true conditional distribution of
the source. A sufficient condition is for the source to be a unifilar
ergodic Markov® source. We refer to [27] for a definition of unifilar
ergodic Markov sources.

e for the CCL algorithm, it is not sufficient for the source to be a
unifilar ergodic Markov source. Theorem 3.1 requires the partial
sequence observed in each context to be memoryless to ensure that
the output distribution of the source transformer converges towards
a monotone non-increasing distribution. This can be brought about
by requiring the source to be a unifilar ergodic finite-order Markov
source and that the depth of every node in the tree in which a
source transformation is performed and used by the encoder be at
least equal to the order of the source for that node.

We have stated the strict conditions under which Theorem 3.1 provides
a base for the CCL algorithm to encode the output of a source. In prac-

3There are Markov sources, Markov diagrams, Markov models and Markov chains
but no one was able to tell me which illustrious Markov they are named after. I asked
many experts and received many humorous answers. The closest serious reference I
found is in the book “Concrete Mathematics” by Graham, Patashnik & Knuth, which
lists an “Andref Andreevich Markov the elder” in the index but gives no reference to his
work. Among the funny answers I received, I cannot resist quoting Marc Semionovitch
Pinsker’s answer: “I know at least fifteen Russian mathematicians named Markov. The
name does not refer to one Markov in particular but is used to honor the great dynasty
of the Markov’s.” and Yuri Shtarkov’s answer: “It’s a spelling mistake. It should be
called a ‘Shtarkov’ information source!”



3.3. Conditional Competitive Lists 127

tice, we cannot verify whether these conditions hold for a given source.
Instead, we will rely on our observation that the output distribution of
a competitive list transformer tends to be monotone non-increasing for
many practical sources which are not memoryless and assume that the
output distribution of a competitive list transformer is always monotone
non-increasing.

The practical advantage of the CCL algorithm is a reduction of the
storage requirement when compared to other context-tree algorithms. A
probability estimator requires one counter for every probability estimated.
A competitive list transformer requires only a list of symbols to be stored.

In order to achieve a high throughput, a source coding algorithm must
process sequences of symbols at every coding step rather than encoding one
symbol at a time. The Lempel-Ziv algorithm [25] is one such algorithm.
Since the CCL algorithm performs one coding operation per source sym-
bol, its throughput is expected to be in the same order of magnitude as
the throughput of other context-tree algorithms.

Finally, our context-tree algorithm replaces adaptive coding, which has
a redundancy of zero in the steady state, by source transformation and
universal arithmetic coding, where an increase of entropy occurs in the
source transformation and redundancy is added to the resulting single-let-
ter entropy by the universal encoder. Therefore, we cannot expect the
CCL algorithm to attain the compression rates achieved by PPM* when
the same context-tree is used. Therefore, the CCL algorithm trades a
worse compression rate for a reduction of the storage required.

The conditional competitive list transformer

In order to overcome the long transient phase of the competitive list trans-
formers in every node of the context-tree, the operation of the competitive
list transformer is modified during its transient phase. Instead of starting
a competitive list transformer with the full alphabet of the source, the
conditional competitive list transformer in a context-tree contains only
symbols which have been encountered in the past in the corresponding
context. If a symbol is received which is contained in the list, the con-
ditional competitive list transformer operates like a normal competitive
list transformer. If a symbol is received which is not yet in the list, this
symbol is appended at the end of the list.

4The comparison with CTW is more difficult since CTW can only be implemented
using a binary alphabet in every node, and the CCL algorithm must have a larger
alphabet to be of any interest. Since the performance of CTW is comparable or better
than that of PPM, the statement holds for CTW as well



128 Chapter 3. Coding by Source Transformation

R} A
- o
L D LA
! I
A D T
¢ E | B |
E A —
T " - ' C l
A E| — S
- e
c -
E :
!

Figure 3.14: Conditional competitive list transformers in a context tree

We must provide a way for the decoder to find out which new symbols
are appended to the end of the list in the conditional transformer. The
solution to this problem is to extend the list in the current context using
the lists contained in its parent nodes in the context tree. In this scheme,
whenever a symbol is not contained in the current list, the search for this
symbol is automatically continued in its parent context, its grand-parent
context and so on. A “virtual” node is imagined beyond the root which
contains all the symbols of the source listed in alphabetical order to ensure
that the symbol will always be found.

When the parent nodes are searched, the rank is only incremented for
symbols which have not been encountered in a previous list. Thus, the
rank emitted will remain a number between 1 and N as for a non-condi-
tional competitive list transformer. Based on this rank, the decoder can
replicate the operation of the encoder and find the symbol encoded in the
node where the encoder found it. Once the symbol is found, both the
encoder and the decoder can append it to the list in the current node and
in all the parent nodes visited before the symbol was found.

Example: Figure 3.14 represents part of a context-tree used to encode a
source with alphabet {A, B, C, D, E}. If the past output of the source
ended with the sequence “ ..., C, A”, then the node corresponding to
the current context of the source is the deepest node represented in the
figure. For the conditional competitive list transformer in this node, the
assignment of source symbols to ranks is given in the following table:

Rank | Symbol
1

SHTNNUIN
sl @R wil-glcs!




3.3. Conditional Competitive Lists 129

Symbols ‘E’ and ‘A’ are assigned their ranks in the competitive list of the
current node. Symbol ‘D’ is assigned rank 3 because it is the first symbol
encountered in the parent node which is not already in the current node.
Symbol ‘C’ is assigned rank 4 because it is the next new symbol along the
genealogical path of the current node. Since symbol ‘B’ is found in no
node along the genealogical path, it must be sought in the “virtual” node
beyond the root which contains all symbols ordered alphabetically.

This method bears a certain similarity to both PPM and CTW. In
PPM, each node in the tree contains only estimated probabilities for the
symbols which have been encountered in the past in the corresponding
context. Symbols for which a probability has been estimated in the current
node are encoded using this probability. When a symbol occurs for which
there is no estimated probability in the current node, an “escape” symbol
is encoded, thereby instructing the decoder that the probability estimates
in the parent node will be used to encode the next source symbol. The
estimated probabilities in the parent node are rescaled to exclude those
symbols which are already in the current node. If the symbol is not found
in the parent node, the grand-parent node is used, etc. If the symbol is
not found in the root node, a “virtual” node beyond the root is used which
assigns the uniform probability distribution to the alphabet of the source.

The CTW algorithm combines the probabilities estimated in the cur-
rent node with the probabilities estimated in the nodes along the genealog-
ical path of the current node to determine the coding probabilities used
at every encoding operation. Contrary to PPM, the CCL algorithm must
not encode an “escape” symbol when the source symbol to be encoded is
not found in the current node. As a result, the loss which incurs when
using an oversized context-tree to model the source is very small. In this
sense, the method used in the CCL algorithm to overcome the transient
of its source transformers is closer to the CTW algorithm than it is to the
PPM algorithm.

The Average Distribution

For the CCL algorithm, there is an alternative to the optimal coding
distribution for monotone non-increasing probability distributions derived
in the previous chapter. The alternative consists in using the estimated
average output distribution of the source transformers in the context-tree
as a coding distribution to encode the output of each source transformer.
This method was introduced on intuitive grounds by P. Portmann and
I. Spieler in their semester project [17] and presented in [21].



130 Chapter 3. Coding by Source Transformation

Source
Transformer
1

Source o

Transformer
2

Adaptive
-<—  Arithmetic
Encoder

/

Source

5 Source
[ Context

Source

Transformer
K

l\
N

Figure 3.15: The CCL algorithm using the average coding distribution

The practical implementation of this method is shown in Figure 3.15.
In the figure, the nodes of the context-tree are represented as an array of
source transformers numbered from 1 to K. The output of the source is
forwarded to a shift register which holds the current context. Based on this
context, the decision block ¢, which holds the structure of the context-tree,
decides which source transformer to forward the current source output
symbol to.

Instead of using the optimal coding distribution for monotone sources
to encode the output sequence of each source transformer, the output sym-
bols of each transformer are now merged back into one sequence of ranks.
This “merged” sequence is encoded by an adaptive arithmetic encoder,
which uses its estimate of the marginal probability distribution of the
symbols in the merged sequence as a coding distribution. In the merged
sequence, each consecutive rank is generated by one of the K source trans-
formers whose marginal output distribution is assumed to be monotone
non-increasing. Thus, the marginal distribution of the merged sequence is
also monotone non-increasing. By estimating the marginal probability dis-
tribution of the merged sequence, we are effectively averaging the marginal
output distributions of all K source transformers where each transformer
is weighted by the probability of occurrence of its corresponding context.

Thus, the estimated marginal distribution of the merged sequence ap-
proaches the optimal coding distribution with a prior for the class S of
output distributions of the source transformers in the context-tree, in the
sense of Proposition 2.9. In other words, this distribution minimizes the
expected redundancy of the arithmetic encoder over the class S. There-
fore, we expect a better performance of our context-tree algorithm when



3.4. Results and Discussion 131

the average coding distribution is used than when the optimal coding dis-
tribution for the set My of monotone sources is used, since the former
minimizes the expected redundancy for the actual output distributions
of the source transformers, whereas the latter minimizes the worst-case
redundancy for the class of all monotone non-increasing distributions, of
which the class § of marginal output distributions of the source transform-
ers is only a sub-class. The results in the next section will show whether
the average coding distribution also achieves a better performance than
the optimal coding distribution for the class My ¢ . of all monotone non-
increasing distributions of expected value ¢, when a partial source estima-
tor is used to estimate the expected value ¢ at the output of each source
transformer.

The practical advantage of the average coding distribution is that the
task of “reducing” the entropy of the source with a context-tree is separated
from the task of encoding the resulting sequence. The first block of the
algorithm contains the source context, the decision block é and the array
of source transformers. This block performs an invertible transformation
of the output sequence of the source, converting it into a sequence of
the same length, the same alphabet size, and therefore the same entropy
rate, but whose single-letter entropy is expected to be smaller than the
single-letter entropy of the source. The second block of the algorithm is
the adaptive arithmetic encoder which performs the actual compression,
with an expected codeword length approaching the single-letter entropy
of its input sequence.

3.4 Results and Discussion

In our discussion of context-tree algorithms, we have consciously avoided
the question of how the structure of a context-tree is modified while en-
coding a source sequence. There appears to be no known theory dictating
when it is best to add or delete a node from a context-tree. The context-
tree algorithms known to us follow heuristic rather than theoretical rules
to build up their context-tree.

The CCL algorithm is no different in this respect. Two parameters
limit the size of the context-tree:

e the maximum tree depth wpyax
e the maximum number K., of nodes in the tree

The algorithm starts with a context-tree containing only the root node.
While the number of nodes in the tree is smaller than the maximum, a



132 Chapter 3. Coding by Source Transformation

new node is created whenever the depth of the node corresponding to the
current source context is smaller than wyax. Existing nodes are never
deleted from the context tree. Once the maximum number of nodes is
attained, the structure of the tree remains unchanged for all subsequent
encoding operations.

We give an outline of the operations performed by the CCL algorithm
for every source symbol encoded:

1. Locate the deepest node in the tree corresponding to the current
source context.

2. Search for the input symbol in the competitive lists and compute its
rank:

e Start at the deepest node and proceed along the path to the
root until the symbol is found.

e Increment the rank only for entries in each competitive list
which were not encountered in previous lists visited.

e Append the input symbol at the end of the competitive lists in
which the symbol was not found.

3. Update the competitive lists in the remaining nodes along the path
to the root.

4. Add one new node in the context-tree if the depth of the current
deepest node is less than wp,x and the number of nodes in the tree
is less than K .x-

5. Estimate the coding probability of the rank obtained.
6. Encode the rank obtained using an arithmetic encoder.

It is not clear whether step 3 in the algorithm is necessary. If this step is
included, the competitive list transformer in an intermediate node of the
tree reflects the conditional probability of the source given the correspond-
ing source context. If step 3 is removed, the transformer in an intermedi-
ate node reflects the conditional probability given that the source context
contains this node but no deeper node in the tree.

In the remaining part of this section, the performance of the CCL algo-
rithm is evaluated in terms of the three performance criteria for universal
source coding algorithms described earlier. We begin by comparing a few
variations of the CCL algorithm in order to determine the best choice for
the coding distribution. The performance of the resulting algorithm is
compared to the performance of other common universal source coding



3.4. Results and Discussion 133

K o 0
[bpB]| | [kByte] | [kByte/s]
1.) optimal for My 3.28 1100 130
2.) | average distribution | 2.83 1100 130
3.) | optimal for My ¢ . | 2.49 1950 45
4) | step 3removed | 2.84 | 1100 150

Table 3.1: The performance of variations of the CCL algorithm

algorithms. For all the results presented, the CCL algorithm follows the
outline given above (except in one measurement where the possibility of
removing step 3 from the algorithm is investigated). The variations of the
algorithm that are compared differ only in the coding distribution which
is used by the arithmetic encoder to encode the output symbols of the
source transformers.

Fine-tuning the CCL algorithm

The performance of the CCL algorithm is evaluated when compressing the
files® of the “Calgary Corpus” described in [28]. The values of the com-
pression rate x and the storage o are calculated by taking the arithmetic
average of the values measured individually for the 14 files of the Calgary
Corpus. The value of the throughput € is calculated by dividing the total
size of the corpus (in kBytes) by the CPU-time required by the algorithm
to compress all the files. Table 3.1 lists the performance measured for
variations of the CCL algorithm. In the results shown, the algorithm is
given a maximum number of nodes in the context-tree Kpn.x = 32000.
The maximum tree depth wmax is optimized individually for each file com-
pressed. We now describe the variations tested, which are numbered in
the text as in Table 3.1.

1. The CCL algorithm is implemented as described in the outline above.
The optimal distribution for the polytope My of monotone non-
increasing probability distributions derived in (2.25) is used as the
coding distribution by the arithmetic encoder. The alphabet size is
N = 256 for the files of the Calgary Corpus.

2. The CCL algorithm is implemented using the average distribution
described in the previous section. The partial output sequences of

5The files of the Calgary Corpus are available on the Internet at the time of writing
from

ftp://ftp.cpsc.ucalgary.ca/pub/projects/text.compression.corpus/



134 Chapter 3. Coding by Source Transformation

the source transformers are merged back into one sequence and the
estimated marginal probability distribution of the merged sequence
is used as a coding distribution by the arithmetic encoder.

3. The CCL algorithm is implemented with a partial source estimator
in each node of the context-tree. Each partial estimator estimates
the average of the output distribution of the source transformer in
its node, using the recursive equation

c[k] = (1 — 8)c[k — 1] + SR[K],

where c[k] is the k-th estimate of the average and R[k] is the k-th
symbol in the output sequence of the source transformer. The vari-
able ¢ is called the “forgetting factor” and its value is optimized
individually for each file compressed. Since it is not possible to com-
pute the optimal coding distribution for the polytope My ;. for
every symbol encoded, the CCL algorithm uses a lookup table con-
taining optimal distributions for a few values of ¢, which have been
pre-computed using the iterated Arimoto-Blahut algorithm of the
previous chapter. For every symbol encoded, the arithmetic encoder
selects the coding distribution in the lookup table whose average is
closest to the estimated average ¢ in the current node.

4. The CCL algorithm is implemented using the average distribution
as in variation 2. Step 3 is removed from the algorithm, i.e., the
algorithm does not update the competitive lists on the genealogic
path to the root node once it has found the source symbol in a given
node.

The compression rates obtained for variations 1 and 2 confirm our claim
that the average distribution must perform at least as well as the optimal
coding distribution for the polytope M . However, it is worth pointing
out that the difference between the compression rates measured lies far
below the worst-case redundancy p = 1.60 which we computed in the
previous chapter for the polytope Masg.

Variation 3 of the CCL algorithm clearly outperforms all the other
variations in terms of the compression rate p. However, the cost of load-
ing and maintaining a lookup table of optimal distributions is reflected in
the bad performance of this variation in terms of the throughput 6 and
the storage requirement o. This variation of the algorithm shows what is
achievable in terms of the compression rate by making the coding distri-
bution of the arithmetic encoder node-specific. In order to be useful in
practice, an alternative implementation would have to be devised which
does not require a lookup table of probability distributions.



3.4. Results and Discussion 135

K o 0

Algorithm [bpB] | [kByte] | Ogzip
CCL1 (Kmax = 13000) | 2.92 | 490 | .116
CCL2 (Kmax = 2000000) | 2.79 | 2940 | .108

gzip 2.71 2000 1

PPM _MA 2.24 6300 077
PPM CO 2.57 2100 .089
LZSS 3.74 520 .24
LZW 3.7 1250 1.24
EFLZ 4.44 1250 5.95
compress 3.64 970 1.61

Table 3.2: The performance of the CCL algorithm compared with the
performances of other universal source coding algorithms

The difference in compression rate between variations 2 and 4 is neg-
ligible. Nevertheless, the difference is not fortuitous, because it becomes
larger for larger values of Ky,.x. Thus, step 3 in the CCL algorithm
achieves a slight improvement of the compression rate. However, the im-
provement achieved does not justify the cost of a lower throughput which
results from updating additional competitive lists along the path to the
node at each coding step.

Variation 4 of the CCL algorithm clearly comes out as the winner in
the overall comparison. Hereafter, when the performance of the CCL algo-
rithm is compared to the performance of other source coding algorithms,
we will restrict ourselves to this version of the algorithm®.

Comparison with other universal source coding algo-
rithms

The performance of the CCL algorithm is compared to the performance
of other universal source coding algorithms when compressing the 14 files
of the Calgary Corpus. The performance values for the other source cod-
ing algorithms are based on the measurements realized by Tonezzer and
Vontobel in the course of their diploma project [22]. Table 3.2 shows the
performances measured. Since the throughput € is machine-dependent, it
is given relative to the throughput of the gzip command executed on the
same machine.

6] cannot help shedding a tear of sorrow as we part with the coding distributions
derived in the previous chapter. It seems as if the practical “engineering” approach has
triumphed over the theoretically pleasing “optimal” coding distribution for a polytope.



136 Chapter 3. Coding by Source Transformation

The programs LZW, LZSS and EFLZ implement variations of the Lem-
pel-Ziv algorithm. The programs compress and gzip are software pack-
ages which combine the Lempel-Ziv algorithm with various tricks to im-
prove the effective performance. The programs PPM_MA and PPM_CO
implement two variations of the PPM algorithm. Both programs follow
an outline which is very similar to the outline of the CCL algorithm de-
scribed earlier, except that those programs extend the deepest node to the
full length wpax of the source context at every coding step rather than
creating one node at a time as in the CCL algorithm. The maximum
number of nodes in their context-tree is K.y = 13’000 for PPM_CO
and Kpnax = 200000 for PPM _MA. Both algorithms automatically de-
termine an appropriate value of the maximum tree depth wn,.x for each
file compressed. For detailed descriptions of the source coding algorithms
compared, we refer to [22].

The results shown suggest a positive assessment of the CCL algorithm.
The algorithm achieves its goal of providing an acceptable compression
rate while reducing the storage requirement which commonly afflicts con-
text-tree algorithms. The version of the algorithm which uses 13’000 nodes
breaks the record for low storage among the algorithms tested, and its com-
pression rate is far better than its closest contenders. This indicates that
the algorithm may be of practical use in situations were storage is sparse,
which are precisely the situations when a good compression algorithm is
most direly needed. For example, this is the case in a hand-held computer
which, being deprived of a mass storage device, must hold its operating
software and the data it processes within a few MBytes of tightly allocated
RAM storage.

The Planetarium Representation

An alternative representation of the performance triplet of the various
source coding algorithms compared requires the reader to participate in
a little thought experiment. The reader is invited to take a seat in a
comfortable armchair placed at the origin of the three-dimensional space
R3, with a view into the “sky”, which is thought to be the positive eighth
of R3. For the sake of this experiment, we kindly ask the reader to wear
an eye-patch so as to neutralize his or her sense of perspective.

For every triplet (k,0,1/8) associated with a source coding algorithm,
we hang a ball of a given diameter ¢ at the corresponding coordinates in
R3. The throughput is represented by 1/6 rather than 6 because all three
measures must obey the rule “the smaller the better” in this experiment.
Each parameter in a measured triplet is normalized so that the compo-
nent-wise average of all triplets gives the point (1, 1, 1). Since the reader



3.4. Results and Discussion 137

Figure 3.16: The coordinates of points on the unit triangle of R3

has no sense of perspective, we can represent his or her view of the balls
approximately by projecting each ball onto a triangular window spanned
by the unit vectors of R?, which we call the “unit triangle”. Given that
all balls have the same diameter d, the size of each ball projected onto
the unit triangle is inversely proportional to the norm of the correspond-
ing triplet (k,1/6,0). The position of a ball in the triangle reveals how a
source coding algorithm distributes its emphasis on the three performance
parameters k, 1/6 and o, and the size of a ball gives an indication as to
the overall performance of the algorithm.

By a geometric argument, it is possible to show that the components
of a point on the unit triangle are determined by projecting the point onto
the edges of the triangle” in the manner indicated by Figure 3.16. The
resulting representation is shown in Figure 3.17 in a somewhat artistic
rendering, where spikes have been added to the balls to accentuate the
planetary aspect of the illustration.

In this representation, the winners are compress and gzip which at-
tain the best overall performance by offering an excellent tradeoff between
compression rate, storage requirement and throughput. The main looser
is PPM _MA which, while standing at the forefront in terms of the presti-
gious compression rate, neglects the other two parameters completely. The
CCL1 algorithm, which uses a context-tree with 13’000 nodes achieves the
best overall performance among context-tree algorithms.

While this representation illustrates the performance of the various
source coding algorithms in a very graphical manner, it has the weakness
of giving equal importance to the three performance parameters of each

"This transformation of the unit triangle was shown to me by Prof. George Yadi-
garoglu of the ETH Ziirich, who uses it to represent a triplet of parameters which
describe a thermodynamic process in the core of a nuclear reactor.



138 Chapter 3. Coding by Source Transformation

Ziv-Lempel
Constellation

Context-Tree
Galaxy

Figure 3.17: The planetarium representation of the performance of
source coding algorithms



3.4. Results and Discussion 139

algorithm. In practice, every application dictates the importance of each
parameter and a source coding algorithm is chosen accordingly.

We thank the reader for participating in this thought experiment.
Please do not forget to remove your eye-patch before proceeding to the
final pages of this dissertation.

Appendix: An Alternative Formulation of
Proposition 3.2

We begin by defining a matrix function that was originally introduced by
Cauchy in 1812:

Definition 3.1 The permanent of an N X N matrixz A is the sum of all
products of N elements of the matrixz where every element is taken from a
different row and a different column. It is written Per(A).

A permanent is closely related to the determinant of the same matrix.
The determinant is the sum of the same products, except that half of those
products must be multiplied by —1 when computing the determinant. It
might seem that the permanent should be easier to compute than the
determinant, but this is not true because the transformation rules that
make it easy to compute a determinant are not valid in general for the
permanent. One rule that is extendable to permanents is the factorization
rule by which a permanent can be written as a sum of row or column
elements times the permanent of the sub-matrix obtained by removing
the row and the column of the current element from the original matrix.

The only permanents and sub-permanents that we will be interested
in are those of the Vandermonde matrix

- N-—1 N—1 N—1 A
a}v ; a%v , a% )
aq Qg QN
V = :
ai a3 aly
0 0 0
e ay Gy

The A in the state probability of a competitive list can now be expressed
as

A = Per(V).

We write v;; to denote the element at row ¢ and column j in the
Vandermonde matrix V', and we write

Aij = Per(Vy),



140 Chapter 3. Coding by Source Transformation

where V;; denotes the sub-matrix obtained by removing the i-th row and
the j-th column from V. We now define the matrix

v11A11 V12012 ce viNAiN
1 v21 Aoy va2 g e vanAan
W — Z . . . . )
| vN1AN1 UN2AN2 ... UNNANN i

which is a doubly stochastic matrix, because the sum of v;;A;; for i =
1...Norfor 3 =1...N is equal to the permanent of V', by the factoriza-
tion rule mentioned above.

We have finally reached the “simple” expression for the steady-state
rank probabilities of the competitive list. The vector corresponding to
the output probability distribution Pr = [Pr(1), Pr(2),...,Pr(N)]" of
a competitive list can be expressed as

Pr=WPy, (3.10)

where Py = [Py(uy), Py(us),...,Py(un)]? is the probability vector of
the discrete memoryless source.



Conclusion

We give a summary of the results presented in the three chapters of this
dissertation:

e In Chapter 1, we began with a tutorial on arithmetic coding, showing
how this source coding method falls within the framework of coding
by probability transformation. Applying the principle of coding by
probability transformation to block coding for noisy channels led us
to Definition 1.1 of the (N, K) block coding capacity. This definition
provides a method for designing block codes which could only be
implemented for small values of N and K.

We demonstrated how an arithmetic encoder could be modified to ac-
commodate a rate sufficiently below the capacity of a noisy channel.
This arithmetic encoder for noisy channels turned out to be a generic
encoder which includes the special cases of block and convolutional
encoders. We derived a metric (1.10) to be used by a sequential de-
coder in conjunction with an arithmetic channel encoder. Finally, we
presented the results of simulations in which the performance of the
arithmetic encoder was evaluated and compared to the performance
of a convolutional encoder.

e In Chapter 2, an alternative to Gallager’s derivation of the optimal
coding distribution for a finite class of distributions was given. This
alternative resulted in Theorems 2.2 and 2.3. An iterated version
of the Arimoto-Blahut algorithm was introduced, which is used to
determine the optimal coding distribution for a polytope of proba-
bility distributions, or, alternatively, to compute the capacity of a
channel with a large input alphabet. Using this algorithm, the opti-
mal coding distribution was determined for the polytope My s . of
all monotone non-increasing probability distributions P with a given
average f - P =c.

141



142 Conclusion

e Chapter 3 started with a general framework showing how universal
coding could be combined with source transformation. Following
this, two source transformers were described, analyzed and com-
pared: the competitive list transformer and the recency-rank cal-
culator. Theorems 3.1 and 3.2 show that the steady-state output
distributions of either transformer is monotone non-increasing when
the transformer is applied to the output sequence of a discrete me-
moryless source. Based on this insight, a context-tree algorithm was
devised using competitive list transformers in each node of its con-
text-tree and encoding the resulting output symbols with a universal
arithmetic encoder. The performance of the algorithm was evaluated
and compared to the performances of other common universal source
coding algorithms.

Apart from Chapter 1 which may have opened the way for further re-
search on arithmetic coding for noisy channels, many results in the present
dissertation have been disappointing. In Chapter 2, a lengthy derivation
was given for the solution of a problem for which Gallager provides a much
shorter equivalent solution. Chapter 3 started with the hope of using the
coding distributions derived in Chapter 2 in a context-tree algorithm, but
those distributions had to be dropped to make place for a more practical
solution. As a consolation, we conclude this dissertation with a personal
remark on the pedagogical value of such an endeavor.

As Information Theory grows into the next millennium, the main prob-
lem facing students in the field is that they are given more and more solu-
tions before they have had proper time to think about the corresponding
problems. Huffman coding seems obvious when it is learned by students
who have not attempted to discover the optimal prefix-free code for a ran-
dom variable themselves. The Viterbi algorithm looks trivial to a student
who has not spent time trying to devise a maximum likelihood decoder for
a convolutional or an arithmetic channel encoder. It is common among
students to lament about the impossibility of inventing anything new in a
field which has an elegant solution for every solvable problem. By return-
ing to the roots of Information Theory and attempting to design coding
methods based on its probabilistic fundamentals, I have learned to appre-
ciate the beauty of the solutions provided by the pioneers of Coding and
Information Theory over the past fifty years.



Bibliography

[1]

2]

3]

4]

1]

6]

7]

8]

19]

Claude Shannon, “A Mathematical Theory of Communication,” Bell
Tech. Journ., 1948.

Peter Elias, “Error-free Coding,” IEEFE Trans. on Inform. Theory,
IT-3, pp. 29-37, September 1954.

Peter Elias, “Universal codeword sets and representations of the inte-
gers,” IEEE Trans. on Inform. Theory, I'T-21, pp. 194-203, March
1975.

Peter Elias, “Interval and Recency Rank Source Coding: Two On-Line
Adaptive Variable-Length Schemes,” IEEE Trans. on Inform. Theory,
IT-33, pp. 3-10, January 1986.

Suguru Arimoto, “An Algorithm for Computing the Capacity of Arbi-
trary Discrete Memoryless Channels,” IEEE Trans. on Inform. The-
ory, I'T-18, pp. 14-20, January 1972.

J. L. Bentley, D. D. Sleator, R. E. Tarjan, W. K. Wei, “A Locally
Adaptive Data Compression Scheme,” Communications of the ACM,
Vol. 29, No. 4, pp. 320-330, April 1986.

Richard E. Blahut, “Computation of Channel Capacity and Rate-
Distortion Functions,” IEEE Trans. on Inform. Theory, IT-18,
pp- 460-473, July 1972.

J. G. Cleary and I. H. Witten, “Data Compression using Adaptive
Coding and Partial String Matching,” IEEE Trans. on Communica-
tions, COM-32, pp. 396-402, April 1984.

Lee D. Davisson, “Comments on ‘Sequence time coding for data com-
pression’,” Proceedings of the IEEE (Corresp.) vol. 54, p. 2010, De-
cember 1966.

143



144 Bibliography

[10] Lee D. Davisson, “Universal Noiseless Coding,” IFEE Trans. on In-
form. Theory, IT-19, pp. 783-795, November 1973.

[11] Robert Fano, Technical Report No. 65, The Research Laboratory of
Electronics, M.I.T., March 17, 1949.

[12] Robert G. Gallager, “Source Coding With Side Information and Uni-
versal Coding,” unpublished, Submitted to the IEEE Trans. on In-
form. Theory, September 1976.

[13] I. M. Jacobs and E. R. Berlekamp, “A Lower Bound on the Distri-
bution of Computation for Sequential Decoding,” IEEE Trans. on
Inform. Theory, IT-13, pp. 167-174, April 1967.

[14] T. J. Lynch, “Sequence time coding for data compression,” Proceed-
ings of the IEEE (Corresp.) Vol. 54, pp. 1490-1491, October 1966.

[15] James L. Massey, “Variable-Length Codes and the Fano Metric,”
IEEFE Trans. on Inform. Theory, IT-18, pp. 196-198, January 1972.

[16] R. C. Pasco (1976), Source Coding Algorithms for Fast Data Com-
pression, PhD Thesis, Dept. of EE, Stanford University, CA.

[17] Patricia Portmann and Ivo Spieler, “Generalized Recency-Rank
Source coding: A Practical On-Line Adaptive Scheme,” Semester
Project Nr. 9503, Signal and Information Processing Laboratory,
ETH Ziirich, Wintersemester 1994/95.

[18] J. Rissanen, “Generalized Kraft Inequality and Arithmetic Coding,”
IBM Journal of Research and Development, Vol. 20, p. 198, 1976.

[19] R. Rivest, “On Self-Organizing Sequential Search Heuristics,” Com-
munications of the ACM, Vol. 19, No. 2, pp. 63-67, February 1976.

[20] Boris Ya. Ryabko, “Data compression by means of a book stack,”
Problems of Information Transmission, Vol. 16, No. 4, pp. 16-21,
1980 (in Russian), Vol. 16, No. 4, pp. 265-269, 1981 (in English).

[21] J. Sayir, I. Spieler and P. Portmann, “Conditional Recency-Ranking
for Source Coding,” in Proc. IEEE Inform. Theory Workshop (Haifa,
Israel, June 9-13, 1996), p. 61.

[22] Ralph M. Tonezzer and Pascal O. Vontobel, “Exploring the Ziv-Lem-
pel Algorithm,” Diploma Project Nr. 6803, Signal and Information
Processing Laboratory, ETH Ziirich, Wintersemester 1996/97.



Bibliography 145

[23] F. M. J. Willems, “Universal Data Compression and Repetition
Times,” IEEE Trans. on Inform. Theory, I'T-35, pp. 54-58, January
1989.

[24] F. M. J. Willems, Y. M. Shtarkov and T. J. Tjalkens, “The Con-
text-Tree Weighting Method: Basic Properties,” IEEE Trans. on In-
form. Theory, IT-41, pp. 653-664, May 1995.

[25] Jacob Ziv and Abraham Lempel, “A Universal Algorithm for Sequen-
tial Data Compression,” IEEE Trans. on Inform. Theory, 1T-23,
pp. 337-343, May 1977.

[26] Norman Abramson (1963), Information Theory and Coding, McGraw-
Hill, New York.

[27] Robert B. Ash (1965) Information Theory, Dover Publications Inc.,
ISBN 0-486-66521-6.

[28] T. C. Bell, J. G. Cleary and 1. H. Witten (1990), Text Compression,
Prentice Hall, ISBN 0-13-911991-4.

[29] T. M. Cover and J. A. Thomas (1991), Elements of Information The-
ory, John Wiley and Sons, ISBN 0-471-06259-6.

[30] Robert G. Gallager (1968), Information Theory and Reliable Commu-
nications, John Wiley and Sons, ISBN 0-471-29048-3.

[31] Rafail Krichevsky (1994), Universal Compression and Retrieval,
Kluwer Accademic Publishers, ISBN 0-7923-2672-5.

[32] Shu Lin and Daniel J. Costello, Jr. (1983), Error Control Coding: Fun-
damentals and Applications, Prentice Hall Inc., ISBN 0-13-283796-X.

[33] Olvi L. Mangasarian (1969), Nonlinear Programming, McGraw-Hill,
New York.

[34] John G. Proakis (1983), Digital Communications, McGraw-Hill,
ISBN 0-07-100269-3.

[35] R. Tyrell Rockafellar (1970), Convex Analysis, Princeton University
Press, ISBN 0-691-01586-4.



146 Bibliography




Curriculum Vitae

Jossy Sayir
Steinmiiristr. 20
CH-8123 Ebmatingen, Switzerland

8 June 1968 Born in Ziirich, Switzerland.

1974-86 Attended primary and secondary school at the Ecole Francaise
de Ziirich, obtained Baccalauréat Francais Type C (Mathématiques/
Physique), mention “Bien”.

1986-91 Attended and graduated from the ETH Ziirich, received diploma,
in Electrical Engineering as dipl. El.-Ing. ETH.

1991-93 Employed by Motorola Communications Israel as a development
engineer, worked on the first digital mobile radio system developed
by Motorola.

1993-95 Employed as a Teaching Assistant at the Signal and Information
Processing Lab, ETH Ziirich.

December 1993 Co-founded the Jazz-Band “Who Cares?” with Markus
Schenkel at the Signal and Information Processing Laboratory.

1995-98 Employed as a Research Assistant at the Signal and Information
Processing Lab. and enlisted as a PhD student.

1994-98 Served as Secretary, then Chairperson of the IEEE Student
Branch at the ETH Ziirich.

1999 ... Temporarily employed by Supercomputing Systems in Ziirich
while seeking employment in or around London, England.

147



