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1 MAIN FUNCTIONS

Each of the following functions correspond to a scheme for posterior inference of the α and β parameters of the α-stable

distribution. The first two functions implement the conditional Gibbs sampler scheme, in two different parametrization

for the latent variables. The third and fourth routine run inexact marginal MCMC schemes, based on a numerical

approximation of the likelihood, while the last two execute pseudo-marginal schemes, based on importance sampling.

In details the proposal distribution for the latent variables is a piecewise constant envelope adaptively built.

1.1 MATLAB function: [out, acc a, acc b] = conditional v(z, N, Nc, a0, b0, pa, pb,

sa, sb, MHsteps, plot)

Given the standard stable data set z, of size N, this function performs the Metropolis within Gibbs sampler scheme

introduced by [1] in the transformed parametrization for the latent variables v = tαβ(y). The chains {α(k)}Nc
k=1 and

{β(k)}Nc
k=1 have initial random values a0 and b0 respectively. In the current version the prior, proposal and posterior

distributions are assumed to be bounded to Sα ∈ {(0.1, 0.9), (1.1, 2)} and Sβ ∈ {(−1, 0), (0, 1)}, where Sα and Sβ are

selected in order to contain the initial values. Relaxation of this constraints is left to future analysis.

A variation of the MCMC scheme proposed by Buckle consists in the choice of the proposal distributions for α

and β, which are not built by adaptive rejection sampling. We use instead a tunable mixture between a (truncated)

Gaussian random walk, with probabilities pa and pb and standard deviations sa and sb respectively, and a uniform

independent proposal with probabilities 1-pa and 1-pb. To compensate this arbitrary design of the proposals, we run

the internal Metropolis within Gibbs step for MHsteps, where a typical value for MHsteps is 10. The variable plot is

boolean, equal to 1 if the user wants to display the trace-plot showing the progress of the chains, 0 otherwise.

The variable out is a Nc×3 cell array, containing {y(k), α(k), β(k)}Nc
k=1, i.e. the set of latent variables in the original

parametrization, and the values of the chains for α and β. Observe that the latent variables are initially sampled in

the original parametrization through the subroutine sampling y, then transformed to {vi}Ni=1 and the Jacobian of the

transformation is evaluated in the inverted variables (with a call of inversion step ordered) each time a new value

of α or β is proposed. Finally acc a and acc b are Nc×1 boolean vectors, whose components are 1 if the proposed

values of the parameters have been accepted, 0 otherwise.

1.2 MATLAB function: [out, acc a, acc b] = conditional y(z, N, Nc, a0, b0, pa, pb,

sa, sb, MHsteps, plot)

This function is the counterparty of the previous one, but operates with latent variables in the original parametrization

{yi}Ni=1. The target full conditional distributions of the parameters are spiked, which causes lack of convergence for

the Markov chains.

1.3 MATLAB function: [out, acc a, acc b] = GS approx marg(z, N, Nc, a0, b0, pa, pb,

sa, sb, plot)

This function implements an approximated marginal Metropolis within Gibbs sampler scheme. In details the likelihood

is approximated using the stablepdf routine available in the STABLE 5.3 Matlab library, that can be purchased from

J.P. Nolan’s academic webpage: http://academic2.american.edu/ jpnolan/stable/stable.html. See also [2] and [3] for

a reference. It takes in input a standard stable dataset z, of lenght N, and it runs the chains for α and β, starting from

the initial values a0 and b0, for a total of Nc iterations. The proposal distributions are a tunable mixture between

a (truncated) Gaussian random walk, with probabilities pa and pb and standard deviations sa and sb respectively,

and a uniform independent proposal with probabilities 1-pa and 1-pb. The variable plot is boolean, equal to 1 if the

user wants to display the trace-plot showing the progress of the chains, 0 otherwise. The third sub-plot represents the

approximated log-likelihood.

The variable out is a Nc×4 matrix, containing {α(k), β(k), z̃(k), ˜̃z(k)}Nc
k=1, where z̃(k) is the approximated value of the

log-likelihood in the current state of the chain (α(k), β(k)), while ˜̃z(k) is the intermediate log-likelihood approximation

after the Gibbs sampler step for α. Finally acc a and acc b are Nc×1 boolean vectors, whose components are 1 if the

proposed values of the parameters have been accepted, 0 otherwise.
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1.4 MATLAB function: [out, acc, cov post] = MH approx marg(z, N, Ncs, Nb, Nc, a0,

b0, p, sigma, plot)

This function corresponds to the previous one, where a Metropolis Hastings scheme is used to jointly sample α and β.

To capture the posterior covariance structure between the two parameters, a short run of the chain (Ncs iterations) is

performed and the posterior covariance matrix is saved in cov post after a burn-in of Nb iterations. Both the short

and the long run (Nc iterations) of the chain have initial values a0 and b0. The proposal distribution is a tunable

mixture between a (truncated) Gaussian random walk, with probability p and a uniform independent proposal with

probabilities 1-p. In the short run, in the random walk moves the parameters are drawn independently from truncated

Gaussians with standard deviation sigma, while in the long run a bivariate truncated Gaussian with the estimated

cov post matrix is used.

The variable out is a Nc×3 matrix, containing {α(k), β(k), z̃(k)}Nc
k=1, where z̃(k) is the approximated value of the

log-likelihood in the current state of the chain (α(k), β(k)). Finally acc is a Nc×1 boolean vector, whose components

are 1 if the proposed values of the parameters have been accepted, 0 otherwise.

1.5 MATLAB function: [out, acc a, acc b] = GS pm(z, N, Nc, a0, b0, pa, pb, sa, sb,

gl1, gl2, plot)

This function performs the pseudo-marginal Gibbs sampler scheme. The parameters out, acc a, acc b, and z,

N, Nc, a0, b0, pa, pb, sa, sb, plot have analogous meaning to those of the function GS approx marg. The

likelihood is now not approximated numerically, but estimated via importance sampling, where gl2 latent variables

are drawn from a piecewise constant envelope built on π(y|α, β, z). For a fixed stable data point, each envelope has

gl1+1 constant traits.

1.6 MATLAB function: [out, acc, cov post] = MH pm(z, N, Ncs, Nb, Nc, a0, b0, p,

sigma, plot)

This function performs the pseudo-marginal Metropolis Hastings scheme. The parameters out, acc, cov post, and

z, N, Ncs, Nb, Nc, a0, b0, p, sigma, plot have analogous meaning to those of the function MH approx marg.

The likelihood is now not approximated numerically, but estimated via importance sampling, where gl2 latent variables

are drawn from a piecewise constant envelope built on π(y|α, β, z). For a fixed stable data point, each envelope has

gl1+1 constant traits.

1.7 Example

See example.mat. The standard stable dataset (100 samples) has α = 1.2, β = 0.8. The initial values of the chains

are α0 = 1.7, β0 = 0.4, and the runs have 1000 iterations. When a Metropolis scheme is performed, the short run to

determine the covariance between α and β has 1000 iterations, 500 of which are burn-in. Metropolis within Gibbs steps

are executed 10 times. The Gaussian random walk components in the proposals for the parameters have probability

0.85 and standard deviations
√

10−3; with probability 0.25 the values are proposed independently from a uniform

distribution. 50 latent variables are drawn from piecewise constant envelopes built with 20 internal grid points for the

importance sampler used in the pseudo-marginal schemes.

The user is asked to enter a number in {1, 2, . . . , 6}, corresponding to each of the MCMC schemes presented above

respectively.
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2 AUXILIARY FUNCTIONS

The following functions are auxiliary to the previous ones. The first routine computes the sample posterior autocor-

relation function, to be used as a diagnostic tool, while the second one is used to generate α-stable random variables.

The third function outputs a set of latent variables in the original parametrization, given the transformed variables

{vi}Ni=1, where each inversion is performed through safe newton. The fourth function produces a noisy unbiased

estimate of the α-stable likelihood via importance sampling, while the last one samples a set of latent variables {yi}Ni=1

from the respective full conditional, via adaptive rejection sampling.

2.1 MATLAB function: sa = acf(y, lag, col)

This is a version of the File Exchange - Matlab Central function by Calvin Price, which can be found at

http://uk.mathworks.com/matlabcentral/fileexchange/30540-autocorrelation-function–acf-.

It computes sa, the sample autocorrelation function of the sequence y, through lag number of lags. It also produces a

bar graph of the autocorrelation, with rejection region bands for testing if the individual autocorrelation is equal to 0.

2.2 MATLAB function: x = CMS weron(a, s, b, m, n)

This function implements the Chambers Mallows Stuck method [4] for generating α-stable random variables, in the

S1
α(σ2, β2, µ) parametrization according to Weron [5]. The set of parameters is (a, s, b, m) = (α, σ, β, µ), and n is the

number of i.i.d random variables generated and stored in the output vector x. In details for α ∈ (0, 2] and β ∈ [−1, 1],

if Y is uniformly distributed on
(
− 1

2 ,
1
2

)
, and W is an independent exponential random variable with mean 1, then

• for α 6= 1

Z = tαβ2
(Y )W

α−1
α ∼ Sα(1, β2, 0) (1)

• for α = 1

Z =
(π

2
+ β2πY

)
tan(πY )− β2 log

(
W cos(πY )
π
2 + β2πY

)
∼ S1(1, β2, 0) (2)

where

K(α) = α− 1 + sign(1− α) =

{
α if 0 < α < 1

α− 2 if 1 < α < 2
(3)

ηαβ2
= β2

π

2
K(α) (4)

tαβ2
(y) =

sin(παy + ηαβ2
)

(cos(πy))
1/α

(cos((α− 1)πy + ηαβ2
))

1−α
α . (5)

The variables obtained in this way have standard stable distribution (σ2 = 1, µ = 0). Multiplying Z with a non-negative

constant σ2 and adding a constant µ non standard stable random variable are obtained: X = σZ + µ ∼ S1
α(σ2, β2, µ).

2.3 MATLAB function: y = inversion step ordered(a, b, vI, I, n)

Given (a, b)=(α, β) and given the relation vi = tαβ(yi), i = 1, . . . , n, that associates the latent variables in their

original parametrization {yi}i with their transformed {vi}i, this function inverts a set of given variables vI = {vi}i
to y = {yi}i. In particular the safe newton routine is called and to speed up the building of the interval bracketing

the solution, vI are assumed to be pre-ordered in an ascending order (with the index I containing the mapping to the

initial order, e.g. [vI,I] = sort(v)).
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2.4 MATLAB function: NL = noisy likelihood(a, b, z, N, gl1, gl2)

Returns NL, the value of the (not unbiased) log-likelihood corresponding to the noisy unbiased estimate of the likelihood

referred to the parameters (a, b) = (α, β) and the standard stable data z. The likelihood value is produced by

importance sampling, where each proposal distribution for the latent variables {yi}gl2i=1 is a piecewise constant envelope

on the conditional (unnormalized) distribution π(y|α, β, z). Each envelope has gl1+1 levels.

2.5 MATLAB function: [x,xEvals,test,nEvals] = safe newton(fun,der,a,b,tx,tf,nMax)

Computes the zero of the one-variable scalar function fun (with derivative der) based on the Newton method. An

initial interval (a, b) bracketing the solution is required. This is tested with a sign condition suitable for monotonic

functions, as happens for tα,β ; if this is not the case, an error message is displayed, the variable test is assigned a

value of 1, and the execution of the function is interrupted. To guarantee that each of the found intervals brackets

the zero, each time the Newton step does not bracket the solution, a bisection step is taken instead. The procedure

is repeated until the amplitude of the bracketing interval is bigger than the tolerance tx, or the absolute value of the

function in the estimated solution in higher than the tolerance tf, or the number of iterations has not reached the

allowed maximum nMax. Approximations of the root of fun are saved in xevals, while nEvals contains the effective

number of iterations performed.

2.6 MATLAB function: y = sampling y(a,b,z,n)

This function samples n latent variables {yi}ni=1, as a step of the Gibbs sampler scheme described in [1]. One latent

variable is drawn by adaptive rejection sampling from the full conditional π(y|α, β, zi), for each standard stable data

point zi. In details π(y|α, β, zi) is unimodal and it is possible to build a piecewise constant envelope with the rejected

points, until the first acceptance happens. The value of the parameters (α, β) are contained in a and b.
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